

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# (2,4,6-Trimethylphenyl)boronic acid– triphenylphosphine oxide (1/1)

#### Sorin Rosca, Marian Olaru and Ciprian I. Rat\*

Universitatea Babeş-Bolyai, Facultatea de Chimie și Inginerie Chimicã, 11 Arany Janos, 400028 Cluj-Napoca, Romania Correspondence e-mail: ciprian.rat@ubbcluj.ro

Received 20 November 2011; accepted 30 November 2011

Key indicators: single-crystal X-ray study; T = 297 K; mean  $\sigma$ (C–C) = 0.006 Å; R factor = 0.083; wR factor = 0.186; data-to-parameter ratio = 15.3.

In the crystal structure of the title compound, C<sub>9</sub>H<sub>13</sub>BO<sub>2</sub>.- $C_{18}H_{15}OP$ , there are  $O-H \cdots O$  hydrogen bonds between the O atom of triphenylphosphine oxide and one hydroxy group of the boronic acid. Boronic acid molecules form inversionrelated hydrogen-bonded dimers in an  $R_2^2(8)$  motif. The structure is consolidated by intermolecular C-H···O bonds and  $C - H \cdots \pi$  interactions.

#### **Related literature**

For applications of boronic acids, see: Suzuki (2011); Yang et al. (2011); Furukawa & Yaghi (2009). For recently reported structures of triphenylphosphine oxide and triphenylphosphine oxide hemihydrate, see: Sivaramkrishna et al. (2007); Ng (2009). For structures of related boronic acids, see: Filthaus et al. (2008), Cyrański et al. (2008); Rettig & Trotter (1977).



#### **Experimental**

Crystal data

C<sub>9</sub>H<sub>13</sub>BO<sub>2</sub>·C<sub>18</sub>H<sub>15</sub>OP  $M_r = 442.27$ Monoclinic,  $P2_1/c$ a = 12.218 (4) Å b = 12.339 (4) Å

c = 16.983 (5) Å  $\beta = 95.651(5)^{\circ}$ V = 2548.0 (14) Å<sup>3</sup> Z = 4Mo  $K\alpha$  radiation

organic compounds

 $0.52 \times 0.45 \times 0.42 \text{ mm}$ 

23787 measured reflections 4486 independent reflections 3727 reflections with  $I > 2\sigma(I)$ 

 $R_{\rm int} = 0.052$ 

 $\mu = 0.13 \text{ mm}^{-1}$ T = 297 K

#### Data collection

| Bruker SMART CCD area-detector             |
|--------------------------------------------|
| diffractometer                             |
| Absorption correction: multi-scan          |
| (SADABS; Bruker, 2000)                     |
| $T_{\rm min} = 0.934, T_{\rm max} = 0.947$ |

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.083$ 294 parameters  $wR(F^2) = 0.186$ H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-2}$ S = 1.19 $\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$ 4486 reflections

#### Table 1

Hydrogen-bond geometry (Å, °).

Cg4 is the centroid of the C19-C24 benzene ring.

| $D - H \cdots A$                                                                                                                                          | D-H                                  | $H \cdot \cdot \cdot A$              | $D \cdots A$                                                  | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|--------------------------------------|---------------------------------------------------------------|--------------------------------------|
| $\begin{array}{c} 02 - H2A \cdots O1 \\ 03 - H3A \cdots O2^{i} \\ C4 - H4 \cdots O1^{ii} \\ C6 - H6 \cdots Cg4 \\ C15 - H15 \cdots Cg4^{iii} \end{array}$ | 0.82<br>0.82<br>0.93<br>0.93<br>0.93 | 1.84<br>1.99<br>2.41<br>2.88<br>2.69 | 2.645 (3)<br>2.795 (4)<br>3.326 (4)<br>3.728 (4)<br>3.602 (5) | 168<br>169<br>167<br>152<br>168      |
| 010 1110 08.                                                                                                                                              | 0150                                 | 2105                                 | 0.002 (0)                                                     | 100                                  |

Symmetry codes: (i) -x + 1, -y, -z; (ii)  $x, -y + \frac{1}{2}, z + \frac{1}{2}$ ; (iii) x + 1, y, z.

Data collection: SMART (Bruker, 2000); cell refinement: SAINT-Plus (Bruker, 2001); data reduction: SAINT-Plus; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2009); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

This work was supported by the National University Research Council (CNCS) of Romania (project TE295/2010). We thank Dr Albert Soran for the crystallographic measurements and data refinement.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2368).

#### References

Brandenburg, K. (2009). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2000). SMART and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA

Bruker (2001). SAINT-Plus. Bruker AXS Inc., Madison, Wisconsin, USA.

Cyrański, M. K., Jezierska, A., Klimentowska, P., Panek, J. J. & Sporzyński, A. (2008). J. Phys. Org. Chem. 21, 472-482.

Filthaus, M., Oppel, I. M. & Bettinger, H. F. (2008). Org. Biomol. Chem. 6, 1201-1207.

Furukawa, H. & Yaghi, O. M. (2009). J. Am. Chem. Soc. 131, 8875-8883.

Ng, S. W. (2009). Acta Cryst. E65, 01431.

- Rettig, S. J. & Trotter, J. (1977). Can. J. Chem. 55, 3071-3075.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sivaramkrishna, A., Su, H. & Moss, J. R. (2007). Private communication (refcode TPEPHO13). CCDC, Cambridge, England.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155. Suzuki, A. (2011). Angew. Chem. Int. Ed. 50, 6722-6737.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Yang, X., Chen, Y., Jin, S. & Binghe, W. (2011). Artificial Receptors for Chemical Sensors, edited by V. Mirsky & A. Yatsimirsky, pp. 169-190. Weinheim: Wiley-VCH.

# supporting information

Acta Cryst. (2012). E68, o31 [doi:10.1107/S1600536811051609]

# (2,4,6-Trimethylphenyl)boronic acid-triphenylphosphine oxide (1/1)

# Sorin Roșca, Marian Olaru and Ciprian I. Raț

#### S1. Comment

Boronic acids are widely used as starting materials in Suzuki-Miyaura cross-coupling reactions (Suzuki, 2011), as sensors or binders for carbohydrates (Yang *et al.*, 2011) or building blocks for covalent organic frameworks (Furukawa & Yaghi, 2009). Although there are a large number of reported crystal structures for aromatic boronic acids, the structure of mesitylboronic acid has not been reported yet. We present here the crystal structure of the mesityl boronic acid - triphenylphosphine oxide (1:1) adduct.

In the title compound there is an O—H···O bond between the hydrogen atom of a hydroxy group and the oxygen atom of the triphenylphosphine oxide (Fig. 1). The triphenylphosphine oxide molecules are connected into chains by weak C—H···O hydrogen bonds along the *c* axis direction (Table 1 and Fig. 2). The P=O bond length (1.479 (2) Å) is in the range of the values found for triphenylphosphine oxide (1.4863 (12) Å) (Sivaramkrishna *et al.*, 2007), or triphenylphosphine oxide hemidydrate (1.4871 (15) Å) (Ng, 2009).

The molecules of the mesitylboronic acid assemble into centrosymmetric dimers through a pair of O—H…O bonds between the hydroxy groups (Fig. 2). In contrast to the structure of phenylboronic acid where the centrosymmetric dimers are interconnected to one-dimensional chains (Rettig & Trotter, 1977; Cyrański *et al.* 2008), in the structure of the title compound, the triphenylphosphine oxide molecules block further assembly of the dimers.

In comparison to phenylboronic acid, where the angles between the BO<sub>2</sub> plane and the aromatic ring plane are 6.6° and 21.4° (Rettig & Trotter, 1977) or 6.3° and 21.0° (Cyrański *et al.*, 2008), in the title compound the angle is 75.0 (2)°. This value is close to the values found for the related pentamethylphenylboronic acid (74.7°, 85.9°) (Filthaus *et al.*, 2008).

The mesitylboronic dimers and the triphenylphosphine oxide chains are interconnected, additionally to the O—H···O bonds, through C—H··· $\pi$  interactions (Table 1 and Fig. 2). In the crystal there are alternate layers of mesitylboronic acid and triphenylphosphine oxide along the *a*-axis (Fig. 3).

## **S2. Experimental**

The title compound was serendipitously obtained in a Suzuki-Miyaura cross-coupling reaction between mesitylboronic acid and *tert*-butyl *N*-(*tert*-butoxycarbonyl)-*N*-(2,4,6- tribromophenyl)carbamate using tetrakis- (triphenlyphosphine)palladium as catalyst. Prior to column chromatography of the crude product mixture a solid precipitated from the mobile phase (diethyl ether: petroleum ether = 1:8). Colourless crystals were obtained by recrystallization of the precipitate from hot toluene.

#### **S3. Refinement**

Hydrogen atoms were placed in calculated positions with isotropic thermal parameters set at 1.2 times the carbon atoms directly attached for aromatic atoms and 1.5 for hydrogen atoms of the methyl groups and of the hydroxy groups. Methyl hydrogen atoms were allowed to rotate but not to tip. The hydrogen atoms of the hydroxy group were allowed to rotate



about the O—B bond and their positions were calculated from the electron density. The C—H bond lengths were set at 0.93 Å for the aromatic groups, 0.96 Å for the methyl groups. The O—H bond lengths were set at 0.82 Å.

## Figure 1

Crystal structure of the title compound with ellipsoids of non-hydrogen atoms drawn at the 25% probability level.



### Figure 2

Intramolecular and intermolecular hydrogen bonds and C—H $\cdots\pi$  interactions in the structure of the title compound shown as dashed lines. Symmetry codes: (i) -x+1, -y, -z; (ii) x, -y+1/2, z+1/2; (iii) x+1, y, z; (iv) x-1, y, z; (v) x, -y+1/2, z-1/2; (vi) -x+1, y-1/2, -z-1/2; (vii) -x, -y, -z; (viii) -x+2, -y, -z; (ix) -x+1, y-1/2, -z+1/2



# Figure 3

Capped stick representation of the crystal packing of the title compound, viewed along the *c* axis. Hydrogen bonds and C  $-H\cdots\pi$  interactions shown as dashed lines (blue and green, respectively).

 $l = -20 \rightarrow 20$ 

# (2,4,6-Trimethylphenyl)boronic acid-triphenylphosphine oxide (1/1)

Crystal data

| -                                        |                                                                |
|------------------------------------------|----------------------------------------------------------------|
| $C_9H_{13}BO_2 \cdot C_{18}H_{15}OP$     | F(000) = 936                                                   |
| $M_r = 442.27$                           | $D_{\rm x} = 1.153 {\rm ~Mg} {\rm ~m}^{-3}$                    |
| Monoclinic, $P2_1/c$                     | Melting point: 401 K                                           |
| Hall symbol: -P 2ybc                     | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å          |
| a = 12.218 (4)  Å                        | Cell parameters from 7170 reflections                          |
| b = 12.339 (4) Å                         | $\theta = 2.2 - 26.0^{\circ}$                                  |
| c = 16.983 (5) Å                         | $\mu = 0.13 \text{ mm}^{-1}$                                   |
| $\beta = 95.651 \ (5)^{\circ}$           | T = 297  K                                                     |
| $V = 2548.0 (14) \text{ Å}^3$            | Block, colourless                                              |
| Z = 4                                    | $0.52 \times 0.45 \times 0.42 \text{ mm}$                      |
| Data collection                          |                                                                |
| Bruker SMART CCD area-detector           | 23787 measured reflections                                     |
| diffractometer                           | 4486 independent reflections                                   |
| Radiation source: fine-focus sealed tube | 3727 reflections with $I > 2\sigma(I)$                         |
| Graphite monochromator                   | $R_{\rm int} = 0.052$                                          |
| $\varphi$ and $\omega$ scans             | $\theta_{\rm max} = 25.0^\circ,  \theta_{\rm min} = 1.7^\circ$ |
| Absorption correction: multi-scan        | $h = -14 \rightarrow 14$                                       |
| (SADABS; Bruker, 2000)                   | $k = -14 \rightarrow 14$                                       |

(SADABS; Bruker, 2000) $T_{min} = 0.934, T_{max} = 0.947$  Refinement

| Refinement on $F^2$                             | Secondary atom site location: difference Fourier         |
|-------------------------------------------------|----------------------------------------------------------|
| Least-squares matrix: full                      | map                                                      |
| $R[F^2 > 2\sigma(F^2)] = 0.083$                 | Hydrogen site location: inferred from                    |
| $wR(F^2) = 0.186$                               | neighbouring sites                                       |
| <i>S</i> = 1.19                                 | H-atom parameters constrained                            |
| 4486 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0654P)^2 + 1.8657P]$        |
| 294 parameters                                  | where $P = (F_{o}^{2} + 2F_{c}^{2})/3$                   |
| 0 restraints                                    | $(\Delta/\sigma)_{\rm max} < 0.001$                      |
| Primary atom site location: structure-invariant | $\Delta  ho_{ m max} = 0.40 \ { m e} \ { m \AA}^{-3}$    |
| direct methods                                  | $\Delta \rho_{\rm min} = -0.32 \text{ e} \text{ Å}^{-3}$ |
|                                                 |                                                          |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(A^2)$ 

|     | x          | У          | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|------------|------------|--------------|-----------------------------|--|
| B1  | 0.4462 (3) | 0.1262 (3) | 0.0679 (3)   | 0.0532 (10)                 |  |
| C1  | 0.7708 (3) | 0.2938 (3) | 0.24399 (18) | 0.0454 (8)                  |  |
| C2  | 0.8540 (3) | 0.2801 (4) | 0.3042 (2)   | 0.0760 (13)                 |  |
| H2  | 0.9264     | 0.2729     | 0.2923       | 0.091*                      |  |
| C3  | 0.8303 (4) | 0.2772 (4) | 0.3817 (2)   | 0.0881 (15)                 |  |
| H3  | 0.887      | 0.2698     | 0.4221       | 0.106*                      |  |
| C4  | 0.7244 (4) | 0.2850 (4) | 0.3997 (2)   | 0.0732 (12)                 |  |
| H4  | 0.7085     | 0.2809     | 0.4521       | 0.088*                      |  |
| C5  | 0.6422 (3) | 0.2990 (4) | 0.3407 (2)   | 0.0711 (12)                 |  |
| Н5  | 0.57       | 0.3057     | 0.353        | 0.085*                      |  |
| C6  | 0.6645 (3) | 0.3033 (3) | 0.2629 (2)   | 0.0558 (9)                  |  |
| H6  | 0.6074     | 0.3127     | 0.2231       | 0.067*                      |  |
| C7  | 0.8321 (3) | 0.4379 (3) | 0.12130 (19) | 0.0445 (8)                  |  |
| C8  | 0.8551 (4) | 0.5149 (4) | 0.1778 (3)   | 0.0886 (15)                 |  |
| H8  | 0.8539     | 0.4969     | 0.2309       | 0.106*                      |  |
| C9  | 0.8799 (5) | 0.6187 (5) | 0.1572 (3)   | 0.116 (2)                   |  |
| H9  | 0.8944     | 0.6704     | 0.1966       | 0.14*                       |  |
| C10 | 0.8837 (4) | 0.6475 (4) | 0.0815 (4)   | 0.0943 (16)                 |  |
| H10 | 0.9024     | 0.7178     | 0.0684       | 0.113*                      |  |
| C11 | 0.8599 (4) | 0.5720 (4) | 0.0243 (3)   | 0.0932 (15)                 |  |
| H11 | 0.8619     | 0.5909     | -0.0285      | 0.112*                      |  |
| C12 | 0.8328 (4) | 0.4686 (3) | 0.0436 (2)   | 0.0732 (12)                 |  |
| H12 | 0.8147     | 0.4184     | 0.0036       | 0.088*                      |  |
| C13 | 0.9137 (3) | 0.2202 (3) | 0.12764 (18) | 0.0462 (8)                  |  |
| C14 | 1.0189 (3) | 0.2615 (3) | 0.1331 (2)   | 0.0600 (10)                 |  |

| H14  | 1.0307       | 0.3341      | 0.1458       | 0.072*      |
|------|--------------|-------------|--------------|-------------|
| C15  | 1.1067 (3)   | 0.1965 (5)  | 0.1199 (3)   | 0.0791 (13) |
| H15  | 1.1773       | 0.2254      | 0.1232       | 0.095*      |
| C16  | 1.0903 (4)   | 0.0898 (5)  | 0.1019 (3)   | 0.0851 (14) |
| H16  | 1.1499       | 0.0462      | 0.0929       | 0.102*      |
| C17  | 0.9869 (4)   | 0.0465 (4)  | 0.0970 (3)   | 0.0833 (14) |
| H17  | 0.9762       | -0.0267     | 0.0856       | 0.1*        |
| C18  | 0.8983 (3)   | 0.1118 (3)  | 0.1091 (2)   | 0.0654 (11) |
| H18  | 0.8278       | 0.0826      | 0.1048       | 0.078*      |
| C19  | 0.4131 (2)   | 0.2237 (3)  | 0.1205 (2)   | 0.0499 (9)  |
| C20  | 0.3890 (3)   | 0.2063 (3)  | 0.1978 (3)   | 0.0649 (11) |
| C21  | 0.3536 (3)   | 0.2925 (4)  | 0.2418 (3)   | 0.0792 (14) |
| H21  | 0.3389       | 0.2805      | 0.2938       | 0.095*      |
| C22  | 0.3398 (4)   | 0.3942 (4)  | 0.2105 (4)   | 0.0868 (16) |
| C23  | 0.3665 (3)   | 0.4111 (4)  | 0.1346 (3)   | 0.0799 (14) |
| H23  | 0.3603       | 0.4805      | 0.1133       | 0.096*      |
| C24  | 0.4023 (3)   | 0.3276 (3)  | 0.0892 (3)   | 0.0613 (10) |
| C25  | 0.4022 (4)   | 0.0969 (5)  | 0.2351 (3)   | 0.1026 (17) |
| H25A | 0.4762       | 0.072       | 0.2326       | 0.154*      |
| H25B | 0.3519       | 0.0471      | 0.2074       | 0.154*      |
| H25C | 0.387        | 0.1013      | 0.2894       | 0.154*      |
| C26  | 0.2944 (5)   | 0.4862 (5)  | 0.2583 (4)   | 0.139 (3)   |
| H26A | 0.3226       | 0.4794      | 0.3129       | 0.209*      |
| H26B | 0.2156       | 0.4823      | 0.2538       | 0.209*      |
| H26C | 0.3167       | 0.5546      | 0.2382       | 0.209*      |
| C27  | 0.4303 (4)   | 0.3506 (4)  | 0.0065 (3)   | 0.0922 (15) |
| H27A | 0.5088       | 0.3519      | 0.0059       | 0.138*      |
| H27B | 0.4003       | 0.4195      | -0.0105      | 0.138*      |
| H27C | 0.3997       | 0.2949      | -0.0285      | 0.138*      |
| 01   | 0.69683 (17) | 0.2649 (2)  | 0.08921 (13) | 0.0520 (6)  |
| O2   | 0.55104 (18) | 0.1109 (2)  | 0.04987 (17) | 0.0615 (7)  |
| H2A  | 0.5885       | 0.1638      | 0.0642       | 0.092*      |
| O3   | 0.3685 (2)   | 0.0561 (2)  | 0.0395 (2)   | 0.0792 (9)  |
| H3A  | 0.3946       | 0.0134      | 0.0095       | 0.119*      |
| P1   | 0.79424 (7)  | 0.30091 (7) | 0.14123 (5)  | 0.0403 (3)  |
|      |              |             |              |             |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | $U^{22}$  | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|----|-------------|-----------|-------------|--------------|-------------|--------------|
| B1 | 0.042 (2)   | 0.049 (2) | 0.071 (3)   | -0.0051 (18) | 0.0146 (19) | -0.011 (2)   |
| C1 | 0.0455 (19) | 0.054 (2) | 0.0379 (17) | -0.0065 (16) | 0.0080 (14) | -0.0018 (15) |
| C2 | 0.054 (2)   | 0.133 (4) | 0.041 (2)   | 0.003 (2)    | 0.0049 (17) | 0.008 (2)    |
| C3 | 0.077 (3)   | 0.147 (5) | 0.040 (2)   | 0.011 (3)    | 0.002 (2)   | 0.015 (3)    |
| C4 | 0.092 (3)   | 0.089 (3) | 0.043 (2)   | 0.009 (3)    | 0.027 (2)   | 0.006 (2)    |
| C5 | 0.068 (3)   | 0.096 (3) | 0.054 (2)   | 0.008 (2)    | 0.028 (2)   | 0.008 (2)    |
| C6 | 0.056 (2)   | 0.067 (2) | 0.046 (2)   | 0.0010 (18)  | 0.0137 (16) | 0.0003 (18)  |
| C7 | 0.0386 (17) | 0.054 (2) | 0.0414 (18) | -0.0058 (15) | 0.0071 (14) | -0.0007 (16) |
| C8 | 0.121 (4)   | 0.086 (3) | 0.060 (3)   | -0.052 (3)   | 0.016 (3)   | -0.010 (2)   |
|    |             |           |             |              |             |              |

| C9  | 0.169 (6)   | 0.092 (4)   | 0.091 (4)   | -0.069 (4)   | 0.028 (4)   | -0.024 (3)   |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C10 | 0.100 (4)   | 0.060 (3)   | 0.123 (5)   | -0.026 (3)   | 0.013 (3)   | 0.012 (3)    |
| C11 | 0.112 (4)   | 0.088 (4)   | 0.079 (3)   | -0.014 (3)   | 0.002 (3)   | 0.031 (3)    |
| C12 | 0.101 (3)   | 0.063 (3)   | 0.054 (2)   | -0.013 (2)   | 0.001 (2)   | 0.009 (2)    |
| C13 | 0.049 (2)   | 0.056 (2)   | 0.0354 (17) | -0.0041 (16) | 0.0121 (14) | 0.0053 (15)  |
| C14 | 0.045 (2)   | 0.070 (3)   | 0.066 (2)   | -0.0018 (18) | 0.0091 (17) | 0.008 (2)    |
| C15 | 0.053 (2)   | 0.109 (4)   | 0.076 (3)   | 0.010 (3)    | 0.011 (2)   | 0.021 (3)    |
| C16 | 0.083 (3)   | 0.106 (4)   | 0.069 (3)   | 0.039 (3)    | 0.024 (2)   | 0.011 (3)    |
| C17 | 0.101 (4)   | 0.064 (3)   | 0.088 (3)   | 0.012 (3)    | 0.026 (3)   | -0.006 (2)   |
| C18 | 0.068 (3)   | 0.063 (3)   | 0.068 (3)   | -0.006 (2)   | 0.022 (2)   | -0.004 (2)   |
| C19 | 0.0327 (17) | 0.047 (2)   | 0.071 (2)   | -0.0016 (14) | 0.0082 (16) | -0.0158 (18) |
| C20 | 0.047 (2)   | 0.071 (3)   | 0.078 (3)   | 0.0016 (19)  | 0.0128 (19) | -0.014 (2)   |
| C21 | 0.056 (2)   | 0.106 (4)   | 0.078 (3)   | 0.000 (2)    | 0.014 (2)   | -0.037 (3)   |
| C22 | 0.061 (3)   | 0.079 (4)   | 0.121 (4)   | 0.003 (2)    | 0.010 (3)   | -0.051 (3)   |
| C23 | 0.069 (3)   | 0.051 (2)   | 0.119 (4)   | 0.005 (2)    | 0.006 (3)   | -0.023 (3)   |
| C24 | 0.049 (2)   | 0.052 (2)   | 0.083 (3)   | 0.0019 (17)  | 0.0062 (19) | -0.016 (2)   |
| C25 | 0.106 (4)   | 0.106 (4)   | 0.101 (4)   | 0.004 (3)    | 0.037 (3)   | 0.007 (3)    |
| C26 | 0.121 (5)   | 0.121 (5)   | 0.180 (7)   | 0.017 (4)    | 0.034 (4)   | -0.094 (5)   |
| C27 | 0.092 (3)   | 0.078 (3)   | 0.108 (4)   | 0.008 (3)    | 0.019 (3)   | 0.013 (3)    |
| 01  | 0.0442 (13) | 0.0712 (16) | 0.0411 (13) | -0.0167 (11) | 0.0067 (10) | -0.0048 (11) |
| O2  | 0.0423 (14) | 0.0562 (16) | 0.0888 (19) | -0.0107 (11) | 0.0206 (13) | -0.0316 (14) |
| 03  | 0.0438 (14) | 0.0710 (19) | 0.126 (3)   | -0.0144 (13) | 0.0257 (15) | -0.0464 (17) |
| P1  | 0.0377 (5)  | 0.0521 (5)  | 0.0318 (4)  | -0.0119 (4)  | 0.0073 (3)  | -0.0019 (4)  |
|     |             |             |             |              |             |              |

# Geometric parameters (Å, °)

| B1—O3  | 1.339 (5) | C14—H14  | 0.93      |
|--------|-----------|----------|-----------|
| B1—O2  | 1.359 (4) | C15—C16  | 1.362 (7) |
| B1-C19 | 1.574 (5) | C15—H15  | 0.93      |
| C1—C6  | 1.374 (5) | C16—C17  | 1.368 (7) |
| C1—C2  | 1.379 (5) | C16—H16  | 0.93      |
| C1—P1  | 1.798 (3) | C17—C18  | 1.381 (6) |
| C2—C3  | 1.377 (5) | C17—H17  | 0.93      |
| С2—Н2  | 0.93      | C18—H18  | 0.93      |
| C3—C4  | 1.362 (6) | C19—C24  | 1.388 (5) |
| С3—Н3  | 0.93      | C19—C20  | 1.391 (5) |
| C4—C5  | 1.359 (6) | C20—C21  | 1.393 (6) |
| C4—H4  | 0.93      | C20—C25  | 1.494 (6) |
| C5—C6  | 1.375 (5) | C21—C22  | 1.368 (7) |
| С5—Н5  | 0.93      | C21—H21  | 0.93      |
| С6—Н6  | 0.93      | C22—C23  | 1.375 (7) |
| С7—С8  | 1.360 (5) | C22—C26  | 1.531 (6) |
| C7—C12 | 1.374 (5) | C23—C24  | 1.383 (6) |
| C7—P1  | 1.794 (3) | С23—Н23  | 0.93      |
| С8—С9  | 1.370 (7) | C24—C27  | 1.505 (6) |
| С8—Н8  | 0.93      | C25—H25A | 0.96      |
| C9—C10 | 1.339 (7) | C25—H25B | 0.96      |
| С9—Н9  | 0.93      | C25—H25C | 0.96      |
|        |           |          |           |

| C10—C11                 | 1.356 (7) | C26—H26A                            | 0.96              |
|-------------------------|-----------|-------------------------------------|-------------------|
| C10—H10                 | 0.93      | C26—H26B                            | 0.96              |
| C11—C12                 | 1.366 (6) | C26—H26C                            | 0.96              |
| C11—H11                 | 0.93      | С27—Н27А                            | 0.96              |
| С12—Н12                 | 0.93      | С27—Н27В                            | 0.96              |
| C13—C14                 | 1.377 (5) | С27—Н27С                            | 0.96              |
| C13—C18                 | 1.383 (5) | 01-P1                               | 1.479 (2)         |
| C13—P1                  | 1.801 (3) | O2—H2A                              | 0.82              |
| C14-C15                 | 1 376 (6) | 03—H3A                              | 0.82              |
|                         | 1.570(0)  |                                     | 0.02              |
| O3—B1—O2                | 118.7 (3) | C16—C17—C18                         | 119.7 (4)         |
| O3—B1—C19               | 119.0 (3) | С16—С17—Н17                         | 120.1             |
| O2—B1—C19               | 122.3 (3) | С18—С17—Н17                         | 120.1             |
| C6-C1-C2                | 118.8 (3) | C17—C18—C13                         | 120.5 (4)         |
| C6-C1-P1                | 117.9 (3) | С17—С18—Н18                         | 119.8             |
| $C_2 - C_1 - P_1$       | 123 3 (3) | $C_{13}$ $C_{18}$ $H_{18}$          | 119.8             |
| $C_3 - C_2 - C_1$       | 120.2(4)  | $C_{24}$ $C_{19}$ $C_{20}$          | 119.0<br>118.8(3) |
| $C_{3}$ $C_{2}$ $H_{2}$ | 110.0     | $C_{24} = C_{19} = C_{20}$          | 120.6(3)          |
| $C_{1} = C_{2} = H_{2}$ | 110.0     | $C_{24} = C_{10} = B_1$             | 120.0(3)          |
| $C_1 = C_2 = H_2$       | 120.5 (4) | $C_{10} = C_{10} = C_{11}$          | 120.3(3)          |
| C4 = C3 = C2            | 120.3 (4) | $C_{19} = C_{20} = C_{21}$          | 119.7(4)          |
| $C_{4} = C_{3} = H_{3}$ | 119.0     | $C_{1}^{2} = C_{2}^{2} = C_{2}^{2}$ | 121.1(4)          |
| $C_2 = C_3 = H_3$       | 119.0     | $C_{21} = C_{20} = C_{23}$          | 119.2(4)          |
| $C_{5}$                 | 119.0 (4) | $C_{22} = C_{21} = C_{20}$          | 121.6 (5)         |
| $C_{2}$ $C_{4}$ $H_{4}$ | 120.2     | C22—C21—H21                         | 119.2             |
| C3—C4—H4                | 120.2     | C20—C21—H21                         | 119.2             |
| C4—C5—C6                | 120.7 (4) | C21—C22—C23                         | 118.2 (4)         |
| C4—C5—H5                | 119.6     | C21—C22—C26                         | 120.7 (6)         |
| C6—C5—H5                | 119.6     | C23—C22—C26                         | 121.1 (6)         |
| C1—C6—C5                | 120.2 (4) | C22—C23—C24                         | 121.8 (5)         |
| C1—C6—H6                | 119.9     | С22—С23—Н23                         | 119.1             |
| С5—С6—Н6                | 119.9     | С24—С23—Н23                         | 119.1             |
| C8—C7—C12               | 117.7 (4) | C23—C24—C19                         | 119.9 (4)         |
| C8—C7—P1                | 124.3 (3) | C23—C24—C27                         | 119.6 (4)         |
| C12—C7—P1               | 117.9 (3) | C19—C24—C27                         | 120.6 (4)         |
| C7—C8—C9                | 120.5 (4) | C20—C25—H25A                        | 109.5             |
| С7—С8—Н8                | 119.8     | C20—C25—H25B                        | 109.5             |
| С9—С8—Н8                | 119.8     | H25A—C25—H25B                       | 109.5             |
| С10—С9—С8               | 121.6 (5) | С20—С25—Н25С                        | 109.5             |
| С10—С9—Н9               | 119.2     | H25A—C25—H25C                       | 109.5             |
| С8—С9—Н9                | 119.2     | H25B—C25—H25C                       | 109.5             |
| C9—C10—C11              | 118.7 (5) | С22—С26—Н26А                        | 109.5             |
| С9—С10—Н10              | 120.7     | С22—С26—Н26В                        | 109.5             |
| C11—C10—H10             | 120.7     | H26A—C26—H26B                       | 109.5             |
| C10-C11-C12             | 120.7 (5) | С22—С26—Н26С                        | 109.5             |
| C10-C11-H11             | 119.7     | H26A—C26—H26C                       | 109.5             |
| C12—C11—H11             | 119.7     | H26B—C26—H26C                       | 109.5             |
| C11—C12—C7              | 120.8 (4) | C24—C27—H27A                        | 109.5             |
| C11—C12—H12             | 119.6     | С24—С27—Н27В                        | 109.5             |

| 67 612 1112                         | 110 (      |                                                 | 100 5       |
|-------------------------------------|------------|-------------------------------------------------|-------------|
| C/-C12-H12                          | 119.0      | H2/A—C2/—H2/B                                   | 109.5       |
| C14—C13—C18                         | 118.6 (3)  | C24—C27—H27C                                    | 109.5       |
| C14—C13—P1                          | 123.4 (3)  | H27A—C27—H27C                                   | 109.5       |
| C18—C13—P1                          | 118.1 (3)  | H27B—C27—H27C                                   | 109.5       |
| C15—C14—C13                         | 120.8 (4)  | B1—O2—H2A                                       | 109.5       |
| C15—C14—H14                         | 119.6      | B1—O3—H3A                                       | 109.5       |
| C13—C14—H14                         | 119.6      | O1—P1—C7                                        | 112.18 (15) |
| C16—C15—C14                         | 120.0 (4)  | O1—P1—C1                                        | 111.68 (14) |
| C16—C15—H15                         | 120        | C7—P1—C1                                        | 107.33 (15) |
| C14—C15—H15                         | 120        | O1—P1—C13                                       | 111.86 (15) |
| C15—C16—C17                         | 120.4 (4)  | C7—P1—C13                                       | 105.64 (15) |
| C15—C16—H16                         | 119.8      | C1—P1—C13                                       | 107.82 (15) |
| C17—C16—H16                         | 119.8      |                                                 |             |
|                                     | 119.0      |                                                 |             |
| $C_{6}-C_{1}-C_{2}-C_{3}$           | -0.6(7)    | B1 - C19 - C20 - C25                            | 48(6)       |
| $P_1 = C_1 = C_2 = C_3$             | 1780(4)    | $C_{10} = C_{20} = C_{20} = C_{20}$             | 1.0(0)      |
| 11 - 01 - 02 - 03                   | 1/6.9 (4)  | $C_{1}^{2} = C_{2}^{2} = C_{2}^{2} = C_{2}^{2}$ | -170.8(4)   |
| $C_1 = C_2 = C_3 = C_4$             | 1.0(8)     | $C_{23} = C_{20} = C_{21} = C_{22}$             | -1/9.0(4)   |
| $C_2 - C_3 - C_4 - C_3$             | -1.9(8)    | $C_{20} = C_{21} = C_{22} = C_{23}$             | -2.8(7)     |
|                                     | 1.2 (7)    | $C_{20} = C_{21} = C_{22} = C_{26}$             | 1/6.5 (4)   |
| C2-C1-C6-C5                         | -0.1(6)    | C21—C22—C23—C24                                 | 2.5 (7)     |
| PI-CI-C6-C5                         | -1/9.6 (3) | C26—C22—C23—C24                                 | -176.7 (4)  |
| C4—C5—C6—C1                         | -0.2 (6)   | C22—C23—C24—C19                                 | -0.7 (6)    |
| C12—C7—C8—C9                        | -1.2 (7)   | C22—C23—C24—C27                                 | 179.9 (4)   |
| P1—C7—C8—C9                         | -177.9 (4) | C20—C19—C24—C23                                 | -1.0 (5)    |
| C7—C8—C9—C10                        | -0.8 (10)  | B1—C19—C24—C23                                  | 175.9 (3)   |
| C8—C9—C10—C11                       | 1.5 (10)   | C20—C19—C24—C27                                 | 178.4 (4)   |
| C9—C10—C11—C12                      | -0.2 (9)   | B1—C19—C24—C27                                  | -4.7 (5)    |
| C10—C11—C12—C7                      | -1.8 (8)   | C8—C7—P1—O1                                     | 132.5 (4)   |
| C8—C7—C12—C11                       | 2.5 (7)    | C12—C7—P1—O1                                    | -44.2 (3)   |
| P1-C7-C12-C11                       | 179.4 (4)  | C8—C7—P1—C1                                     | 9.4 (4)     |
| C18—C13—C14—C15                     | 0.4 (5)    | C12—C7—P1—C1                                    | -167.3 (3)  |
| P1—C13—C14—C15                      | -178.1 (3) | C8—C7—P1—C13                                    | -105.4(4)   |
| C13—C14—C15—C16                     | -0.6 (6)   | C12—C7—P1—C13                                   | 77.9 (3)    |
| C14—C15—C16—C17                     | -0.2(7)    | C6-C1-P1-O1                                     | -27.1(3)    |
| C15—C16—C17—C18                     | 1.1 (7)    | $C_{2}-C_{1}-P_{1}-O_{1}$                       | 153.4 (3)   |
| $C_{16} - C_{17} - C_{18} - C_{13}$ | -13(7)     | C6-C1-P1-C7                                     | 96 2 (3)    |
| $C_{14}$ $C_{13}$ $C_{18}$ $C_{17}$ | 0.5 (6)    | $C_{2}$ $C_{1}$ $P_{1}$ $C_{7}$                 | -833(4)     |
| P1  C13  C18  C17                   | 1701(3)    | $C_{1}$ $C_{1}$ $C_{1}$ $C_{1}$ $C_{1}$ $C_{1}$ | -1504(3)    |
| $P_{1} = C_{13} = C_{16} = C_{17}$  | -1024(5)   | $C_{2} = C_{1} = D_{1} = C_{12}$                | 150.4(5)    |
| 03 - B1 - C19 - C24                 | -103.4(3)  | $C_2 - C_1 - F_1 - C_{13}$                      | 50.1(4)     |
| 02-B1-C19-C24                       | 70.2 (3)   | C14 - C13 - P1 - O1                             | 143.3(3)    |
| 03 - B1 - C19 - C20                 | 10(0(4)    | $C_{10}$ $C_{12}$ $P_1$ $C_7$                   | -33.3(3)    |
| 02 - B1 - C19 - C20                 | -106.9 (4) | C14 - C13 - P1 - C7                             | 23.0 (3)    |
| C24—C19—C20—C21                     | 0.7 (5)    | C18 - C13 - P1 - C/                             | -155.6 (3)  |
| B1—C19—C20—C21                      | -176.2 (3) | C14—C13—P1—C1                                   | -91.6 (3)   |
| C24—C19—C20—C25                     | -178.3 (4) | C18—C13—P1—C1                                   | 89.9 (3)    |

# Hydrogen-bond geometry (Å, °)

|                            | -           |              |           |            |
|----------------------------|-------------|--------------|-----------|------------|
| D—H···A                    | <i>D</i> —Н | $H \cdots A$ | D···· $A$ | D—H··· $A$ |
| 02—H2A…O1                  | 0.82        | 1.84         | 2.645 (3) | 168        |
| O3—H3A···O2 <sup>i</sup>   | 0.82        | 1.99         | 2.795 (4) | 169        |
| C4—H4···O1 <sup>ii</sup>   | 0.93        | 2.41         | 3.326 (4) | 167        |
| С6—Н6…Сg4                  | 0.93        | 2.88         | 3.728 (4) | 152        |
| C15—H15…Cg4 <sup>iii</sup> | 0.93        | 2.69         | 3.602 (5) | 168        |

Cg4 is the centroid of the C19–C24 benzene ring.

Symmetry codes: (i) -*x*+1, -*y*, -*z*; (ii) *x*, -*y*+1/2, *z*+1/2; (iii) *x*+1, *y*, *z*.