organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Ethyl 4,4"-difluoro-5'-methoxy-1,1':3',1"terphenyl-4'-carboxylate

Hoong-Kun Fun,^a*[‡] Tze Shyang Chia,^a S. Samshuddin,^b B. Narayana^b and B. K. Sarojini^c

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malavsia, ^bDepartment of Studies in Chemistry, Mangalore University, Mangalagangotri, Mangalore 574 199, India, and ^cDepartment of Chemistry, P. A. College of Engineering, Nadupadavu, Mangalore 574 153, India Correspondence e-mail: hkfun@usm.my

Received 2 December 2011; accepted 12 December 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; disorder in main residue; R factor = 0.057; wR factor = 0.171; data-to-parameter ratio = 12.1.

In the title compound, $C_{22}H_{18}F_2O_3$, the two fluoro-substituted rings form dihedral angles of 25.89 (15) and 55.00 $(12)^{\circ}$ with the central benzene ring. The ethoxy group in the molecule is disordered over two positions with a site-occupancy ratio of 0.662 (7):0.338 (7). In the crystal, molecules are linked by C- $H \cdots O$ hydrogen bonds into chains along the *a* axis. The crystal packing is further stabilized by $C-H\cdots\pi$ and $\pi-\pi$ interactions, with centroid-centroid distances of 3.8605 (15) Å.

Related literature

For a related structure and background to terphenyls, see: Fun et al. (2011); Samshuddin et al. (2011). For the synthesis, see: Kotnis (1990). For reference bond lengths, see: Allen et al. (1987).

Experimental

Crystal data C22H18F2O3 $M_r = 368.36$

Orthorhombic, $P2_12_12_1$ a = 8.5197 (11) Å

‡ Thomson Reuters ResearcherID: A-3561-2009.

b = 9.5225 (12) Åc = 22.871 (3) Å V = 1855.5 (4) Å³ Z = 4

Data collection

Bruker APEX DUO CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2009) $T_{\min} = 0.958, T_{\max} = 0.986$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.057$ 251 parameters $wR(F^2) = 0.171$ H-atom parameters constrained S = 1.10 $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.23 \text{ e} \text{ Å}^{-3}$ 3036 reflections

Mo $K\alpha$ radiation

 $0.43 \times 0.21 \times 0.15 \text{ mm}$

11701 measured reflections

3036 independent reflections

2131 reflections with $I > 2\sigma(I)$

 $\mu = 0.10 \text{ mm}^{-1}$

T = 296 K

 $R_{\rm int} = 0.026$

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 and Cg3 are the centroids of the C7-C12 and C13-C18 rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
C12 $-$ H12 A \cdots O2 ⁱ C5 $-$ H5 A \cdots Cg3 ⁱⁱ C20 $-$ H20 A \cdots Cg2 ⁱⁱⁱ	0.93 0.93 0.96	2.59 2.92 2.83	3.515 (3) 3.589 (3) 3.710 (4)	179 130 152
Symmetry codes: (i) $-x, y + \frac{3}{2}, -z + \frac{1}{2}.$	$x - \frac{1}{2}, -y +$	$\frac{1}{2}, -z;$ (ii)	$-x-1, y+\frac{1}{2}, -$	$z + \frac{1}{2};$ (iii)

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL and PLATON (Spek, 2009).

HKF and TSC thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC thanks the Malaysian Government and USM for the award of the post of Research Officer under the Research University Grant (1001/PSKBP/8630013). BN thanks the UGC for financial assistance through the SAP and BSR one-time grant for the purchase of chemicals. SS thanks Mangalore University for research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2682).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Fun, H.-K., Chia, T. S., Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Acta Cryst. E67, 03390.
- Kotnis, A. S. (1990). Tetrahedron Lett. 31, 481-484.
- Samshuddin, S., Narayana, B. & Sarojini, B. K. (2011). Molbank, M745.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o172 [doi:10.1107/S160053681105344X]

Ethyl 4,4"-difluoro-5'-methoxy-1,1':3',1"-terphenyl-4'-carboxylate

Hoong-Kun Fun, Tze Shyang Chia, S. Samshuddin, B. Narayana and B. K. Sarojini

S1. Comment

In continuation of our work on the synthesis of terphenyl esters (Fun *et al.*, 2011; Samshuddin *et al.*, 2011), the title compound was prepared and its crystal structure is reported. The starting material of the title compound was prepared from 4,4'-difluoro chalcone by several steps.

The molecular structure of the title compound is shown in Fig. 1. The mean planes of the two fluoro-substituted phenyl rings (C1–C6 and C13–C18) make dihedral angles of 25.89 (15) and 55.00 (12)°, respectively, with the mean plane of the central benzene ring (C7–C12) in the terphenyl moiety. The ethoxy group (O3/C21/C22) is disordered over two positions with a site-occupancy ratio of 0.662 (7):0.338 (7). Bond lengths (Allen *et al.*, 1987) and angles are within normal ranges and are comparable to those observed in a related structure (Fun *et al.*, 2011).

In the crystal structure (Fig. 2), the molecules are interconnected by C12—H12A···O2 hydrogen bonds (Table 1) into chains along the *a* axis. The crystal structure is further stabilized by C—H··· π interactions (Table 1). π — π interactions are also observed with Cg_2 ··· Cg_3 distance = 3.8605 (15) Å (symmetry code: 1/2+x,1/2-y,-z; Cg_2 and Cg_3 are the centroids of the C7–C12 and C13—C18 rings, respectively).

S2. Experimental

The title compound was prepared by the aromatization of a cyclohexenone derivative, ethyl 4,6-bis(4-fluorophenyl)-2-oxocyclohex-3-ene-1-carboxylate, using iodine and methanol at reflux condition (Kotnis, 1990). Single crystals of the product were grown from methanol by slow evaporation method (m.p. 383 K).

S3. Refinement

All H atoms were positioned geometrically [C—H = 0.93, 0.96 or 0.97 Å] and refined using a riding model with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. A rotating group model was applied to the methyl group. The ethoxy unit was disordered over two positions with a site-occupancy ratio of 0.662 (7):0.338 (7). The same U^{ij} parameters were used for atoms pairs C21/C21X and C22/C22X. The C13–C18 benzene ring was refined using a rigid regular hexagon model with a bond length of 1.39 Å. 2085 Friedel pairs were merged in the last refinement cycles.

The molecular structure of the title compound with 50% probability displacement ellipsoids.

Figure 2

The crystal packing of the title compound viewed along the *b* axis. Only the major components of disorder are shown. Intermolecular hydrogen bonds are shown as dashed lines. Hydrogen atoms not involved in hydrogen bonding are omitted for clarity.

Ethyl 4,4"-difluoro-5'-methoxy-1,1':3',1"-terphenyl-4'-carboxylate

V = 1855.5 (4) Å ³
Z = 4
F(000) = 768
$D_{\rm x} = 1.319 {\rm Mg} {\rm m}^{-3}$
Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å
Cell parameters from 3149 reflections
$\theta = 2.3 - 22.9^{\circ}$

 $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K

Data collection

Bruker APEX DUO CCD area-detector	11701 measured reflections
diffractometer	3036 independent reflections
Radiation source: fine-focus sealed tube	2131 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.026$
φ and ω scans	$\theta_{\text{max}} = 30.0^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Bruker, 2009)	$k = -13 \rightarrow 9$
$T_{\min} = 0.958, \ T_{\max} = 0.986$	$l = -26 \rightarrow 32$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.057$	Hydrogen site location: inferred from

 $R[F^2 > 2\sigma(F^2)] = 0.057$ Hydrogen site location: inferred from
neighbouring sites $wR(F^2) = 0.171$ neighbouring sitesS = 1.10H-atom parameters constrained3036 reflections $w = 1/[\sigma^2(F_o^2) + (0.0841P)^2 + 0.2095P]$ 251 parameterswhere $P = (F_o^2 + 2F_c^2)/3$ 0 restraints $(\Delta/\sigma)_{max} = 0.011$ Primary atom site location: structure-invariant
direct methods $\Delta\rho_{min} = -0.23$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used

Block, colourless

 $0.43 \times 0.21 \times 0.15 \text{ mm}$

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
F1	-0.2161 (4)	0.4152 (4)	-0.32486 (9)	0.1192 (10)	
F2	-0.0906 (3)	-0.0580 (3)	0.15941 (11)	0.1145 (10)	
01	0.2205 (3)	0.7197 (2)	-0.00201 (11)	0.0713 (6)	
O2	0.3043 (3)	0.4532 (3)	0.09557 (11)	0.0776 (7)	
C1	-0.1600 (4)	0.4267 (5)	-0.26928 (13)	0.0778 (11)	
C2	-0.0345 (5)	0.5148 (5)	-0.25967 (14)	0.0806 (11)	
H2A	0.0111	0.5650	-0.2901	0.097*	
C3	0.0212 (4)	0.5260 (4)	-0.20305 (13)	0.0687 (9)	
H3A	0.1063	0.5843	-0.1954	0.082*	
C4	-0.0473 (3)	0.4518 (3)	-0.15723 (11)	0.0503 (6)	
C5	-0.1719 (3)	0.3640 (3)	-0.16957 (13)	0.0569 (7)	
H5A	-0.2183	0.3127	-0.1396	0.068*	
C6	-0.2285 (4)	0.3514 (4)	-0.22611 (14)	0.0708 (9)	
H6A	-0.3124	0.2920	-0.2343	0.085*	

C7	0.0110 (3)	0.4665 (3)	-0.09605 (11)	0.0477 (6)	
C8	0.0859 (3)	0.5911 (3)	-0.07870 (12)	0.0524 (6)	
H8A	0.0974	0.6644	-0.1052	0.063*	
С9	0.1428 (3)	0.6052 (3)	-0.02228 (13)	0.0528 (6)	
C10	0.1231 (3)	0.4972 (3)	0.01847 (12)	0.0502 (6)	
C11	0.0447 (3)	0.3755 (3)	0.00194 (12)	0.0485 (6)	
C12	-0.0081 (3)	0.3612 (3)	-0.05553 (12)	0.0493 (6)	
H12A	-0.0574	0.2783	-0.0667	0.059*	
C13	0.0119 (3)	0.26039 (16)	0.04462 (8)	0.0530 (6)	
C14	-0.0684 (3)	0.28881 (19)	0.09618 (9)	0.0701 (9)	
H14A	-0.0987	0.3803	0.1049	0.084*	
C15	-0.1035 (3)	0.1805 (3)	0.13478 (8)	0.0852 (11)	
H15A	-0.1572	0.1995	0.1693	0.102*	
C16	-0.0582 (3)	0.0438 (2)	0.12181 (10)	0.0783 (10)	
C17	0.0221 (3)	0.01533 (15)	0.07024 (10)	0.0765 (10)	
H17A	0.0524	-0.0762	0.0616	0.092*	
C18	0.0571 (3)	0.12364 (19)	0.03165 (8)	0.0649 (8)	
H18A	0.1109	0.1046	-0.0029	0.078*	
C19	0.1921 (4)	0.5144 (3)	0.07789 (14)	0.0601 (7)	
C20	0.2508 (5)	0.8306 (3)	-0.04159 (18)	0.0758 (10)	
H20A	0.3045	0.9051	-0.0216	0.114*	
H20B	0.1533	0.8653	-0.0570	0.114*	
H20C	0.3150	0.7968	-0.0731	0.114*	
O3	0.0943 (6)	0.5935 (6)	0.1127 (2)	0.0681 (13)	0.662 (7)
C21	0.1430 (9)	0.6182 (10)	0.1721 (3)	0.101 (2)	0.662 (7)
H21A	0.0502	0.6354	0.1956	0.122*	0.662 (7)
H21B	0.1920	0.5333	0.1868	0.122*	0.662 (7)
C22	0.2433 (17)	0.7258 (11)	0.1799 (5)	0.162 (5)	0.662 (7)
H22A	0.2898	0.7191	0.2181	0.243*	0.662 (7)
H22B	0.1875	0.8130	0.1766	0.243*	0.662 (7)
H22C	0.3241	0.7219	0.1507	0.243*	0.662 (7)
O3X	0.1537 (10)	0.6375 (9)	0.1002 (4)	0.0542 (19)	0.338 (7)
C21X	0.231 (2)	0.674 (2)	0.1527 (5)	0.101 (2)	0.338 (7)
H21C	0.2259	0.7743	0.1595	0.122*	0.338 (7)
H21D	0.3405	0.6455	0.1515	0.122*	0.338 (7)
C22X	0.1341 (17)	0.586 (2)	0.2049 (6)	0.101 (2)	0.338 (7)
H22D	0.1894	0.5948	0.2413	0.152*	0.338 (7)
H22E	0.1269	0.4888	0.1943	0.152*	0.338 (7)
H22F	0.0305	0.6246	0.2090	0.152*	0.338 (7)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
F1	0.1238 (19)	0.184 (3)	0.0495 (10)	-0.031 (2)	-0.0206 (13)	-0.0071 (15)
F2	0.1106 (19)	0.1178 (18)	0.115 (2)	-0.0261 (17)	-0.0049 (16)	0.0635 (17)
01	0.0911 (15)	0.0529 (12)	0.0699 (13)	-0.0167 (12)	-0.0212 (13)	-0.0061 (11)
O2	0.0827 (15)	0.0703 (13)	0.0798 (15)	0.0215 (13)	-0.0310 (13)	-0.0108 (12)
C1	0.074 (2)	0.114 (3)	0.0449 (15)	-0.001 (2)	-0.0088 (15)	-0.0080 (18)

C2	0.084 (2)	0.107 (3)	0.0504 (17)	-0.017 (2)	0.0000 (16)	0.0070 (18)
C3	0.0666 (18)	0.089 (2)	0.0507 (15)	-0.0189 (18)	-0.0031 (14)	0.0025 (16)
C4	0.0518 (13)	0.0517 (14)	0.0472 (13)	0.0015 (12)	-0.0013 (11)	-0.0051 (12)
C5	0.0565 (14)	0.0635 (17)	0.0508 (15)	-0.0046 (14)	-0.0029 (12)	-0.0042 (13)
C6	0.0681 (18)	0.085 (2)	0.0596 (18)	-0.0133 (18)	-0.0115 (15)	-0.0120 (17)
C7	0.0479 (12)	0.0482 (13)	0.0469 (13)	-0.0001 (11)	-0.0008 (11)	-0.0041 (11)
C8	0.0566 (14)	0.0483 (14)	0.0522 (14)	0.0011 (12)	-0.0040 (12)	0.0003 (12)
C9	0.0550 (13)	0.0480 (15)	0.0553 (15)	-0.0007 (12)	-0.0057 (12)	-0.0081 (12)
C10	0.0521 (13)	0.0463 (13)	0.0522 (14)	0.0074 (11)	-0.0063 (11)	-0.0060 (11)
C11	0.0507 (12)	0.0452 (13)	0.0495 (13)	0.0053 (11)	-0.0055 (11)	-0.0033 (11)
C12	0.0523 (13)	0.0455 (13)	0.0501 (13)	-0.0040 (12)	-0.0024 (11)	-0.0061 (11)
C13	0.0533 (13)	0.0534 (14)	0.0524 (14)	-0.0017 (12)	-0.0082 (12)	0.0002 (12)
C14	0.0736 (19)	0.073 (2)	0.0636 (18)	0.0121 (18)	0.0029 (16)	0.0092 (16)
C15	0.071 (2)	0.119 (3)	0.066 (2)	0.004 (2)	0.0070 (18)	0.017 (2)
C16	0.0675 (18)	0.083 (2)	0.085 (2)	-0.0157 (19)	-0.0109 (18)	0.030 (2)
C17	0.089 (2)	0.0574 (18)	0.083 (2)	-0.0118 (18)	-0.013 (2)	0.0115 (17)
C18	0.0804 (19)	0.0503 (15)	0.0639 (18)	-0.0037 (15)	-0.0085 (16)	0.0022 (14)
C19	0.0694 (17)	0.0488 (15)	0.0621 (17)	0.0097 (14)	-0.0164 (14)	-0.0082 (13)
C20	0.084 (2)	0.0539 (17)	0.090 (2)	-0.0160 (17)	-0.009 (2)	-0.0042 (17)
03	0.067 (3)	0.088 (3)	0.049 (2)	0.010 (2)	-0.006 (2)	-0.020 (2)
C21	0.093 (3)	0.159 (7)	0.053 (3)	0.015 (4)	-0.010 (3)	-0.033 (4)
C22	0.229 (13)	0.114 (7)	0.142 (9)	-0.014 (8)	-0.090 (9)	-0.010 (6)
O3X	0.054 (4)	0.059 (4)	0.049 (4)	0.004 (3)	-0.003 (3)	-0.004 (3)
C21X	0.093 (3)	0.159 (7)	0.053 (3)	0.015 (4)	-0.010 (3)	-0.033 (4)
C22X	0.093 (3)	0.159 (7)	0.053 (3)	0.015 (4)	-0.010 (3)	-0.033 (4)

Geometric parameters (Å, °)

F1—C1	1.362 (4)	C14—C15	1.3900
F2-C16	1.325 (3)	C14—H14A	0.9300
O1—C9	1.357 (3)	C15—C16	1.3900
O1-C20	1.415 (4)	C15—H15A	0.9300
O2—C19	1.191 (4)	C16—C17	1.3900
C1—C6	1.353 (5)	C17—C18	1.3900
C1—C2	1.376 (5)	C17—H17A	0.9300
C2—C3	1.383 (5)	C18—H18A	0.9300
C2—H2A	0.9300	C19—O3X	1.320 (9)
C3—C4	1.392 (4)	C19—O3	1.377 (5)
С3—НЗА	0.9300	C20—H20A	0.9600
C4—C5	1.381 (4)	C20—H20B	0.9600
C4—C7	1.491 (4)	C20—H20C	0.9600
C5—C6	1.385 (4)	O3—C21	1.440 (8)
С5—Н5А	0.9300	C21—C22	1.346 (14)
С6—Н6А	0.9300	C21—H21A	0.9700
C7—C12	1.375 (4)	C21—H21B	0.9700
C7—C8	1.404 (4)	C22—H22A	0.9600
С8—С9	1.385 (4)	C22—H22B	0.9600
C8—H8A	0.9300	C22—H22C	0.9600

C9—C10	1.398 (4)	O3X—C21X	1.414 (16)
C10—C11	1.390 (4)	C21X—C22X	1.68 (3)
C10—C19	1.490 (4)	C21X—H21C	0.9700
C11—C12	1.396 (4)	C21X—H21D	0.9700
C11—C13	1.494 (3)	C22X—H22D	0.9600
C12—H12A	0.9300	C22X—H22E	0.9600
C13—C14	1.3900	C22X—H22F	0.9600
C13—C18	1.3900		
C9—O1—C20	118.0 (2)	C16—C15—C14	120.0
C6—C1—F1	119.2 (3)	C16—C15—H15A	120.0
C6—C1—C2	122.8 (3)	C14—C15—H15A	120.0
F1—C1—C2	118.0 (3)	F2-C16-C17	120.7 (2)
C1—C2—C3	117.6 (3)	F2-C16-C15	119.3 (2)
C1—C2—H2A	121.2	C17—C16—C15	120.0
C3—C2—H2A	121.2	C16—C17—C18	120.0
C2—C3—C4	121.5 (3)	С16—С17—Н17А	120.0
С2—С3—НЗА	119.3	C18—C17—H17A	120.0
С4—С3—НЗА	119.3	C17—C18—C13	120.0
C5—C4—C3	118.4 (3)	C17—C18—H18A	120.0
C5—C4—C7	120.3 (3)	C13—C18—H18A	120.0
C3—C4—C7	121.3 (3)	O2—C19—O3X	120.2 (5)
C6—C5—C4	120.7 (3)	O2—C19—O3	123.9 (3)
С6—С5—Н5А	119.6	O2—C19—C10	125.0 (3)
C4—C5—H5A	119.6	O3X—C19—C10	110.6 (4)
C1—C6—C5	119.0 (3)	O3—C19—C10	110.4 (3)
С1—С6—Н6А	120.5	O1—C20—H20A	109.5
С5—С6—Н6А	120.5	O1—C20—H20B	109.5
C12—C7—C8	118.6 (2)	H20A-C20-H20B	109.5
C12—C7—C4	121.6 (2)	O1—C20—H20C	109.5
C8—C7—C4	119.7 (2)	H20A-C20-H20C	109.5
C9—C8—C7	120.3 (3)	H20B—C20—H20C	109.5
С9—С8—Н8А	119.9	C19—O3—C21	117.4 (5)
С7—С8—Н8А	119.9	C22—C21—O3	115.7 (10)
O1—C9—C8	124.6 (3)	C22—C21—H21A	108.4
O1—C9—C10	114.9 (2)	O3—C21—H21A	108.4
C8—C9—C10	120.5 (3)	C22—C21—H21B	108.4
С11—С10—С9	119.3 (2)	O3—C21—H21B	108.4
C11—C10—C19	122.0 (2)	H21A-C21-H21B	107.4
C9—C10—C19	118.7 (2)	C19—O3X—C21X	115.5 (10)
C10-C11-C12	119.5 (2)	O3X—C21X—C22X	104.7 (15)
C10-C11-C13	121.6 (2)	O3X—C21X—H21C	110.8
C12—C11—C13	118.9 (2)	C22X—C21X—H21C	110.8
C7—C12—C11	121.7 (2)	O3X—C21X—H21D	110.8
C7—C12—H12A	119.2	C22X—C21X—H21D	110.8
C11—C12—H12A	119.2	H21C—C21X—H21D	108.9
C14—C13—C18	120.0	C21X—C22X—H22D	109.5
C14—C13—C11	120.24 (15)	C21X—C22X—H22E	109.5

C18—C13—C11	119.72 (15)	H22D—C22X—H22E	109.5
C13—C14—C15	120.0	C21X—C22X—H22F	109.5
C13—C14—H14A	120.0	H22D—C22X—H22F	109.5
C15—C14—H14A	120.0	H22E—C22X—H22F	109.5
C6—C1—C2—C3	-0.5 (6)	C10-C11-C12-C7	-2.1 (4)
F1—C1—C2—C3	179.9 (4)	C13—C11—C12—C7	176.5 (2)
C1—C2—C3—C4	-0.4 (6)	C10-C11-C13-C14	55.1 (3)
C2—C3—C4—C5	1.1 (5)	C12—C11—C13—C14	-123.4 (2)
C2—C3—C4—C7	-178.7 (3)	C10-C11-C13-C18	-127.1 (2)
C3—C4—C5—C6	-0.8 (5)	C12-C11-C13-C18	54.4 (3)
C7—C4—C5—C6	178.9 (3)	C18—C13—C14—C15	0.0
F1-C1-C6-C5	-179.6 (4)	C11—C13—C14—C15	177.8 (2)
C2-C1-C6-C5	0.7 (6)	C13—C14—C15—C16	0.0
C4—C5—C6—C1	-0.1 (6)	C14—C15—C16—F2	179.1 (2)
C5-C4-C7-C12	26.1 (4)	C14—C15—C16—C17	0.0
C3—C4—C7—C12	-154.1 (3)	F2-C16-C17-C18	-179.1 (2)
C5—C4—C7—C8	-153.1 (3)	C15—C16—C17—C18	0.0
C3—C4—C7—C8	26.6 (4)	C16—C17—C18—C13	0.0
C12—C7—C8—C9	1.7 (4)	C14—C13—C18—C17	0.0
C4—C7—C8—C9	-179.0 (2)	C11—C13—C18—C17	-177.8 (2)
C20—O1—C9—C8	-2.3 (5)	C11—C10—C19—O2	70.4 (4)
C20—O1—C9—C10	177.3 (3)	C9—C10—C19—O2	-107.4 (4)
C7—C8—C9—O1	178.1 (3)	C11-C10-C19-O3X	-132.9 (5)
C7—C8—C9—C10	-1.5 (4)	C9—C10—C19—O3X	49.3 (6)
O1—C9—C10—C11	179.9 (2)	C11—C10—C19—O3	-100.0 (4)
C8—C9—C10—C11	-0.4 (4)	C9—C10—C19—O3	82.2 (4)
O1—C9—C10—C19	-2.2 (4)	O2—C19—O3—C21	8.6 (9)
C8—C9—C10—C19	177.4 (3)	O3X—C19—O3—C21	-84.6 (11)
C9—C10—C11—C12	2.2 (4)	C10-C19-O3-C21	179.1 (6)
C19—C10—C11—C12	-175.6 (3)	C19—O3—C21—C22	83.5 (10)
C9—C10—C11—C13	-176.3 (2)	O2—C19—O3X—C21X	-13.1 (13)
C19—C10—C11—C13	5.9 (4)	O3—C19—O3X—C21X	93.4 (14)
C8—C7—C12—C11	0.1 (4)	C10—C19—O3X—C21X	-171.1 (10)
C4—C7—C12—C11	-179.2 (2)	C19—O3X—C21X—C22X	-79.9 (12)

Hydrogen-bond geometry (Å, °)

Cg2 and Cg3 are the centroids of the C7–C12 and C13–C18 rings, respectively.

D—H···A	D—H	H···A	D···A	D—H··· A	
C12—H12A····O2 ⁱ	0.93	2.59	3.515 (3)	179	
С5—Н5А…Сg3іі	0.93	2.92	3.589 (3)	130	
C20—H20A····Cg2 ⁱⁱⁱ	0.96	2.83	3.710 (4)	152	

Symmetry codes: (i) x-1/2, -y+1/2, -z; (ii) -x-1, y+1/2, -z+1/2; (iii) -x, y+3/2, -z+1/2.