organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2,4,5-Tris(pyridin-4-yl)-1*H*-imidazole monohydrate

Shen-Tang Wang, Guang-Bo Che, Chun-Bo Liu,* Xing Wang and Ling Liu

School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, People's Republic of China Correspondence e-mail: guangbocheujs@yahoo.com.cn

Received 4 November 2011; accepted 9 December 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.058; wR factor = 0.125; data-to-parameter ratio = 13.2.

In the crystal structure of the title compound, $C_{18}H_{13}N_5 \cdot H_2O$, adjacent molecules are linked by $O-H \cdot \cdot \cdot N$ and $N-H \cdot \cdot \cdot O$ hydrogen bonds, generating a chain propagating along [001].

Related literature

For the use of 2,4,5-tri(4-pyridyl)imidazole in the construction of metal-organic coordination polymers, see: Wang *et al.* (2009); Liang *et al.* (2009). For related structures, see: Jiang & Hou (2011); Li (2011); Li & Xia (2011). For the preparation, see: Proskurnina *et al.* (2002).

Experimental

Crystal data C₁₈H₁₃N₅·H₂O

 $M_r = 317.35$

Triclinic, $P\overline{1}$	V = 803.3 (4) Å ³
a = 8.1510 (16) Å	Z = 2
b = 9.5210 (19) Å	Mo $K\alpha$ radiation
c = 11.506 (2) Å	$\mu = 0.09 \text{ mm}^{-1}$
$\alpha = 103.80 \ (3)^{\circ}$	T = 293 K
$\beta = 105.64 \ (3)^{\circ}$	$0.35 \times 0.25 \times 0.2 \text{ mm}$
$\gamma = 101.03 \ (3)^{\circ}$	

Data collection

Bruker SMART diffractometer	
Absorption correction: multi-scan	
(SADABS; Bruker, 2002)	
$T_{\min} = 0.970, \ T_{\max} = 1.000$	

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.058 & 218 \text{ parameters} \\ wR(F^2) &= 0.125 & H\text{-atom parameters constrained} \\ S &= 1.02 & \Delta\rho_{\max} &= 0.19 \text{ e } \text{\AA}^{-3} \\ 2876 \text{ reflections} & \Delta\rho_{\min} &= -0.17 \text{ e } \text{\AA}^{-3} \end{split}$$

7510 measured reflections 2912 independent reflections 1792 reflections with $I > 2\sigma(I)$

 $R_{\rm int} = 0.040$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$01 - H1A \cdots N5^{i}$ $N1 - H1 \cdots O1$ $O1 - H1B \cdots N4^{ii}$	0.85 0.89 0.85	1.99 1.85 1.94	2.843 (3) 2.741 (3) 2.787 (3)	177 176 172

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) x, y, z + 1.

Data collection: *SMART* (Bruker, 2002); cell refinement: *SAINT* (Bruker, 2002); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008) and *DIAMOND* (Brandenburg, 1998); software used to prepare material for publication: *SHELXTL*.

The authors thank Jiangsu University for supporting this work.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZJ2036).

References

Brandenburg, K. (1998). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2002). SADABS, SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

- Jiang, Y.-K. & Hou, G.-G. (2011). Acta Cryst. E67, o3073.
- Li, H.-D. (2011). Acta Cryst. E67, 03156.
- Li, C.-R. & Xia, Z.-Q. (2011). Acta Cryst. E67, o2481.
- Liang, X.-Q., Zhou, X.-H., Chen, C., Xiao, H.-P., Li, Y.-Z., Zuo, J.-L. & You, X.-Z. (2009). Cryst. Growth Des. 9, 1041–1053.
- Proskurnina, M. V., Lozinskaya, N. A., Tkachenko, S. E. & Zefirov, N. S. (2002). Russ. J. Org. Chem. 38, 1149–1153.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, L., Gu, W., Deng, J.-X., Liu, M.-L., Xu, N. & Liu, X. (2009). Z. Anorg. Allg. Chem, 635, 1124–1128.

supporting information

Acta Cryst. (2012). E68, o130 [doi:10.1107/S1600536811053013]

2,4,5-Tris(pyridin-4-yl)-1H-imidazole monohydrate

Shen-Tang Wang, Guang-Bo Che, Chun-Bo Liu, Xing Wang and Ling Liu

S1. Comment

In the 2,4,5-tri(4-pyridyl)imidazole three pyridyl groups (pyridyl ring B (C4-C8 and N3), C (C9-C13 and N4), D (C14-C18 and N5)) are directly connected with the imidazole ring A (C1-C3, N1 and N2). The dihedral angles between the mean planes of pyridyl ring B and imidazole ring A, pyridyl ring C and imidazole ring A, and pyridyl ring D and imidazole ring A are 9.1 (7) $^{\circ}$, 21.5 (5) $^{\circ}$, 45.5 (1) $^{\circ}$, respectively.

We report herein on the crystal structure of the title compound (Fig. 1). In the crystal lattice the molecules are linked by O—H···N and N—H···O hydrogen bonds (Jiang *et al.* 2011; Li *et al.* 2011; Li 2011) interactions to generate a one-dimensional double chain structure (Fig. 2).

S2. Experimental

The 2,4,5-tri(4-pyridyl)imidazole was prepared by the methord reported in the literature (Proskurnina *et al.* 2002). A mixture of 2,4,5-tri(4-pyridyl)imidazole (0.030 g, 0.1 mmol), 2 drops of 1 mol/L HCl and water (10 mL) was placed in a 25 mL Teflon-lined autoclave and heated for 3 d at 433 K under autogenous pressure. Upon cooling and opening the bomb, colourless block-shaped crystals were obtained, then washed with water and dried in air.

S3. Refinement

All H atoms on C atoms were positioned geometrically and refined as riding atoms, with (C—H = 0.93 Å) and refined as riding, with $U_{iso}(H)$ = 1.2 $U_{eq}(C)$. The hydrogen atoms of water molecules were located in a difference Fourier map, and were refined with suitable O—H distance restraint; U_{iso} = 1.5 $U_{eq}(O)$.

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level. All H atoms are presented as a small spheres of arbitrary radius.

Figure 2

The one-dimensional superamolecular structure linked by the hydrogen bonds.

2,4,5-Tris(pyridin-4-yl)-1H-imidazole monohydrate

Crystal data

C₁₈H₁₃N₅·H₂O $M_r = 317.35$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.1510 (16) Å b = 9.5210 (19) Å c = 11.506 (2) Å $a = 103.80 (3)^{\circ}$ $\beta = 105.64 (3)^{\circ}$ $\gamma = 101.03 (3)^{\circ}$ $V = 803.3 (4) \text{ Å}^{3}$

Data collection

Bruker SMART diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2002) $T_{\min} = 0.970, T_{\max} = 1.000$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.058$ $wR(F^2) = 0.125$ S = 1.022876 reflections 218 parameters 0 restraints Z = 2 F(000) = 332 $D_x = 1.312 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 3107 reflections $\theta = 3.0-25.2^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 KPrism, colourless $0.35 \times 0.25 \times 0.2 \text{ mm}$

7510 measured reflections 2912 independent reflections 1792 reflections with $I > 2\sigma(I)$ $R_{int} = 0.040$ $\theta_{max} = 25.2^{\circ}, \theta_{min} = 3.0^{\circ}$ $h = -9 \rightarrow 9$ $k = -11 \rightarrow 11$ $l = -13 \rightarrow 13$

Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained

 $\Delta \rho_{\text{max}} = 0.19 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.17 \text{ e } \text{\AA}^{-3}$ $w = 1/[\sigma^2(F_o^2) + (0.0171P)^2 + 0.605P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F² against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional d	atomic	coordinates	and	isotropic d	or equivalent	t isotropic	displacement	parameters	$(Å^2)$)
				1	1	1	1	1	1 /	_

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
N1	0.2548 (3)	0.5006 (2)	0.26415 (19)	0.0544 (6)
H1	0.2800	0.5437	0.3469	0.082*
N2	0.1414 (3)	0.3416 (2)	0.06806 (19)	0.0542 (6)
N3	-0.0531 (4)	0.0012 (3)	0.3185 (2)	0.0738 (7)
N4	0.2559 (4)	0.5283 (3)	-0.2901 (2)	0.0749 (7)
N5	0.5288 (4)	1.0560 (3)	0.3379 (3)	0.0764 (8)
C1	0.1603 (3)	0.3582 (3)	0.1895 (2)	0.0518 (6)
C2	0.2265 (3)	0.4798 (3)	0.0649 (2)	0.0523 (6)
C3	0.2960 (3)	0.5811 (3)	0.1858 (2)	0.0530 (7)
C4	0.0870 (3)	0.2404 (3)	0.2365 (2)	0.0520 (6)
C5	0.1271 (4)	0.2521 (3)	0.3637 (3)	0.0671 (8)
H5A	0.2026	0.3399	0.4252	0.080*
C6	0.0536 (4)	0.1317 (3)	0.3987 (3)	0.0739 (9)
H6A	0.0812	0.1433	0.4849	0.089*
C7	-0.0932 (4)	-0.0074 (3)	0.1966 (3)	0.0754 (9)
H7A	-0.1703	-0.0962	0.1374	0.091*
C8	-0.0284 (4)	0.1062 (3)	0.1517 (3)	0.0668 (8)
H8A	-0.0621	0.0926	0.0650	0.080*
С9	0.2386 (3)	0.4986 (3)	-0.0558 (2)	0.0527 (6)
C10	0.1214 (4)	0.4006 (3)	-0.1700 (2)	0.0594 (7)
H10A	0.0342	0.3211	-0.1709	0.071*
C11	0.1334 (4)	0.4203 (3)	-0.2821 (3)	0.0708 (8)
H11A	0.0505	0.3537	-0.3572	0.085*
C12	0.3716 (4)	0.6201 (4)	-0.1801 (3)	0.0775 (9)
H12A	0.4600	0.6962	-0.1826	0.093*
C13	0.3698 (4)	0.6105 (3)	-0.0626 (3)	0.0681 (8)
H13A	0.4552	0.6778	0.0110	0.082*
C14	0.3805 (4)	0.7431 (3)	0.2368 (2)	0.0549 (7)
C15	0.3141 (4)	0.8416 (3)	0.1767 (3)	0.0675 (8)
H15A	0.2185	0.8049	0.1015	0.081*
C16	0.3925 (4)	0.9939 (3)	0.2305 (3)	0.0754 (9)
H16A	0.3470	1.0577	0.1890	0.090*

C17	0.5915 (4)	0.9608 (3)	0.3939 (3)	0.0735 (9)	
H17A	0.6879	1.0009	0.4685	0.088*	
C18	0.5219 (4)	0.8055 (3)	0.3480 (3)	0.0650 (8)	
H18A	0.5701	0.7446	0.3918	0.078*	
01	0.3155 (4)	0.6367 (2)	0.51602 (18)	0.1058 (10)	
H1A	0.3597	0.7298	0.5581	0.159*	
H1B	0.3044	0.5992	0.5745	0.159*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
N1	0.0703 (14)	0.0475 (12)	0.0430 (12)	0.0090 (10)	0.0198 (10)	0.0139 (9)
N2	0.0711 (15)	0.0475 (12)	0.0439 (12)	0.0088 (10)	0.0215 (11)	0.0167 (9)
N3	0.0983 (19)	0.0555 (14)	0.0683 (17)	0.0082 (13)	0.0323 (15)	0.0249 (13)
N4	0.102 (2)	0.0736 (16)	0.0558 (15)	0.0144 (15)	0.0375 (15)	0.0265 (13)
N5	0.0884 (19)	0.0549 (15)	0.0791 (18)	0.0055 (14)	0.0317 (16)	0.0152 (14)
C1	0.0689 (17)	0.0422 (13)	0.0430 (14)	0.0118 (12)	0.0187 (13)	0.0129 (11)
C2	0.0652 (16)	0.0482 (14)	0.0426 (14)	0.0091 (12)	0.0199 (12)	0.0153 (11)
C3	0.0660 (17)	0.0482 (14)	0.0446 (14)	0.0091 (12)	0.0201 (13)	0.0171 (11)
C4	0.0680 (17)	0.0428 (13)	0.0470 (15)	0.0122 (12)	0.0209 (13)	0.0174 (11)
C5	0.097 (2)	0.0510 (15)	0.0484 (16)	0.0064 (15)	0.0245 (15)	0.0162 (13)
C6	0.111 (3)	0.0599 (18)	0.0564 (18)	0.0163 (17)	0.0360 (18)	0.0236 (15)
C7	0.094 (2)	0.0519 (17)	0.068 (2)	-0.0007 (15)	0.0184 (17)	0.0212 (15)
C8	0.088 (2)	0.0522 (16)	0.0527 (16)	0.0074 (15)	0.0191 (15)	0.0174 (13)
C9	0.0659 (17)	0.0511 (14)	0.0462 (14)	0.0145 (12)	0.0225 (13)	0.0204 (12)
C10	0.0738 (18)	0.0566 (16)	0.0473 (15)	0.0113 (14)	0.0228 (14)	0.0169 (13)
C11	0.090 (2)	0.0732 (19)	0.0474 (17)	0.0160 (17)	0.0259 (16)	0.0173 (14)
C12	0.097 (2)	0.071 (2)	0.068 (2)	0.0054 (17)	0.0402 (19)	0.0273 (17)
C13	0.079 (2)	0.0656 (18)	0.0517 (17)	0.0000 (15)	0.0251 (15)	0.0158 (14)
C14	0.0670 (17)	0.0486 (14)	0.0492 (15)	0.0082 (12)	0.0251 (13)	0.0148 (12)
C15	0.078 (2)	0.0519 (16)	0.0657 (19)	0.0083 (14)	0.0172 (16)	0.0212 (14)
C16	0.087 (2)	0.0536 (17)	0.086 (2)	0.0151 (16)	0.0285 (19)	0.0265 (16)
C17	0.080 (2)	0.0604 (18)	0.0624 (19)	-0.0019 (16)	0.0216 (16)	0.0061 (15)
C18	0.077 (2)	0.0548 (16)	0.0552 (17)	0.0068 (14)	0.0185 (15)	0.0156 (13)
01	0.187 (3)	0.0597 (13)	0.0500 (12)	-0.0125 (14)	0.0451 (14)	0.0087 (10)

Geometric parameters (Å, °)

N1—C1	1.363 (3)	С7—Н7А	0.9300
N1—C3	1.381 (3)	C8—H8A	0.9300
N1—H1	0.8907	C9—C10	1.381 (3)
N2C1	1.331 (3)	C9—C13	1.390 (3)
N2—C2	1.379 (3)	C10—C11	1.373 (4)
N3—C6	1.326 (4)	C10—H10A	0.9300
N3—C7	1.329 (4)	C11—H11A	0.9300
N4	1.329 (4)	C12—C13	1.381 (4)
N4—C12	1.330 (4)	C12—H12A	0.9300
N5—C16	1.330 (4)	C13—H13A	0.9300

N5—C17	1.333 (4)	C14—C18	1.378 (4)
C1—C4	1.454 (3)	C14—C15	1.397 (4)
C2—C3	1.383 (3)	C15—C16	1.378 (4)
C2—C9	1.469 (3)	C15—H15A	0.9300
C3—C14	1 463 (3)	C16—H16A	0.9300
C_{4}	1.103(3) 1.383(3)	C17 $C18$	1 390 (4)
C_{4}	1.305(3)	C17 - C18	0.0200
$C4 - C\delta$	1.303(3)		0.9300
C5—C6	1.387 (4)	CI8—HI8A	0.9300
С5—Н5А	0.9300	OI—HIA	0.8543
С6—Н6А	0.9300	O1—H1B	0.8500
C7—C8	1.382 (4)		
C1—N1—C3	107.5 (2)	C10—C9—C13	116.4 (2)
C1—N1—H1	130.1	C10—C9—C2	120.8 (2)
C3—N1—H1	122.1	C13—C9—C2	122.8 (2)
C1—N2—C2	105.6 (2)	C11—C10—C9	120.2 (3)
C6—N3—C7	115.0 (2)	C11—C10—H10A	119.9
C11 - N4 - C12	115.6(2)	C9—C10—H10A	119.9
C16-N5-C17	116.0(2)	N4_C11_C10	124.1 (3)
$N_2 \subset I = N_1$	110.0(3)	$N_{4} = C_{11} = C_{10}$	117.0
$N_2 = C_1 = C_4$	111.3(2) 124.4(2)	$\mathbf{N} = \mathbf{C} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} \mathbf{I} I$	117.9
$N_2 - C_1 - C_4$	124.4(2)		117.9
NI - CI - C4	124.3 (2)	N4—C12—C13	124.6 (3)
N2—C2—C3	110.2 (2)	N4—C12—H12A	117.7
N2—C2—C9	119.8 (2)	C13—C12—H12A	117.7
C3—C2—C9	130.0 (2)	C12—C13—C9	119.1 (3)
N1—C3—C2	105.3 (2)	C12—C13—H13A	120.5
N1—C3—C14	120.4 (2)	C9—C13—H13A	120.5
C2—C3—C14	134.0 (2)	C18—C14—C15	117.3 (2)
C5—C4—C8	116.3 (2)	C18—C14—C3	122.0 (2)
C5—C4—C1	123.8 (2)	C15—C14—C3	120.6 (2)
C8—C4—C1	119.9 (2)	C16—C15—C14	118.9 (3)
C4-C5-C6	1194(3)	C16—C15—H15A	120.5
C4-C5-H5A	120.3	C14—C15—H15A	120.5
C_{4} C_{5} H_{5A}	120.3	N5 C16 C15	120.5 124.5(3)
N2 C6 C5	120.3 124.0(2)	N5 - C16 + H16A	124.3 (3)
$N_{2} = C_{0} = C_{2}$	124.9 (5)	N_{3}	117.7
	117.5	C15—C16—H16A	11/./
С5—С6—Н6А	117.5	N5-C17-C18	124.1 (3)
N3	124.6 (3)	N5—C17—H17A	117.9
N3—C7—H7A	117.7	C18—C17—H17A	117.9
С8—С7—Н7А	117.7	C14—C18—C17	119.1 (3)
C7—C8—C4	119.7 (3)	C14—C18—H18A	120.4
С7—С8—Н8А	120.1	C17—C18—H18A	120.4
С4—С8—Н8А	120.1	H1A—O1—H1B	100.9
C2—N2—C1—N1	-0.5 (3)	N2—C2—C9—C10	21.5 (4)
C2—N2—C1—C4	178.6 (3)	C3—C2—C9—C10	-161.6(3)
$C_3 - N_1 - C_1 - N_2$	1.3 (3)	N2-C2-C9-C13	-1561(3)
C3-N1-C1-C4	$-177 \ 8 \ (3)$	C_{3} C_{2} C_{9} C_{13}	20.8 (5)
	1,1,0 (0)		

C1 N2 $C2$ $C2$	0.5(2)	C12 C0 C10 C11	2.7(4)
C1 - N2 - C2 - C3	-0.5(3)	C13-C9-C10-C11	-2.7 (4)
C1—N2—C2—C9	176.9 (2)	C2-C9-C10-C11	179.5 (3)
C1—N1—C3—C2	-1.6 (3)	C12—N4—C11—C10	0.2 (5)
C1—N1—C3—C14	173.1 (2)	C9—C10—C11—N4	1.6 (5)
N2-C2-C3-N1	1.3 (3)	C11—N4—C12—C13	-0.8 (5)
C9—C2—C3—N1	-175.8 (3)	N4—C12—C13—C9	-0.5 (5)
N2-C2-C3-C14	-172.3 (3)	C10-C9-C13-C12	2.2 (4)
C9—C2—C3—C14	10.6 (5)	C2-C9-C13-C12	179.9 (3)
N2-C1-C4-C5	170.9 (3)	N1-C3-C14-C18	45.8 (4)
N1-C1-C4-C5	-10.2 (4)	C2-C3-C14-C18	-141.4 (3)
N2-C1-C4-C8	-8.3 (4)	N1—C3—C14—C15	-131.1 (3)
N1-C1-C4-C8	170.7 (3)	C2-C3-C14-C15	41.7 (5)
C8—C4—C5—C6	0.8 (4)	C18—C14—C15—C16	0.2 (4)
C1—C4—C5—C6	-178.4 (3)	C3—C14—C15—C16	177.3 (3)
C7—N3—C6—C5	-2.3 (5)	C17—N5—C16—C15	0.7 (5)
C4—C5—C6—N3	1.1 (5)	C14—C15—C16—N5	-0.3 (5)
C6—N3—C7—C8	1.7 (5)	C16—N5—C17—C18	-0.9 (5)
N3—C7—C8—C4	0.1 (5)	C15-C14-C18-C17	-0.4 (4)
C5—C4—C8—C7	-1.3 (4)	C3—C14—C18—C17	-177.4 (3)
C1—C4—C8—C7	177.9 (3)	N5-C17-C18-C14	0.8 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H···A
O1—H1A···N5 ⁱ	0.85	1.99	2.843 (3)	177
N1—H1···O1	0.89	1.85	2.741 (3)	176
O1—H1B···N4 ⁱⁱ	0.85	1.94	2.787 (3)	172

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x, y, z+1.