organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Nitroisophthalic acid

Yang-Hui Luo* and Mei-Ling Pan

Key Laboratory of Urban and Architectural Heritage Conservation, (Southeast University), Ministry of Education, Nanjing 210096, People's Republic of China, and College of Chemistry and Chemical Engineering, Southeast University, Nanjing 210096, People's Republic of China Correspondence e-mail: peluoyh@sina.com

Received 30 November 2011; accepted 14 December 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.009 Å; R factor = 0.092; wR factor = 0.308; data-to-parameter ratio = 14.3.

In the crystal structure of the title compound, $C_8H_5NO_6$, both carboxyl groups are involved in intermolecular centrosymmetric cyclic O-H···O hydrogen-bonding associations, which give a zigzag chain structure extending along (211). Weak $\pi - \pi$ stacking interactions are also present [minimum ring centroid separation = 3.893 (4) Å].

Related literature

For 4-nitroisophthalic acid as an intermediate in the synthesis of pharmaceutical drugs and as a ligand in transition metal complexes, see: Birk & Weihe (2009); Pan et al. (2011).

Experimental

Crystal data

C₈H₅NO₆ $\gamma = 75.37 \ (3)^{\circ}$ $M_r = 211.13$ V = 427.14 (15) Å³ Triclinic, $P\overline{1}$ Z = 2a = 7.0261 (14) ÅMo $K\alpha$ radiation b = 7.4380(15) Å $\mu = 0.15 \text{ mm}^{-1}$ c = 8.5775 (17) Å T = 293 K $\alpha = 80.09 (3)^{\circ}$ $\beta = 86.22 (3)^{\circ}$

Data collection

Rigaku SCXmini CCD-detector diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2005) $T_{\min} = 0.957, T_{\max} = 0.971$

Refinement

Table 1

 $R[F^2 > 2\sigma(F^2)] = 0.092$ $wR(F^2) = 0.308$ S = 0.861943 reflections 136 parameters

 $0.30 \times 0.25 \times 0.20$ mm

4103 measured reflections 1943 independent reflections 1554 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.136$

3 restraints
H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.50 \ {\rm e} \ {\rm \AA}^{-3}$

Hydrogen-bond geometry (Å, °).					
$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$	
$\begin{matrix} O4-H4\cdots O3^i\\ O5-H5\cdots O6^{ii} \end{matrix}$	0.86 0.87	1.76 1.73	2.605 (7) 2.602 (7)	168 180	

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x, -y + 2, -z.

Data collection: CrystalClear (Rigaku, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg & Putz, 2005); software used to prepare material for publication: SHELXL97.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2171).

References

Birk, T. & Weihe, H. (2009). J. Chem. Crystallogr. 39, 766-771.

- Brandenburg, K. & Putz, H. (2005). DIAMOND. Crystal Impact GbR, Bonn, Germany.
- Pan, M.-L., Luo, Y.-H. & Mao, S.-L. (2011). Acta Cryst. E67, 02345. Rigaku. (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o206 [doi:10.1107/S1600536811053797]

4-Nitroisophthalic acid

Yang-Hui Luo and Mei-Ling Pan

S1. Comment

4-Nitroisophthalic acid is an important chemical material because it is an intermediate in the synthesis of many pharmaceutical drugs and is also an excellent ligand for many transition metal complexes (Pan *et al.*, 2011; Birk & Weihe, 2009). As part of our interest in this compound, we report here the crystal structure of this acid.

The molecular structure of the title compound, $C_8H_5NO_6$ is shown in Fig. 1. All of the non-H and non-O atoms are approximately coplanar: the maximu r.m.s. deviation being 0.0202 Å. In the crystal structure, both carboxylic acid groups are involved in intermolecular centrosymmetric cyclic O—H···O hydrogen-bonding associations (Table 1) which give a zigzag chain structure extending along (2 -1 1) (Fig. 2). Weak π ··· π stacking interactions are also present [minimum ring centroid separation = 3.893 (4) Å].

S2. Experimental

4-Nitroisophthalic acid was obtained commercially from ChemFuture PharmaTech, Ltd (Nanjing, Jiangsu). Crystals of it suitable for X-ray diffraction were obstained by slow evaporation of a methanol solution.

S3. Refinement

All H atoms attached to C atoms and O atoms were fixed geometrically and treated as riding with C—H = 0.93 Å, and O —H = 0.86 ± 1 Å with $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound with the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

A packing diagram viewed down the *a* axis showing the three-dimensional network. Intermolecular hydrogen bonds are shown as dashed lines.

Z = 2

F(000) = 216

 $\theta = 3.0-27.5^{\circ}$

 $\mu = 0.15 \text{ mm}^{-1}$ T = 293 K

 $0.30 \times 0.25 \times 0.20 \text{ mm}$

Prism, red

 $D_{\rm x} = 1.642 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1943 reflections

4-nitrobenzene-1,3-dicarboxylic acid

Crystal data C₈H₅NO₆ $M_r = 211.13$ Triclinic, *P*I Hall symbol: -P 1 a = 7.0261 (14) Å b = 7.4380 (15) Å c = 8.5775 (17) Å $a = 80.09 (3)^{\circ}$ $\beta = 86.22 (3)^{\circ}$ $\gamma = 75.37 (3)^{\circ}$ $V = 427.14 (15) \text{ Å}^3$

Data collection

Rigaku SCXmini CCD-detector	4103 measured reflections
diffractometer	1943 independent reflections
Radiation source: fine-focus sealed tube	1554 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.136$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 3.0^{\circ}$
CCD profile–fitting scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan	$k = -9 \longrightarrow 9$
CrystalClear (Rigaku, 2005)	$l = -11 \rightarrow 11$
$T_{\min} = 0.957, \ T_{\max} = 0.971$	
Refinement	
Refinement on F^2	Secondary atom site location: difference
Laget gauges motrix full	

Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.092$ $wR(F^2) = 0.308$ S = 0.861943 reflections 136 parameters 8 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.1225P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.017$ $\Delta\rho_{max} = 0.40$ e Å⁻³ $\Delta\rho_{min} = -0.50$ e Å⁻³

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.7042 (7)	0.0658 (7)	0.5109 (6)	0.0760 (19)
O2	0.8052 (7)	-0.0122 (8)	0.2874 (6)	0.081 (2)
O3	0.9385 (6)	0.3293 (8)	0.4061 (6)	0.076 (2)
O4	0.7716 (6)	0.6167 (8)	0.4485 (6)	0.074 (2)
O5	0.2226 (6)	0.9309 (7)	0.0974 (5)	0.0637 (18)
O6	0.0288 (6)	0.7626 (7)	0.0224 (6)	0.0706 (18)
N1	0.7089 (7)	0.1015 (8)	0.3680 (6)	0.0470 (19)
C1	0.7884 (8)	0.4702 (9)	0.3938 (7)	0.041 (2)
C2	0.6144 (7)	0.4407 (9)	0.3070 (6)	0.0396 (19)
C3	0.5813 (8)	0.2668 (9)	0.2931 (7)	0.044 (2)
C4	0.4265 (8)	0.2656 (9)	0.2113 (7)	0.0446 (19)
C5	0.2929 (8)	0.4233 (10)	0.1433 (7)	0.049 (2)
C6	0.4838 (7)	0.6123 (9)	0.2397 (6)	0.0397 (19)
C7	0.3223 (7)	0.5954 (10)	0.1615 (6)	0.045 (2)
C8	0.1809 (8)	0.7812 (9)	0.0882 (7)	0.045 (2)
H4	0.87560	0.63520	0.48410	0.0880*
H4A	0.40800	0.14920	0.19970	0.0540*
H5	0.13830	1.03360	0.05700	0.0770*
H5A	0.18720	0.41500	0.08750	0.0590*
H6A	0.50480	0.72900	0.24730	0.0480*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
0.075 (3)	0.068 (4)	0.066 (3)	0.011 (3)	-0.018 (3)	0.005 (3)
0.098 (4)	0.058 (4)	0.067 (3)	0.017 (3)	-0.008 (3)	-0.006 (3)
0.034 (2)	0.080 (4)	0.105 (4)	0.007 (3)	-0.030 (2)	-0.010 (3)
0.045 (2)	0.097 (4)	0.085 (4)	-0.009 (3)	-0.029 (2)	-0.032 (3)
0.049 (2)	0.067 (4)	0.074 (3)	-0.006 (3)	-0.034 (2)	-0.008 (3)
0.042 (2)	0.086 (4)	0.079 (3)	-0.001 (3)	-0.034 (2)	-0.010 (3)
0.046 (3)	0.053 (4)	0.036 (3)	-0.006 (3)	-0.015 (2)	0.005 (3)
0.035 (3)	0.047 (4)	0.041 (4)	-0.012 (3)	-0.007 (3)	-0.001 (3)
0.025 (3)	0.052 (4)	0.038 (3)	0.000 (3)	-0.012 (2)	-0.007 (3)
0.032 (3)	0.055 (4)	0.043 (4)	-0.002 (3)	-0.012 (3)	-0.012 (3)
0.048 (3)	0.032 (3)	0.060 (4)	-0.017 (3)	-0.011 (3)	-0.010 (3)
0.038 (3)	0.067 (5)	0.044 (4)	-0.010 (4)	-0.016 (3)	-0.011 (3)
	U^{11} 0.075 (3) 0.098 (4) 0.034 (2) 0.045 (2) 0.045 (2) 0.049 (2) 0.042 (2) 0.046 (3) 0.035 (3) 0.025 (3) 0.032 (3) 0.048 (3) 0.038 (3)	U^{11} U^{22} 0.075 (3) 0.068 (4) 0.098 (4) 0.058 (4) 0.034 (2) 0.080 (4) 0.045 (2) 0.097 (4) 0.049 (2) 0.067 (4) 0.042 (2) 0.086 (4) 0.046 (3) 0.053 (4) 0.035 (3) 0.047 (4) 0.025 (3) 0.055 (4) 0.048 (3) 0.032 (3) 0.038 (3) 0.067 (5)	U^{11} U^{22} U^{33} 0.075 (3) 0.068 (4) 0.066 (3) 0.098 (4) 0.058 (4) 0.067 (3) 0.034 (2) 0.080 (4) 0.105 (4) 0.045 (2) 0.097 (4) 0.085 (4) 0.049 (2) 0.067 (4) 0.074 (3) 0.042 (2) 0.086 (4) 0.079 (3) 0.046 (3) 0.053 (4) 0.036 (3) 0.035 (3) 0.047 (4) 0.041 (4) 0.025 (3) 0.055 (4) 0.043 (4) 0.048 (3) 0.032 (3) 0.060 (4) 0.038 (3) 0.067 (5) 0.044 (4)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

supporting information

(3) 0.071 (5)	0.032 (3)	-0.004(3)	-0.009(2)	-0.010 (3)
(3) 0.052 (4)	0.036 (3)	-0.011 (3)	-0.012 (2)	-0.004 (3)
	(3) 0.052 (4)	(3) 0.052 (4) 0.036 (3)	(3) 0.052 (4) 0.036 (3) -0.011 (3)	(3) 0.052 (4) 0.036 (3) -0.011 (3) -0.012 (2)

Geometric parameters (A, °)	Geometric	parameters	(Å,	°)
-----------------------------	-----------	------------	-----	----

01—N1	1.209 (7)	C2—C6	1.424 (9)
O2—N1	1.225 (8)	C2—C3	1.396 (9)
O3—C1	1.281 (8)	C3—C4	1.335 (8)
O4—C1	1.235 (9)	C4—C5	1.370 (9)
O5—C8	1.237 (8)	C5—C7	1.383 (10)
O6—C8	1.289 (7)	C6—C7	1.398 (7)
O4—H4	0.8600	C7—C8	1.543 (9)
О5—Н5	0.8700	C4—H4A	0.9300
N1—C3	1.406 (8)	С5—Н5А	0.9300
C1—C2	1.552 (8)	С6—Н6А	0.9300
C1—O4—H4	118.00	C4—C5—C7	117.0 (5)
С8—О5—Н5	116.00	C2—C6—C7	116.2 (6)
O1—N1—C3	118.7 (5)	C5—C7—C8	120.9 (5)
O2—N1—C3	119.2 (5)	C6—C7—C8	116.3 (6)
O1—N1—O2	121.5 (6)	C5—C7—C6	122.7 (6)
O4—C1—C2	120.2 (6)	O6—C8—C7	115.3 (5)
O3—C1—O4	126.0 (6)	O5—C8—O6	126.5 (6)
O3—C1—C2	113.8 (5)	O5—C8—C7	118.2 (5)
C3—C2—C6	121.0 (5)	C3—C4—H4A	118.00
C1—C2—C6	113.4 (5)	C5—C4—H4A	118.00
C1—C2—C3	125.6 (5)	C4—C5—H5A	122.00
N1—C3—C4	122.9 (6)	C7—C5—H5A	121.00
N1—C3—C2	118.9 (5)	С2—С6—Н6А	122.00
C2—C3—C4	118.2 (6)	С7—С6—Н6А	122.00
C3—C4—C5	124.8 (6)		
O1—N1—C3—C2	69.8 (8)	C3—C2—C6—C7	0.6 (8)
01—N1—C3—C4	-108.8 (7)	N1—C3—C4—C5	176.5 (6)
O2—N1—C3—C2	-118.3 (6)	C2—C3—C4—C5	-2.1 (9)
O2—N1—C3—C4	63.1 (8)	C3—C4—C5—C7	0.0 (9)
O3—C1—C2—C3	23.2 (8)	C4—C5—C7—C6	2.5 (8)
O3—C1—C2—C6	-157.0 (5)	C4—C5—C7—C8	179.5 (5)
O4—C1—C2—C3	-154.2 (6)	C2—C6—C7—C5	-2.7 (8)
O4—C1—C2—C6	25.5 (8)	C2—C6—C7—C8	-179.9 (5)
C1—C2—C3—N1	2.8 (9)	C5—C7—C8—O5	-174.4 (5)
C1—C2—C3—C4	-178.6 (5)	C5—C7—C8—O6	5.5 (8)
C6-C2-C3-N1	-177.0 (5)	C6—C7—C8—O5	2.8 (8)
C6—C2—C3—C4	1.7 (8)	C6—C7—C8—O6	-177.3 (5)
C1—C2—C6—C7	-179.2 (5)		

D—H···A *D*—Н $\mathrm{H}{\cdots}{A}$ $D \cdots A$ D—H···A04—H4…O3ⁱ 0.86 1.76 2.605 (7) 168 O5—H5…O6ⁱⁱ 0.87 1.73 2.602 (7) 180 C5—H5A…O6ⁱⁱⁱ 0.93 2.56 3.423 (8) 154

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) -*x*+2, -*y*+1, -*z*+1; (ii) -*x*, -*y*+2, -*z*; (iii) -*x*, -*y*+1, -*z*.