

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-Hydroxy-3,5-dimethoxy-N-{4-[(5methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}benzamide methanol monosolvate

Wei-Gao Pan,^{a,c} Zhi-Dong Zhao,^b Peng Luo,^c Cui-Wu Lin^b and Jian-Hua Miao^a*

^aGuangxi Botanical Garden of Medicinal Plants, Nanning 530023, People's Republic of China, ^bGuangxi University, College of Chemistry and Chemical Engineering, Nanning 530004, People's Republic of China, and ^cGuangxi Traditional Chinese Medicine University, Nanning 530001, People's Republic of China Correspondence e-mail: jianhuamiaogxyyzwy@yahoo.cn

Received 20 November 2011; accepted 28 December 2011

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.049; wR factor = 0.140; data-to-parameter ratio = 12.8.

The title compound, $C_{19}H_{19}N_3O_7S \cdot CH_3OH$, was synthesized from syringic acid and sulfamethoxazole. The benzene rings make a dihedral angle of 41.8 (1)° and the isoxazole ring is twisted by 74.3 (1)° from the central benzene ring. The crystal packing features $O-H \cdot \cdot \cdot O$ and $O-H \cdot \cdot \cdot N$ hydrogen bonds in which the hydroxy groups from the main molecule and methanol solvent molecules serve as donor groups.

Related literature

For the biological activity of syringic acid and sulfamethoxazole, see: Wu *et al.* (2009); Itoh *et al.* (2009, 2010); Ramachandran & Raja (2010); Ma *et al.* (2007); Hida *et al.* (2005); Liu *et al.* (2003). For related structures, see: Camerman *et al.* (1979); Yan *et al.* (2009); Yasmeen *et al.* (2010).

Experimental

Crystal data

 $\begin{array}{l} {\rm C_{19}H_{19}N_{3}O_{7}S\cdot{\rm CH_{4}O}}\\ {M_r}=465.47\\ {\rm Monoclinic},\ P2_1/n\\ a=12.133\ (11)\ {\rm \AA}\\ b=8.684\ (8)\ {\rm \AA}\\ c=20.983\ (19)\ {\rm \AA}\\ \beta=102.043\ (13)^{\circ} \end{array}$

 $V = 2162 (3) Å^{3}$ Z = 4 Mo K\alpha radiation \(\mu = 0.20 \text{ mm}^{-1}\) T = 296 K (0.35 \times 0.24 \times 0.20 \text{ mm}\) 11585 measured reflections

 $R_{\rm int} = 0.042$

3807 independent reflections 2900 reflections with $I > 2\sigma(I)$

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	H atoms treated by a mixture of
$vR(F^2) = 0.140$	independent and constrained
S = 1.05	refinement
807 reflections	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
298 parameters	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D2 - H2 \cdots N3^{i}$	0.85 (3)	2.05 (3)	2.852 (4)	157 (3)
O8−H8· · ·O2 ⁱⁱ	0.94 (5)	2.12 (6)	3.004 (4)	156 (5)
$08 - H8 \cdots O1^{ii}$	0.94 (5)	2.44 (5)	3.133 (4)	131 (4)

Symmetry codes: (i) -x + 1, -y + 2, -z + 2; (ii) x, y - 1, z.

Data collection: *SMART* (Bruker, 2004); cell refinement: *SMART* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXL97*.

This work was supported by grants from the China Postdoctoral Science Foundation (grant No. 2011M500130), the Youth Foundation of Guangxi Botanical Garden of Medicinal Plants project (grant No. guiyaoji 201108) and the National Natural Science Foundation of China (grant nos. 20962002, 20662001).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BH2401).

References

- Bruker (2004). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Camerman, N., Chan, L. Y. Y., Yeung, H. W. & Mak, T. C. W. (1979). Acta Cryst. B35, 3004–3007.
- Hida, S., Yoshida, M., Nakabayashi, I., Miura, N. N., Adachi, Y. & Ohno, N. (2005). Biol. Pharm. Bull. 28, 773–778.
- Itoh, A., Isoda, K., Kondoh, M., Kawase, M., Kobayashi, M., Tamesada, M. & Yagi, K. (2009). *Biol. Pharm. Bull.* 32, 1215–1219.
- Itoh, A., Isoda, K., Kondoh, M., Kawase, M., Watari, A., Kobayashi, M., Tamesada, M. & Yagi, K. (2010). *Biol. Pharm. Bull.* 33, 983–987.
- Liu, Y.-H., Fang, J.-G., Lei, T., Wang, W.-Q. & Lin, A.-H. (2003). J. Huazhong Univ. Sci. Technol. Med. Sci. 23, 206–208.
- Ma, M.-L., Cheng, Y.-Y., Xu, Z.-H., Xu, P., Qu, H.-O., Fang, Y.-J., Xu, T.-W. & Wen, L.-P. (2007). *Eur. J. Med. Chem.* **42**, 93–98.
- Ramachandran, V. & Raja, B. (2010). J. Basic Clin. Physiol. Pharmacol. 21, 369–385.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wu, H.-S., Luo, J., Liu, Y.-X., Chen, A.-Q., Tang, Z., Cao, Y., Chen, G., Mao, Z.-S., Huang, Q.-W. & Shen, Q.-R. (2009). J. Eukaryot. Microbiol. 56, 386– 387.
- Yan, Y.-X., Hu, X.-D., Chen, J.-C., Sun, Y., Zhang, X.-M., Qing, C. & Qiu, M.-H. (2009). J. Nat. Prod. 72, 308–311.
- Yasmeen, S., Murtaza, S., Akkurt, M., Khan, I. U. & Sharif, S. (2010). Acta Cryst. E66, o2264.

supporting information

Acta Cryst. (2012). E68, o379 [doi:10.1107/S1600536811055991]

4-Hydroxy-3,5-dimethoxy-*N*-{4-[(5-methyl-1,2-oxazol-3-yl)sulfamoyl]phenyl}benzamide methanol monosolvate

Wei-Gao Pan, Zhi-Dong Zhao, Peng Luo, Cui-Wu Lin and Jian-Hua Miao

S1. Comment

Syringic acid, a natural compound occurring in many kinds of plant species, was synthesized and used widely in medicine, perfume, pesticide chemistry and organic synthetic industry. Syringic acid showed antifungal activity at high concentration (Wu *et al.*, 2009), anti-endotoxic effects (Liu *et al.*, 2003), hepatoprotective effect (Itoh *et al.*, 2009, 2010; Ramachandran & Raja, 2010). Sulfamethoxazole was usually used as anti-infective (anti-bacterial or anti-fungal) drug (Ma *et al.*, 2007; Hida *et al.*, 2005). Whether the title product (Fig. 1, 2 and 3) shows combined-effects (combining the activities of syringic acid with those of sulfamethoxazole) or has some novel properties should be investigated in future. Some structures closely related to the title compound were previously published, which include the syringic or sulfamethoxazole fragment (Camerman *et al.*, 1979; Yan *et al.*, 2009; Yasmeen *et al.*, 2010).

S2. Experimental

4000 mg (20 mmol) of syringic acid (4-hydroxy-3,5-dimethoxybenzoic acid) in 30 ml of acetic anhydride was stirred and refluxed at 120 °C for 2 h. 600 ml of water was added to the above solution to get precipitates (3610 mg) by method of pumping filtration. 3000 mg (12 mmol) of above dry precipitates in 20 ml of thionyl chloride was stirred and refluxed at 80 °C for 6 h under anhydrous conditions. The solution was removed under reduced pressure to get residue (3415 mg). 3100 mg (12 mmol) of the residue, 3040 mg (12 mmol) of sulfamethoxazole [4-amino-*N*-(5-methyl-3-isoxazolyl)benzenesulfonamide] and 6 ml of pyridine in 200 ml of THF were stirred at 0 °C for 2 h. and then at room temperature for 24 h. 4000 ml of water was added to the above reaction solution to get 4165 mg of precipitates after pumping filtration. 4000 mg (8.4 mmol) of these precipitates and 20 ml of 10 mmol.m*L*⁻¹ hydrochloric acid in 150 ml of THF were stirred and refluxed at 60 °C for 1 h. 3000 ml of water was added to the hydrolytic solution to get product (2720 mg) after pumping filtration. This final synthetic product was detected by electrospray ionization mass spectroscopy (ESI) to give a molecular ion at *m/z* value of 432.0 ([M—H]⁻). This product was redissolved in mixed solution of THF and methanol and then left for evaporating at room temperature. After crystallization and recrystallization from the mixed solution, colorless crystals suitable for X-ray analysis were obtained (mp. 494–495 K).

S3. Refinement

H atoms bonded to C and N atoms were positioned geometrically with d(N-H) = 0.86 Å, d(C-H) = 0.93 (aromatic CH) or 0.96 Å (methyl CH₃), and treated as riding atoms. Hydroxyl H atoms H2 and H8 were refined freely. For all H atoms, isotropic displacement parameters were calculated as $U_{iso}(H) = xU_{eq}(N,C,O)$ with x = 1.2 or 1.5.

Figure 1

Synthesis of the title molecule.

Figure 2

A view of the title compound, with 30% probability displacement ellipsoids.

Figure 3

Crystal packing, viewed along the *b* axis, of the title complex. The O—H…O, O—H…N and N—H…O interactions are shown as dashed lines.

4-Hydroxy-3,5-dimethoxy-N-{4-[(5-methyl-1,2-oxazol-3- yl)sulfamoyl]phenyl}benzamide methanol monosolvate

Crystal data	
$C_{19}H_{19}N_3O_7S \cdot CH_4O$	F(000) = 976
$M_r = 465.47$	$D_{\rm x} = 1.430 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/n$	Melting point: 494 K
Hall symbol: -P 2yn	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
a = 12.133 (11) Å	Cell parameters from 3807 reflections
b = 8.684 (8) Å	$\theta = 1.8 - 25.0^{\circ}$
c = 20.983 (19) Å	$\mu=0.20~\mathrm{mm^{-1}}$
$\beta = 102.043 \ (13)^{\circ}$	T = 296 K
$V = 2162 (3) Å^3$	Block, colourless
Z = 4	$0.35 \times 0.24 \times 0.20 \text{ mm}$
Data collection	
Bruker SMART CCD area-detector diffractometer	Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2004)
Radiation source: fine-focus sealed tube	$T_{\min} = 0.933, \ T_{\max} = 0.961$
Graphite monochromator	11585 measured reflections
φ and ω scans	3807 independent reflections

2900 reflections with $I > 2\sigma(I)$	$h = -13 \rightarrow 14$
$R_{\rm int} = 0.042$	$k = -10 \rightarrow 10$
$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min} = 1.8^{\circ}$	$l = -23 \rightarrow 24$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.049$	Hydrogen site location: inferred from
$wR(F^2) = 0.140$	neighbouring sites
S = 1.05	H atoms treated by a mixture of independent
3807 reflections	and constrained refinement
298 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0122P)^2 + 1.2353P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
0 constraints	$(\Delta/\sigma)_{\rm max} = 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.34 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.48 \text{ e } \text{\AA}^{-3}$

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.18631 (5)	0.23253 (8)	1.00904 (3)	0.0372 (2)	
O1	0.29542 (15)	1.3250 (2)	0.77380 (10)	0.0480 (5)	
O2	0.49358 (17)	1.4549 (2)	0.80363 (10)	0.0463 (5)	
O3	0.66996 (15)	1.3222 (2)	0.88701 (11)	0.0533 (6)	
O4	0.51958 (15)	0.7933 (2)	0.92734 (11)	0.0539 (6)	
O5	0.06867 (14)	0.2401 (2)	1.00843 (10)	0.0463 (5)	
O6	0.23161 (17)	0.1065 (2)	0.97917 (10)	0.0501 (5)	
O7	0.24567 (19)	0.4522 (3)	1.22145 (11)	0.0599 (6)	
O8	0.40341 (19)	0.4397 (3)	0.65913 (12)	0.0639 (7)	
N1	0.33231 (17)	0.8292 (2)	0.91667 (11)	0.0384 (5)	
N2	0.25363 (17)	0.2263 (3)	1.08544 (11)	0.0398 (6)	
N3	0.3029 (2)	0.3712 (3)	1.17963 (13)	0.0522 (7)	
C1	0.4473 (2)	1.0346 (3)	0.88707 (12)	0.0331 (6)	
C2	0.5519 (2)	1.1046 (3)	0.90221 (13)	0.0373 (6)	
C3	0.5688 (2)	1.2450 (3)	0.87506 (13)	0.0375 (6)	
C4	0.4811 (2)	1.3181 (3)	0.83263 (13)	0.0343 (6)	
C5	0.3754 (2)	1.2467 (3)	0.81737 (13)	0.0358 (6)	
C6	0.3588 (2)	1.1071 (3)	0.84468 (13)	0.0351 (6)	
C7	0.4365 (2)	0.8765 (3)	0.91227 (13)	0.0339 (6)	
C8	0.1907 (2)	1.2484 (4)	0.75269 (19)	0.0664 (10)	
C9	0.7670 (2)	1.2299 (4)	0.88784 (19)	0.0639 (10)	
C10	0.3002 (2)	0.6841 (3)	0.93632 (13)	0.0344 (6)	
C11	0.1948 (2)	0.6720 (3)	0.95179 (14)	0.0420 (7)	
C12	0.1587 (2)	0.5344 (3)	0.97264 (14)	0.0436 (7)	
C13	0.2275 (2)	0.4053 (3)	0.97739 (13)	0.0353 (6)	
C14	0.3311 (2)	0.4152 (3)	0.96069 (14)	0.0395 (6)	
C15	0.3678 (2)	0.5532 (3)	0.94009 (14)	0.0405 (7)	
C16	0.2235 (2)	0.3183 (3)	1.13335 (13)	0.0371 (6)	
C17	0.1158 (2)	0.3594 (3)	1.14200 (15)	0.0462 (7)	
C18	0.1341 (3)	0.4427 (4)	1.19678 (15)	0.0505 (8)	

C19	0.0590 (3)	0.5249 (5)	1.23277 (19)	0.0758 (11)
C20	0.4962 (3)	0.5218 (5)	0.64565 (19)	0.0711 (10)
H1A	0.2792	0.8958	0.9062	0.046*
H2	0.560 (3)	1.487 (4)	0.8163 (16)	0.060 (10)*
H2B	0.3095	0.1639	1.0962	0.048*
H2C	0.6109	1.0569	0.9308	0.045*
H6A	0.2881	1.0608	0.8349	0.042*
H8	0.418 (4)	0.420 (6)	0.704 (3)	0.15 (2)*
H8A	0.1408	1.3128	0.7224	0.100*
H8B	0.1578	1.2274	0.7896	0.100*
H8C	0.2028	1.1534	0.7318	0.100*
H9A	0.8330	1.2939	0.8963	0.096*
H9B	0.7607	1.1802	0.8464	0.096*
H9C	0.7729	1.1534	0.9214	0.096*
H11A	0.1481	0.7579	0.9480	0.050*
H12A	0.0884	0.5278	0.9835	0.052*
H14A	0.3766	0.3284	0.9633	0.047*
H15A	0.4378	0.5590	0.9287	0.049*
H17A	0.0468	0.3343	1.1154	0.055*
H19A	0.1035	0.5718	1.2711	0.114*
H19B	0.0072	0.4531	1.2452	0.114*
H19C	0.0178	0.6030	1.2053	0.114*
H20A	0.4828	0.6303	0.6482	0.107*
H20B	0.5060	0.4965	0.6026	0.107*
H20C	0.5630	0.4944	0.6769	0.107*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U ²²	U^{33}	U^{12}	<i>U</i> ¹³	U^{23}
S1	0.0342 (4)	0.0333 (4)	0.0451 (4)	-0.0035 (3)	0.0105 (3)	0.0010 (3)
01	0.0361 (10)	0.0457 (12)	0.0569 (13)	-0.0021 (8)	-0.0024 (9)	0.0198 (10)
O2	0.0402 (11)	0.0386 (12)	0.0569 (13)	-0.0080 (9)	0.0026 (9)	0.0146 (10)
03	0.0371 (10)	0.0407 (12)	0.0760 (15)	-0.0075 (9)	-0.0018 (10)	0.0086 (11)
O4	0.0326 (10)	0.0447 (12)	0.0844 (16)	0.0043 (9)	0.0120 (10)	0.0239 (11)
05	0.0321 (10)	0.0499 (13)	0.0566 (13)	-0.0079 (8)	0.0088 (9)	0.0033 (10)
06	0.0560 (12)	0.0343 (11)	0.0639 (14)	-0.0033 (9)	0.0216 (10)	-0.0088 (10)
O7	0.0644 (14)	0.0680 (16)	0.0474 (13)	-0.0105 (11)	0.0120 (10)	-0.0069 (11)
08	0.0547 (13)	0.0796 (18)	0.0555 (15)	-0.0104 (12)	0.0071 (11)	-0.0017 (13)
N1	0.0337 (11)	0.0314 (12)	0.0523 (14)	0.0070 (9)	0.0139 (10)	0.0123 (11)
N2	0.0346 (11)	0.0360 (13)	0.0485 (14)	0.0070 (9)	0.0080 (10)	0.0091 (11)
N3	0.0459 (14)	0.0581 (17)	0.0515 (16)	-0.0072 (12)	0.0080 (12)	0.0012 (13)
C1	0.0348 (13)	0.0315 (14)	0.0338 (14)	0.0018 (10)	0.0090 (11)	0.0035 (11)
C2	0.0366 (14)	0.0367 (16)	0.0374 (15)	0.0023 (11)	0.0051 (11)	0.0043 (12)
C3	0.0331 (13)	0.0337 (16)	0.0446 (16)	-0.0044 (11)	0.0057 (11)	0.0012 (12)
C4	0.0390 (14)	0.0283 (14)	0.0362 (14)	-0.0019 (10)	0.0094 (11)	0.0052 (12)
C5	0.0348 (14)	0.0369 (16)	0.0355 (15)	0.0049 (11)	0.0071 (11)	0.0060 (12)
C6	0.0323 (13)	0.0334 (15)	0.0401 (15)	-0.0014 (10)	0.0085 (11)	0.0036 (12)
C7	0.0325 (13)	0.0328 (15)	0.0371 (15)	0.0008 (10)	0.0085 (11)	0.0044 (12)

C8	0.0364 (16)	0.068 (2)	0.086 (3)	-0.0071 (15)	-0.0075 (16)	0.031 (2)
C9	0.0386 (16)	0.069 (2)	0.083 (3)	-0.0101 (15)	0.0116 (16)	-0.004 (2)
C10	0.0341 (13)	0.0337 (15)	0.0360 (14)	0.0015 (11)	0.0084 (11)	0.0064 (12)
C11	0.0307 (13)	0.0395 (16)	0.0573 (18)	0.0095 (11)	0.0125 (12)	0.0133 (14)
C12	0.0294 (13)	0.0449 (18)	0.0584 (19)	0.0023 (11)	0.0135 (12)	0.0104 (14)
C13	0.0342 (13)	0.0365 (15)	0.0356 (15)	-0.0004 (11)	0.0083 (11)	0.0017 (12)
C14	0.0392 (14)	0.0325 (15)	0.0504 (17)	0.0048 (11)	0.0180 (12)	0.0051 (13)
C15	0.0369 (14)	0.0353 (16)	0.0546 (18)	0.0033 (11)	0.0213 (12)	0.0048 (13)
C16	0.0369 (14)	0.0330 (15)	0.0413 (16)	-0.0035 (11)	0.0078 (12)	0.0120 (12)
C17	0.0379 (15)	0.0511 (19)	0.0500 (18)	0.0008 (12)	0.0104 (13)	0.0015 (15)
C18	0.0560 (19)	0.052 (2)	0.0468 (18)	-0.0015 (14)	0.0180 (15)	0.0083 (15)
C19	0.095 (3)	0.073 (3)	0.070 (3)	0.008 (2)	0.040 (2)	-0.002 (2)
C20	0.061 (2)	0.073 (3)	0.080 (3)	-0.0076 (18)	0.0143 (19)	-0.003 (2)

Geometric parameters (Å, °)

S1—05	1.426 (2)	C7—C1	1.486 (4)	
S106	1.427 (2)	C8—H8C	0.9600	
S1—N2	1.641 (3)	C8—H8B	0.9600	
S1—C13	1.755 (3)	C8—H8A	0.9600	
O1—C5	1.367 (3)	С9—Н9С	0.9600	
01—C8	1.420 (4)	С9—Н9В	0.9600	
O2—C4	1.357 (3)	С9—Н9А	0.9600	
O2—H2	0.85 (3)	C10—C15	1.394 (4)	
O3—C3	1.374 (3)	C10—C11	1.388 (4)	
О3—С9	1.421 (4)	C11—H11A	0.9300	
O4—C7	1.227 (3)	C11—C12	1.375 (4)	
O7—C18	1.347 (4)	C12—H12A	0.9300	
O7—N3	1.415 (3)	C13—C12	1.389 (4)	
O8—C20	1.410 (4)	C13—C14	1.376 (4)	
O8—H8	0.94 (5)	C14—H14A	0.9300	
N1—C7	1.350 (3)	C14—C15	1.379 (4)	
N1-C10	1.406 (3)	C15—H15A	0.9300	
N1—H1A	0.8600	C16—C17	1.403 (4)	
N2-C16	1.392 (4)	C16—N3	1.301 (4)	
N2—H2B	0.8600	C17—H17A	0.9300	
C2—H2C	0.9300	C17—C18	1.337 (4)	
C2—C1	1.383 (4)	C18—C19	1.482 (4)	
C2—C3	1.379 (4)	C19—H19C	0.9600	
C4—C5	1.400 (4)	C19—H19B	0.9600	
C4—C3	1.391 (4)	C19—H19A	0.9600	
С6—Н6А	0.9300	C20—H20C	0.9600	
C6—C1	1.394 (4)	C20—H20B	0.9600	
C6—C5	1.373 (4)	C20—H20A	0.9600	
S1—N2—H2B	118.8	C7—N1—C10	127.9 (2)	
O1—C8—H8A	109.5	C10-C11-H11A	119.7	
O1—C8—H8B	109.5	C10—C15—H15A	120.0	

01 - C5 - C6	1249(2)	C10—N1—H1A	116.1
01 - C5 - C4	121.9(2) 1149(2)	C_{11} C_{12} H_{12}	120.1
$O_1 = C_2 = C_4$	100 5	$C_{11} = C_{12} = C_{13}$	120.1 1100(2)
$O_2 C_4 C_3$	109.5 123.0(2)	C_{11} C_{10} N_1	117.5(2)
$O_2 = C_1 = C_3$	125.0(2) 117.0(2)	$C_{11} = C_{10} = C_{15}$	117.5(2)
02 - 04 - 05	117.9 (2)	$C_{11} = C_{10} = C_{13}$	119.0(2)
$O_2 = C_2 = H_2 R_2$	109.5	C12— $C11$ — $C10$	119.7
03—09—H9B	109.5	$C_{12} = C_{11} = C_{10}$	120.7(2)
03 - 09 - 190	109.5	C12 - C13 - S1	120.2 (2)
03 - 03 - 02	124.1(2)	C13 - C12 - H12A	120.1
03 - 03 - 04	115.4 (2)	C13—C14—H14A	119.8
04—C/—NI	122.2 (2)		120.4 (2)
04	120.4 (2)	C14—C15—H15A	120.0
05—S1—06	120.54 (12)	C14—C15—C10	120.1 (2)
O5—S1—N2	107.67 (12)	C14—C13—S1	119.8 (2)
06—S1—N2	104.17 (13)	C14—C13—C12	119.9 (2)
O5—S1—C13	108.68 (12)	C15—C10—N1	123.5 (2)
O6—S1—C13	108.85 (14)	C15—C14—H14A	119.8
O7—C18—C19	116.7 (3)	C16—N3—O7	104.8 (2)
O8—C20—H20A	109.5	C16—C17—H17A	127.6
O8—C20—H20B	109.5	C16—N2—H2B	118.8
O8—C20—H20C	109.5	C16—N2—S1	122.30 (18)
N1—C7—C1	117.3 (2)	C17—C18—C19	133.6 (3)
N2—S1—C13	105.97 (12)	C17—C18—O7	109.7 (3)
N2—C16—C17	129.2 (3)	C18—C19—H19C	109.5
N3—C16—N2	118.5 (2)	C18—C19—H19B	109.5
N3—C16—C17	112.2 (3)	C18—C19—H19A	109.5
C1—C2—H2C	119.9	C18—C17—H17A	127.6
C1—C6—H6A	119.8	C18—C17—C16	104.9 (3)
C2—C3—C4	120.5 (2)	C18—O7—N3	108.4 (2)
C2—C1—C7	118.0 (2)	С20—О8—Н8	108 (3)
C2—C1—C6	119.7 (2)	H8A—C8—H8C	109.5
C3—C2—H2C	119.9	H8A—C8—H8B	109.5
C3—C2—C1	120.2 (2)	H8B—C8—H8C	109.5
C3—O3—C9	115.7 (2)	Н9А—С9—Н9С	109.5
C3-C4-C5	119.1 (2)	H9A—C9—H9B	109.5
C4—O2—H2	110 (2)	H9B - C9 - H9C	109.5
С5—С6—Н6А	119.8	H19A—C19—H19C	109.5
$C_{5}-C_{6}-C_{1}$	120 3 (2)	H19A - C19 - H19B	109.5
$C_{5} = 01 = C_{8}$	1161(2)	H19B-C19-H19C	109.5
C6-C5-C4	120.2(2)	H_{20A} C_{20} H_{20C}	109.5
C6-C1-C7	120.2(2) 1220(2)	H_{20A} C_{20} H_{20B}	109.5
C7—N1—H1A	116.1	$H_{20}B_{}C_{20}-H_{20}C$	109.5
	110.1	11201 020 11200	109.5
S1—C13—C12—C11	175 8 (2)	C1—C6—C5—C4	-0.9(4)
S1 - C13 - C14 - C15	-1754(2)	C1 - C6 - C5 - O1	177 9 (2)
S1_N2_C16_C17	39 3 (4)	C_{3} C_{4} C_{5} C_{6}	0.7(4)
S1 - N2 - C16 - N3	-1442(2)	C_{3} C_{4} C_{5} C_{0}	-178 1 (2)
02 - C4 - C3 - C2	-178.8(2)	C_{3} C_{7} C_{1} C_{7}	173.9(2)
02 - 07 - 03 - 02	1/0.0 (2)	03 - 02 - 01 - 07	11217 (4)

O2—C4—C3—O3	1.2 (4)	C3—C2—C1—C6	-0.6 (4)
O2—C4—C5—C6	179.1 (2)	C5—C4—C3—C2	-0.5 (4)
O2—C4—C5—O1	0.2 (4)	C5—C4—C3—O3	179.5 (2)
O4—C7—C1—C6	151.8 (3)	C5—C6—C1—C7	-173.5 (2)
O4—C7—C1—C2	-22.6 (4)	C5—C6—C1—C2	0.8 (4)
O5—S1—C13—C12	16.6 (3)	C7—N1—C10—C15	-15.7 (4)
O5—S1—C13—C14	-167.0 (2)	C7—N1—C10—C11	165.2 (3)
O5—S1—N2—C16	-42.3 (2)	C8—O1—C5—C4	174.2 (3)
O6—S1—C13—C12	149.6 (2)	C8—O1—C5—C6	-4.6 (4)
O6—S1—C13—C14	-34.0 (3)	C9—O3—C3—C4	-137.6 (3)
O6—S1—N2—C16	-171.4 (2)	C9—O3—C3—C2	42.4 (4)
N1-C10-C11-C12	-178.7 (3)	C10-C11-C12-C13	-1.0 (4)
N1-C10-C15-C14	179.1 (3)	C10—N1—C7—C1	177.2 (2)
N1—C7—C1—C6	-27.2 (4)	C10—N1—C7—O4	-1.8 (4)
N1—C7—C1—C2	158.4 (2)	C11—C10—C15—C14	-1.8 (4)
N2-C16-N3-O7	-177.1 (2)	C12—C13—C14—C15	0.9 (4)
N2-C16-C17-C18	177.1 (3)	C13—C14—C15—C10	0.3 (4)
N2—S1—C13—C12	-98.8 (2)	C13—S1—N2—C16	73.8 (2)
N2—S1—C13—C14	77.5 (2)	C14—C13—C12—C11	-0.6 (4)
N3—O7—C18—C17	0.6 (3)	C15—C10—C11—C12	2.1 (4)
N3—C16—C17—C18	0.4 (3)	C16—C17—C18—C19	177.9 (3)
N3—O7—C18—C19	-178.2 (3)	C16—C17—C18—O7	-0.6 (3)
C1—C2—C3—C4	0.5 (4)	C17—C16—N3—O7	-0.1 (3)
C1—C2—C3—O3	-179.5 (3)	C18—O7—N3—C16	-0.3 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H…A
O2—H2…N3 ⁱ	0.85 (3)	2.05 (3)	2.852 (4)	157 (3)
O8—H8····O2 ⁱⁱ	0.94 (5)	2.12 (6)	3.004 (4)	156 (5)
O8—H8…O1 ⁱⁱ	0.94 (5)	2.44 (5)	3.133 (4)	131 (4)

Symmetry codes: (i) -*x*+1, -*y*+2, -*z*+2; (ii) *x*, *y*-1, *z*.