organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1,2,4,5-Tetraphenyl-1*H*-imidazole

Bing Zhao, Zhi-yu Li, Meng-jiao Fan, Bo Song and Qi-gang Deng*

Chemistry and Chemical Engineering Institute, Qiqihar University, Heilongjiang Oigihar 161006, People's Republic of China Correspondence e-mail: zhao_submit@yahoo.com.cn

Received 16 January 2012; accepted 25 January 2012

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.037; wR factor = 0.090; data-to-parameter ratio = 17.6

The asymmetric unit of the title compound, $C_{27}H_{20}N_2$, contains two independent molecules, A and B. In both molecules, the N atom in the 1-position and the C atom in the 5-position are statistically disordered [as 0.571 (8):0.429 (8) in A and 0.736 (9):0.264 (9) in B]. The phenyl rings in the 1-, 2-, 4- and 5-positions in A are twisted from the central imidazole ring by 84.3 (2), 21.6 (2), 21.5 (2) and 75.7 (2) $^{\circ}$, respectively. The corresponding dihedral angles in B are 85.5(2), 3.8(2), 2.4 (2) and 81.7 (2) $^{\circ}$, respectively.

Related literature

For the pharmacological properties of imidazole derivatives, see: Hori et al. (2000); Mamolo et al. (2004); Khabnadideh et al. (2003). For the crystal structure of related 2-(4-fluorophenyl)-1,4,5-triphenyl-1H-imidazole, see: Gayathri et al. (2010).

Experimental

Crystal data

β

$C_{27}H_{20}N_2$	$\gamma = 84.085 \ (6)^{\circ}$
$M_r = 372.45$	V = 1952.9 (5) Å ³
Triclinic, P1	Z = 4
a = 9.8169 (15) Å	Mo $K\alpha$ radiation
b = 9.8846 (15) Å	$\mu = 0.07 \text{ mm}^{-1}$
c = 20.601 (3) Å	T = 113 K
$\alpha = 81.133 \ (5)^{\circ}$	$0.20 \times 0.18 \times 0.10 \text{ mm}$
$\beta = 82.922 \ (6)^{\circ}$	

Data collection

Rigaku Saturn CCD area-detector
diffractometer
Absorption correction: multi-scan
(CrystalClear; Rigaku/MSC,
2005)
$T_{\min} = 0.985, \ T_{\max} = 0.993$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	
$wR(F^2) = 0.090$	
S = 0.98	
9251 reflections	

525 parameters H-atom parameters constrained

25242 measured reflections

 $R_{\rm int} = 0.037$

9251 independent reflections

6476 reflections with $I > 2\sigma(I)$

 $\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^ \Delta \rho_{\rm min} = -0.22 \text{ e } \text{\AA}^{-3}$

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXL97.

We gratefully acknowledge the support of the Science Fund for Young Scholars of Heilongjiang Province of China (grant No. QC2009C61) and the Program for Young Teachers' Scientific Research at Qiqihar University (grant No. 2010 K-M23).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: CV5236).

References

- Gayathri, P., Thiruvalluvar, A., Srinivasan, N., Jayabharathi, J. & Butcher, R. J. (2010). Acta Cryst. E66, o2519.
- Hori, K., Sakaguchi, A., Kudoh, M., Ishida, K., Aoyama, Y. & Yoshida, Y. (2000). Chem. Pharm. Bull. 48, 60-64.
- Khabnadideh, S., Rezaeia, Z., Khalafi-Nezhadb, A., Bahrinajafia, R., Mohamadia, R. & Farrokhroza, A. A. (2003). Bioorg. Med. Chem. Lett. 13 2863-2865
- Mamolo, M. G., Zampieri, D., Falagiani, V., Vio, L., Fermeglia, M., Ferrone, M., Pricl, S., Banfi, E. & Scialino, G. (2004). Arkivoc, pp. 231-250.
- Rigaku/MSC (2005). CrystalClear. Molecular Structure Corporation, The Woodlands, Texas, USA, and Rigaku Corporation, Tokyo, Japan.

supporting information

Acta Cryst. (2012). E68, o542 [doi:10.1107/S1600536812003145]

1,2,4,5-Tetraphenyl-1*H*-imidazole

Bing Zhao, Zhi-yu Li, Meng-jiao Fan, Bo Song and Qi-gang Deng

S1. Comment

Imidazole derivatives exhibit various pharmacological properties, such as antifungal (Hori *et al.*, 2000; Mamolo *et al.*, 2004) and antibacterial (Khabnadideh *et al.*, 2003) activities. The crystallographic structure of the similar imidazole compound had been reported . As the part of our research, the title compound 1,2,4,5-tetraphenyl-1*H*-imidazole was snythesized and its crystal structure was reported here.

The asymmetric unit of (I) contains two independent molecules (Fig. 1), *A* and *B*, respectively. All bond lengths and angles in (I) are normal and comparable with those observed in the related 2-(4-fluorophenyl)-1,4,5-triphenyl-1Himidazole (Gayathri *et al.*, 2010). In both independent molecules, atoms N2 (N4) (1-position) and C8 (C35) (5-position) are statistically disordered in the 0.571 (8):0.429 (8) and 0.736 (9):0.264 (9) ratios, respectively, in *A* and *B*. In *A*, the imidazole ring forms the dihedral angles of 84.3 (2), 21.6 (2), 21.5 (2) and 75.7 (2)°, respectively, with the phenyl rings in the 1-, 2-, 4- and 5-positions. The corresponding dihedral angles in *B* are 85.5 (2), 3.8 (2), 2.4 (2) and 81.7 (2)°, respectively.

S2. Experimental

The title compound was synthesized by the reaction of the benzaldehyde (1.1 g 10 mmol), aniline (1.0 g, 10 mmol), benzil (2.1 g, 10 mmol) and ammonium acetate (4.6 g, 10 mmol) in the refluxing ethanol (20 ml) for 5 days. Crystals of (I) suitable for single-crystal X-ray analysis were grown by slow evaporation of a solution in ethanol:hexane (1:1).

S3. Refinement

All H atoms were positioned geometrically and refined as riding (C—H = 0.95 Å) and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.2U_{eq}$ (parent).

Figure 1

Two independent molecules in (I) showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 60% probability level. For the disordered atoms, only major components are shown.

1,2,4,5-Tetraphenyl-1*H*-imidazole

Crystal data

 $C_{27}H_{20}N_2$ $M_r = 372.45$ Triclinic, *P*1 Hall symbol: -P 1 a = 9.8169 (15) Å b = 9.8846 (15) Å c = 20.601 (3) Å $a = 81.133 (5)^{\circ}$ $\beta = 82.922 (6)^{\circ}$ $\gamma = 84.085 (6)^{\circ}$ $V = 1952.9 (5) \text{ Å}^{3}$

Data collection

Rigaku Saturn CCD area-detector diffractometer Radiation source: rotating anode Multilayer monochromator Detector resolution: 14.22 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2005) $T_{\min} = 0.985$, $T_{\max} = 0.993$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.037$ $wR(F^2) = 0.090$ S = 0.989251 reflections Z = 4 F(000) = 784 $D_x = 1.267 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6569 reflections $\theta = 2.0-27.9^{\circ}$ $\mu = 0.07 \text{ mm}^{-1}$ T = 113 KPrism, colourless $0.20 \times 0.18 \times 0.10 \text{ mm}$

25242 measured reflections 9251 independent reflections 6476 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 27.9^{\circ}, \theta_{min} = 2.0^{\circ}$ $h = -12 \rightarrow 12$ $k = -12 \rightarrow 12$ $l = -27 \rightarrow 27$

525 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.0436P)^2]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} = 0.001$
	$\Delta \rho_{\rm max} = 0.18 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.22 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
N1	0.80635 (8)	1.15360 (8)	0.43441 (4)	0.02077 (19)	
N2	0.75974 (9)	0.95723 (9)	0.49889 (4)	0.0200 (2)	0.571 (8)
C8	0.82664 (9)	0.92421 (9)	0.43964 (5)	0.0209 (2)	0.571 (8)
C8′	0.75974 (9)	0.95723 (9)	0.49889 (4)	0.0200 (2)	0.429 (8)
N2′	0.82664 (9)	0.92421 (9)	0.43964 (5)	0.0209 (2)	0.429 (8)
N3	0.29316 (8)	0.79598 (8)	0.00575 (4)	0.02204 (19)	
N4	0.46590 (9)	0.70682 (9)	0.06380 (4)	0.0209 (2)	0.736 (9)
C35	0.52319 (10)	0.74836 (10)	-0.00029 (5)	0.0218 (2)	0.736 (9)
C35′	0.46590 (9)	0.70682 (9)	0.06380 (4)	0.0209 (2)	0.264 (9)
N4′	0.52319 (10)	0.74836 (10)	-0.00029 (5)	0.0218 (2)	0.264 (9)
C1	0.90696 (11)	1.20407 (11)	0.29765 (5)	0.0254 (2)	
H1	0.8430	1.2712	0.3155	0.030*	
C2	0.98019 (11)	1.23762 (12)	0.23614 (5)	0.0294 (3)	
H2	0.9666	1.3273	0.2123	0.035*	
C3	1.07316 (11)	1.14009 (12)	0.20948 (5)	0.0304 (3)	
H3	1.1244	1.1632	0.1677	0.036*	
C4	1.09098 (11)	1.00934 (12)	0.24388 (5)	0.0298 (3)	
H4	1.1533	0.9420	0.2252	0.036*	
C5	1.01853 (11)	0.97552 (11)	0.30548 (5)	0.0265 (2)	
H5	1.0320	0.8852	0.3287	0.032*	
C6	0.92601 (10)	1.07277 (11)	0.33370 (5)	0.0218 (2)	
C7	0.85347 (10)	1.04719 (10)	0.40096 (5)	0.0204 (2)	
C9	0.84989 (10)	0.78221 (10)	0.42550 (5)	0.0203 (2)	
C10	0.97511 (10)	0.70703 (11)	0.43514 (5)	0.0257 (2)	
H10	1.0459	0.7479	0.4507	0.031*	
C11	0.99713 (11)	0.57255 (11)	0.42216 (5)	0.0278 (2)	
H11	1.0835	0.5219	0.4281	0.033*	
C12	0.89327 (11)	0.51213 (11)	0.40059 (5)	0.0274 (2)	
H12	0.9079	0.4198	0.3919	0.033*	
C13	0.76796 (11)	0.58662 (11)	0.39168 (5)	0.0269 (2)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

H13	0.6966	0.5447	0.3771	0.032*
C14	0.74547 (10)	0.72159 (11)	0.40371 (5)	0.0238 (2)
H14	0.6595	0.7723	0.3971	0.029*
C15	0.71475 (10)	0.85723 (10)	0.55535 (5)	0.0210 (2)
C16	0.57519 (11)	0.84139 (11)	0.57171 (5)	0.0271 (2)
H16	0.5102	0.8869	0.5434	0.033*
C17	0.53132 (12)	0.75874 (12)	0.62969 (6)	0.0316 (3)
H17	0.4360	0.7476	0.6411	0.038*
C18	0.62606 (12)	0.69239 (11)	0.67099 (6)	0.0309 (3)
H18	0.5956	0.6381	0.7113	0.037*
C19	0.76538 (12)	0.70531 (11)	0.65341 (5)	0.0297(3)
H19	0.8305	0.6579	0.6812	0.036*
C20	0.81003 (11)	0.78701 (11)	0.59547(5)	0.0256(2)
H20	0.9057	0.7949	0.5833	0.031*
C21	0.74965 (10)	1 09806 (10)	0.3033 0.49433(5)	0.031
C21	0.74905(10)	1.09800(10) 1.18380(10)	0.47433(5)	0.0177(2)
C22	0.09101(10)	1.10500(10) 1.12592(11)	0.54552(5)	0.0202(2)
C25	0.07809 (10)	1.15562 (11)	0.61297 (3)	0.0238 (2)
H23	0.7023	1.0410	0.0282	0.029°
0.24	0.63125 (11)	1.22518 (11)	0.03807 (5)	0.0274(2)
H24	0.6218	1.1914	0.7040	0.033*
C25	0.59/58 (11)	1.36258 (11)	0.63/04 (5)	0.0264 (2)
H25	0.5658	1.4232	0.6683	0.032*
C26	0.61036 (11)	1.41183 (11)	0.56999 (5)	0.0273 (2)
H26	0.5879	1.5065	0.5552	0.033*
C27	0.65588 (10)	1.32298 (10)	0.52461 (5)	0.0241 (2)
H27	0.6630	1.3570	0.4787	0.029*
C28	0.28857 (10)	0.91492 (10)	-0.12890 (5)	0.0235 (2)
H28	0.2066	0.9158	-0.0991	0.028*
C29	0.28205 (11)	0.96577 (11)	-0.19530 (5)	0.0259 (2)
H29	0.1959	0.9999	-0.2106	0.031*
C30	0.40074 (11)	0.96670 (11)	-0.23907 (5)	0.0266 (2)
H30	0.3965	1.0010	-0.2845	0.032*
C31	0.52586 (11)	0.91717 (11)	-0.21611 (5)	0.0267 (2)
H31	0.6078	0.9189	-0.2459	0.032*
C32	0.53262 (11)	0.86525 (11)	-0.15014 (5)	0.0255 (2)
H32	0.6191	0.8310	-0.1352	0.031*
C33	0.41349 (10)	0.86257 (10)	-0.10519(5)	0.0207(2)
C34	0.41416 (10)	0.80371 (10)	-0.03502(5)	0.0207(2)
C36	0 67340 (10)	0 73485 (10)	-0.01793(5)	0.0220(2)
C37	0.75036 (11)	0.84435(11)	-0.01528(5)	0.0220(2) 0.0274(2)
H37	0 7060	0.9285	-0.0035	0.033*
C38	0.89264(12)	0.9203 0.82932(12)	-0.03002(5)	0.035
H38	0.09204 (12)	0.02/32 (12)	-0.0284	0.0323 (3)
C30	0.05873 (11)	0.70780 (12)	-0.04680 (5)	0.037(3)
U37 U20	1 0557	0.70700 (13)	-0.0560	0.0337(3)
пэ э С40	1.0337	0.0702	0.0500	0.040°
	0.00203 (12)	0.39939 (12)	-0.05049 (6)	0.0343 (3)
H4U	0.9268	0.5101	-0.0629	0.041*
C41	0.74000 (11)	0.61332 (11)	-0.03586 (6)	0.0293 (3)

H41	0.6878	0.5387	-0.0381	0.035*
C42	0.54497 (10)	0.64411 (10)	0.11728 (5)	0.0213 (2)
C43	0.58342 (11)	0.50406 (11)	0.12473 (5)	0.0284 (2)
H43	0.5627	0.4502	0.0934	0.034*
C44	0.65214 (12)	0.44297 (11)	0.17803 (5)	0.0308 (3)
H44	0.6788	0.3471	0.1834	0.037*
C45	0.68173 (11)	0.52238 (11)	0.22345 (5)	0.0275 (2)
H45	0.7280	0.4806	0.2603	0.033*
C46	0.64419 (10)	0.66234 (11)	0.21547 (5)	0.0259 (2)
H46	0.6648	0.7162	0.2469	0.031*
C47	0.57684 (10)	0.72411 (11)	0.16203 (5)	0.0236 (2)
H47	0.5527	0.8204	0.1560	0.028*
C48	0.32554 (10)	0.73797 (10)	0.06543 (5)	0.0214 (2)
C49	0.21973 (10)	0.71348 (10)	0.12231 (5)	0.0224 (2)
C50	0.24418 (11)	0.64767 (11)	0.18527 (5)	0.0300 (3)
H50	0.3354	0.6141	0.1938	0.036*
C51	0.13686 (11)	0.63061 (12)	0.23557 (6)	0.0322 (3)
H51	0.1557	0.5873	0.2784	0.039*
C52	0.00356 (12)	0.67575 (12)	0.22413 (5)	0.0318 (3)
H52	-0.0697	0.6629	0.2586	0.038*
C53	-0.02245 (12)	0.74022 (13)	0.16166 (6)	0.0355 (3)
H53	-0.1142	0.7713	0.1531	0.043*
C54	0.08427 (11)	0.75956 (12)	0.11180 (5)	0.0304 (3)
H54	0.0649	0.8052	0.0695	0.037*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
N1	0.0220 (4)	0.0206 (5)	0.0197 (4)	-0.0017 (3)	-0.0024 (3)	-0.0027 (4)
N2	0.0189 (5)	0.0193 (5)	0.0218 (5)	-0.0015 (4)	-0.0022 (4)	-0.0030 (4)
C8	0.0201 (5)	0.0198 (5)	0.0230 (5)	-0.0011 (4)	-0.0028 (4)	-0.0035 (4)
C8′	0.0189 (5)	0.0193 (5)	0.0218 (5)	-0.0015 (4)	-0.0022 (4)	-0.0030 (4)
N2′	0.0201 (5)	0.0198 (5)	0.0230 (5)	-0.0011 (4)	-0.0028 (4)	-0.0035 (4)
N3	0.0240 (5)	0.0212 (5)	0.0203 (4)	0.0004 (4)	-0.0027 (4)	-0.0024 (4)
N4	0.0224 (5)	0.0193 (5)	0.0208 (5)	0.0005 (4)	-0.0037 (4)	-0.0029 (4)
C35	0.0237 (5)	0.0201 (5)	0.0218 (5)	0.0006 (4)	-0.0037 (4)	-0.0042 (4)
C35′	0.0224 (5)	0.0193 (5)	0.0208 (5)	0.0005 (4)	-0.0037 (4)	-0.0029 (4)
N4′	0.0237 (5)	0.0201 (5)	0.0218 (5)	0.0006 (4)	-0.0037 (4)	-0.0042 (4)
C1	0.0253 (6)	0.0275 (6)	0.0231 (5)	0.0008 (4)	-0.0038 (4)	-0.0038 (4)
C2	0.0293 (6)	0.0335 (6)	0.0239 (6)	-0.0019 (5)	-0.0049 (5)	0.0016 (5)
C3	0.0255 (6)	0.0440 (7)	0.0210 (5)	-0.0031 (5)	-0.0027 (5)	-0.0022 (5)
C4	0.0241 (6)	0.0383 (7)	0.0270 (6)	0.0024 (5)	-0.0013 (5)	-0.0093 (5)
C5	0.0258 (6)	0.0273 (6)	0.0263 (6)	0.0000 (5)	-0.0037 (5)	-0.0050 (5)
C6	0.0206 (5)	0.0252 (6)	0.0208 (5)	-0.0030 (4)	-0.0046 (4)	-0.0049 (4)
C7	0.0193 (5)	0.0200 (5)	0.0226 (5)	-0.0020 (4)	-0.0042 (4)	-0.0033 (4)
C9	0.0222 (5)	0.0200 (5)	0.0177 (5)	-0.0023 (4)	-0.0003 (4)	-0.0007 (4)
C10	0.0218 (5)	0.0234 (6)	0.0314 (6)	-0.0032 (4)	-0.0041 (4)	-0.0011 (5)
C11	0.0253 (6)	0.0245 (6)	0.0307 (6)	0.0034 (5)	-0.0011 (5)	-0.0001 (5)
C9 C10 C11	0.0222 (5) 0.0218 (5) 0.0253 (6)	0.0200 (5) 0.0234 (6) 0.0245 (6)	0.0177 (5) 0.0314 (6) 0.0307 (6)	$\begin{array}{c} -0.0023 \ (4) \\ -0.0032 \ (4) \\ 0.0034 \ (5) \end{array}$	-0.0003 (4) -0.0041 (4) -0.0011 (5)	-0.0 -0.0 -0.0

~						
C12	0.0360 (6)	0.0213 (6)	0.0242 (6)	-0.0015 (5)	0.0014 (5)	-0.0053 (5)
C13	0.0292 (6)	0.0292 (6)	0.0243 (6)	-0.0068 (5)	-0.0033 (5)	-0.0072 (5)
C14	0.0219 (5)	0.0278 (6)	0.0216 (5)	-0.0009(4)	-0.0028 (4)	-0.0037 (4)
C15	0.0228 (5)	0.0190 (5)	0.0225 (5)	-0.0023(4)	-0.0013 (4)	-0.0072 (4)
C16	0.0236 (6)	0.0259 (6)	0.0331 (6)	-0.0023(5)	-0.0040(5)	-0.0074 (5)
C17	0.0268 (6)	0.0316 (6)	0.0370 (7)	-0.0084 (5)	0.0050 (5)	-0.0098 (5)
C18	0.0425 (7)	0.0226 (6)	0.0276 (6)	-0.0071 (5)	0.0033 (5)	-0.0067 (5)
C19	0.0367 (7)	0.0235 (6)	0.0297 (6)	-0.0001 (5)	-0.0087 (5)	-0.0045 (5)
C20	0.0227 (6)	0.0244 (6)	0.0304 (6)	-0.0009 (4)	-0.0030 (5)	-0.0070 (5)
C21	0.0179 (5)	0.0193 (5)	0.0222 (5)	-0.0014 (4)	-0.0044 (4)	-0.0026 (4)
C22	0.0167 (5)	0.0215 (5)	0.0228 (5)	-0.0033 (4)	-0.0018 (4)	-0.0035 (4)
C23	0.0271 (6)	0.0211 (5)	0.0229 (5)	-0.0028 (4)	-0.0044 (4)	-0.0006 (4)
C24	0.0341 (6)	0.0281 (6)	0.0201 (5)	-0.0055 (5)	-0.0013 (5)	-0.0034 (5)
C25	0.0269 (6)	0.0259 (6)	0.0274 (6)	-0.0030 (5)	0.0016 (5)	-0.0100 (5)
C26	0.0290 (6)	0.0209 (6)	0.0308 (6)	0.0012 (5)	-0.0002 (5)	-0.0044 (5)
C27	0.0264 (6)	0.0220 (6)	0.0223 (5)	-0.0003 (4)	-0.0004 (4)	-0.0011 (4)
C28	0.0223 (5)	0.0244 (6)	0.0233 (5)	-0.0016 (4)	-0.0013 (4)	-0.0030 (4)
C29	0.0275 (6)	0.0246 (6)	0.0264 (6)	-0.0010 (4)	-0.0078 (5)	-0.0029 (5)
C30	0.0360 (6)	0.0251 (6)	0.0189 (5)	-0.0039(5)	-0.0046 (5)	-0.0022 (4)
C31	0.0279 (6)	0.0285 (6)	0.0231 (5)	-0.0027(5)	0.0025 (4)	-0.0055 (5)
C32	0.0240 (6)	0.0271 (6)	0.0250 (5)	0.0012 (4)	-0.0025 (4)	-0.0051 (5)
C33	0.0244 (5)	0.0178 (5)	0.0204 (5)	-0.0014 (4)	-0.0031 (4)	-0.0043 (4)
C34	0.0217 (5)	0.0181 (5)	0.0230 (5)	0.0006 (4)	-0.0026 (4)	-0.0059 (4)
C36	0.0246 (5)	0.0236 (6)	0.0177 (5)	0.0001 (4)	-0.0053 (4)	-0.0014 (4)
C37	0.0347 (6)	0.0267 (6)	0.0216 (5)	-0.0040 (5)	-0.0042 (5)	-0.0038(5)
C38	0.0334 (6)	0.0393 (7)	0.0262 (6)	-0.0141 (5)	-0.0060(5)	0.0003 (5)
C39	0.0239 (6)	0.0457 (8)	0.0280 (6)	-0.0015 (5)	-0.0028(5)	0.0048 (5)
C40	0.0301 (6)	0.0326 (7)	0.0372 (7)	0.0057 (5)	-0.0022(5)	-0.0025(5)
C41	0.0268 (6)	0.0249 (6)	0.0358 (6)	-0.0008(5)	-0.0036(5)	-0.0044(5)
C42	0.0197 (5)	0.0227 (5)	0.0209 (5)	-0.0005 (4)	-0.0021(4)	-0.0026(4)
C43	0.0359 (6)	0.0235 (6)	0.0277 (6)	-0.0002(5)	-0.0084(5)	-0.0074(5)
C44	0.0383 (7)	0.0215 (6)	0.0320 (6)	0.0037 (5)	-0.0088(5)	-0.0021(5)
C45	0.0286 (6)	0.0299 (6)	0.0229 (5)	0.0002 (5)	-0.0056(5)	0.0001 (5)
C46	0.0269 (6)	0.0293 (6)	0.0227(5)	-0.0033(5)	-0.0032(4)	-0.0071(5)
C47	0.0252(6)	0.0218(5)	0.0227(5)	-0.0008(4)	-0.0011(4)	-0.0045(4)
C48	0.0222(0) 0.0227(5)	0.0210(5) 0.0193(5)	0.0223(5)	0.0008(4)	-0.0045(4)	-0.0041(4)
C49	0.0227(6)	0.0203(5)	0.0219(5)	-0.0020(4)	-0.0022(4)	-0.0039(4)
C50	0.0262.(6)	0.0331 (6)	0.0279(6)	-0.0009(5)	-0.0035(5)	0.0039(5)
C51	0.0202(0) 0.0341(7)	0.0344(7)	0.0254 (6)	-0.0049(5)	-0.0023(5)	0.0037(5)
C52	0.0291 (6)	0.0377(7)	0.0254 (6)	-0.0048(5)	0.0025(5)	-0.0016(5)
C53	0.0291(0)	0.0372(7)	0.0304 (6)	0.0040(3)	-0.0016(5)	-0.0025(6)
C54	0.0277(0)	0.0791(0) 0.0396(7)	0.0307(0)	0.0021(5)	-0.0041(5)	-0.0015(5)
0.54	0.0279(0)	0.0390 (7)	0.0221 (3)	0.0022 (3)	0.0041 (3)	0.0015 (5)

Geometric parameters (Å, °)

N1—C21	1.3490 (12)	C24—C25	1.3794 (15)
N1—C7	1.3563 (13)	C24—H24	0.9500
N2—C21	1.3748 (13)	C25—C26	1.3870 (15)

N2—C8	1.3815 (12)	C25—H25	0.9500
N2—C15	1.4607 (13)	C26—C27	1.3836 (14)
C8—C7	1.3775 (13)	С26—Н26	0.9500
C8—C9	1.4666 (13)	C27—H27	0.9500
N3—C48	1.3353 (12)	C28—C29	1.3895 (14)
N3—C34	1.3694 (13)	C28—C33	1.3961 (14)
N4—C48	1.3779 (13)	C28—H28	0.9500
N4—C35	1.3875 (12)	C29—C30	1.3826 (15)
N4—C42	1 4498 (13)	C29—H29	0.9500
C35—C34	1.3800 (13)	C30—C31	1.3857 (15)
C35—C36	1 4719 (14)	C30—H30	0.9500
C1-C2	1 3883 (14)	$C_{31} - C_{32}$	1 3839 (14)
C1 - C6	1 3992 (14)	C31_H31	0.9500
C1—H1	0.9500	C_{32} C_{33}	1 3993 (14)
$C^2 - C^3$	1 3865 (15)	C32_H32	0.9500
C2H2	0.9500	C_{32} C_{34}	1,4732(14)
$C_2 = C_1$	1 3802 (15)	$C_{35} = C_{34}$	1.7752(14)
C3 H3	0.9500	C_{36} C_{37}	1.3000(14) 1.3036(14)
C_3 — H_5	1 3860 (15)	$C_{30} = C_{37}$	1.3930(14) 1.3800(15)
C4 = C3	0.0500	C_{27} H_{27}	1.3899 (13)
C_{4}	1.3062(14)	C_{3}^{28} C_{30}^{20}	0.9500
C5_U5	0.0500	$C_{20} = U_{20}$	0.0500
C5—H5	0.9300	C30 C40	0.9300
$C_0 = C_1$	1.4730(14) 1.2800(14)	C_{20} U_{20}	1.3828 (10)
C_{9} C_{10}	1.3890(14) 1.2007(14)	C40 C41	0.9500
C9—C14	1.3907 (14)	C40 - C41	1.3868 (15)
	1.3861 (14)	C40—H40	0.9500
	0.9500	C41—H41	0.9500
C11—C12	1.3830 (15)	C42 - C47	1.3856 (14)
	0.9500	C42—C43	1.3869 (14)
C12—C13	1.3844 (15)	C43—C44	1.3854 (15)
С12—Н12	0.9500	C43—H43	0.9500
C13—C14	1.3848 (14)	C44—C45	1.3845 (15)
С13—Н13	0.9500	C44—H44	0.9500
C14—H14	0.9500	C45—C46	1.3844 (15)
C15—C20	1.3856 (14)	C45—H45	0.9500
C15—C16	1.3890 (14)	C46—C47	1.3823 (14)
C16—C17	1.3872 (15)	C46—H46	0.9500
C16—H16	0.9500	C47—H47	0.9500
C17—C18	1.3843 (16)	C48—C49	1.4748 (14)
C17—H17	0.9500	C49—C54	1.3922 (14)
C18—C19	1.3848 (15)	C49—C50	1.3956 (14)
C18—H18	0.9500	C50—C51	1.3878 (14)
C19—C20	1.3841 (15)	С50—Н50	0.9500
С19—Н19	0.9500	C51—C52	1.3749 (15)
С20—Н20	0.9500	C51—H51	0.9500
C21—C22	1.4744 (14)	C52—C53	1.3865 (15)
C22—C23	1.3959 (14)	С52—Н52	0.9500
C22—C27	1.3979 (14)	C53—C54	1.3801 (15)

C23—C24	1.3863 (14)	С53—Н53	0.9500
С23—Н23	0.9500	С54—Н54	0.9500
C21—N1—C7	106.53 (8)	C26—C25—H25	120.2
C21—N2—C8	107.05 (8)	C27—C26—C25	119.92 (10)
C21—N2—C15	128.13 (8)	С27—С26—Н26	120.0
C8—N2—C15	124.78 (8)	С25—С26—Н26	120.0
C7—C8—N2	106.16 (8)	C26—C27—C22	120.95 (10)
C7—C8—C9	131.46 (9)	С26—С27—Н27	119.5
N2—C8—C9	122.27 (8)	С22—С27—Н27	119.5
C48—N3—C34	106.87 (8)	C29—C28—C33	121.15 (10)
C48—N4—C35	107.27 (8)	C29—C28—H28	119.4
C48—N4—C42	128.57 (9)	С33—С28—Н28	119.4
C35—N4—C42	124.16 (8)	C30—C29—C28	120.08 (10)
C34—C35—N4	105.81 (9)	С30—С29—Н29	120.0
C34—C35—C36	133.24 (9)	С28—С29—Н29	120.0
N4—C35—C36	120.88 (9)	C29—C30—C31	119.47 (10)
C2-C1-C6	120.93 (10)	С29—С30—Н30	120.3
C2-C1-H1	119.5	C31—C30—H30	120.3
C6-C1-H1	119.5	$C_{32} - C_{31} - C_{30}$	120.62(10)
$C_3 - C_2 - C_1$	119.96 (11)	C32—C31—H31	119 7
$C_3 - C_2 - H_2$	120.0	C_{30} C_{31} H_{31}	119.7
C1 - C2 - H2	120.0	$C_{31} - C_{32} - C_{33}$	120.72(10)
C4-C3-C2	119 75 (10)	$C_{31} = C_{32} = H_{32}$	119.6
C4-C3-H3	120.1	C_{33} C_{32} H_{32}	119.6
$C_2 - C_3 - H_3$	120.1	C_{28} C_{33} C_{32}	117.94 (10)
$C_{2} = C_{3} = C_{4} = C_{5}$	120.1	$C_{28} = C_{33} = C_{34}$	119.13 (9)
$C_3 - C_4 - H_4$	110 7	$C_{20} = C_{30} = C_{34}$	122 91 (9)
C5-C4-H4	119.7	N_{3} C_{34} C_{35}	122.91(9) 109.90(9)
C4-C5-C6	120.68 (10)	N3_C34_C33	109.90(9) 120.32(9)
C4-C5-H5	110 7	C_{35} C_{34} C_{33}	120.32(9) 129.77(9)
С4—С5—Н5	119.7	$C_{33} = C_{34} = C_{35}$	129.77(9) 119.41(10)
C_{5} C_{6} C_{1}	119.7	$C_{41} = C_{30} = C_{37}$	119.41(10) 120.82(0)
$C_{5} = C_{6} = C_{1}$	123.56(10)	$C_{11} = C_{30} = C_{35}$	120.02(9)
$C_{1} = C_{0} = C_{1}$	123.30(10) 118.18(0)	C_{3}^{3} C_{3}^{27} C_{3}^{26}	119.70(9) 110.42(10)
C1 = C0 = C7	110.10(9) 110.23(0)	$C_{38} = C_{37} = C_{30}$	119.42 (10)
N1 = C7 = C6	110.25(9) 120.35(0)	$C_{36} = C_{37} = H_{37}$	120.3
$R_{1} = C_{1} = C_{0}$	120.33(9) 120.38(0)	$C_{30} = C_{37} = C_{37}$	120.3 120.87(10)
$C_{0} = C_{0} = C_{0}$	129.36(9) 110.85(10)	C_{3}^{20} C_{3}^{20} C_{3}^{20} C_{3}^{20} C_{3}^{20} C_{3}^{20}	120.87 (10)
$C_{10} = C_{9} = C_{14}$	119.03(10) 120.13(0)	$C_{39} = C_{30} = H_{30}$	119.0
$C_{10} - C_{9} - C_{8}$	120.13(9)	$C_{3}^{2} = C_{3}^{2} = C_{4}^{2}$	119.0
$C_{14} - C_{9} - C_{8}$	120.02(9) 120.27(10)	$C_{30} = C_{30} = C_{40}$	119.00 (11)
$C_{11} = C_{10} = C_{9}$	120.27 (10)	C40 C20 H20	120.1
C11 - C10 - H10	119.9	C20 C40 C41	120.1
$C_{12} = C_{11} = C_{10}$	119.9	$C_{29} = C_{40} = U_{40}$	119.78 (11)
	119.91 (10)	C_{39} C_{40} H_{40} H_{40}	120.1
C12—C11—H11	120.0	C41 - C40 - H40	120.1
C10—C11—H11	120.0	C36-C41-C40	120.64 (10)
C11—C12—C13	119.79 (10)	C36—C41—H41	119.7

C11—C12—H12	120.1	C40—C41—H41	119.7
C13—C12—H12	120.1	C47—C42—C43	120.60 (10)
C12—C13—C14	120.75 (10)	C47—C42—N4	119.48 (9)
C12—C13—H13	119.6	C43—C42—N4	119.88 (9)
C14—C13—H13	119.6	C44—C43—C42	119.79 (9)
C13—C14—C9	119.42 (10)	C44—C43—H43	120.1
C13—C14—H14	120.3	C42—C43—H43	120.1
C9—C14—H14	120.3	C45—C44—C43	119.65 (10)
C20—C15—C16	120.19 (10)	C45—C44—H44	120.2
C20—C15—N2	119.91 (9)	C43—C44—H44	120.2
C16—C15—N2	119.68 (9)	C46—C45—C44	120.33 (10)
C17—C16—C15	119.61 (10)	C46—C45—H45	119.8
С17—С16—Н16	120.2	C44—C45—H45	119.8
С15—С16—Н16	120.2	C47—C46—C45	120.29 (10)
C18—C17—C16	120.21 (10)	C47—C46—H46	119.9
С18—С17—Н17	119.9	C45—C46—H46	119.9
C16—C17—H17	119.9	C46-C47-C42	119.33 (10)
C17 - C18 - C19	119.88 (11)	C46—C47—H47	120.3
C17—C18—H18	120.1	C42—C47—H47	120.3
C19—C18—H18	120.1	N3-C48-N4	110.15 (9)
C20-C19-C18	120.24 (11)	N3—C48—C49	121.94 (9)
С20—С19—Н19	119.9	N4—C48—C49	127.91 (9)
С18—С19—Н19	119.9	C54—C49—C50	117.67 (10)
C19—C20—C15	119.79 (10)	C54—C49—C48	116.86 (9)
С19—С20—Н20	120.1	C50—C49—C48	125.47 (10)
С15—С20—Н20	120.1	C51—C50—C49	120.81 (10)
N1-C21-N2	110.03 (8)	С51—С50—Н50	119.6
N1—C21—C22	121.72 (9)	С49—С50—Н50	119.6
N2—C21—C22	128.22 (9)	C52—C51—C50	120.71 (11)
C23—C22—C27	118.47 (9)	С52—С51—Н51	119.6
C23—C22—C21	123.71 (9)	С50—С51—Н51	119.6
C27—C22—C21	117.69 (9)	C51—C52—C53	119.11 (10)
C24—C23—C22	120.21 (10)	С51—С52—Н52	120.4
С24—С23—Н23	119.9	С53—С52—Н52	120.4
С22—С23—Н23	119.9	C54—C53—C52	120.37 (11)
C25—C24—C23	120.77 (10)	С54—С53—Н53	119.8
C25—C24—H24	119.6	С52—С53—Н53	119.8
C23—C24—H24	119.6	C53—C54—C49	121.32 (10)
C24—C25—C26	119.67 (10)	С53—С54—Н54	119.3
С24—С25—Н25	120.2	С49—С54—Н54	119.3
C21—N2—C8—C7	-0.59 (11)	C24—C25—C26—C27	0.41 (16)
C15—N2—C8—C7	-178.50 (9)	C25—C26—C27—C22	-1.04 (16)
C21—N2—C8—C9	-177.05 (8)	C23—C22—C27—C26	0.80 (15)
C15—N2—C8—C9	5.04 (14)	C21—C22—C27—C26	-175.23 (9)
C48—N4—C35—C34	0.15 (10)	C33—C28—C29—C30	-0.78 (15)
C42—N4—C35—C34	-179.23 (8)	C28—C29—C30—C31	-0.29 (15)
C48—N4—C35—C36	177.31 (9)	C29—C30—C31—C32	0.90 (16)

C42—N4—C35—C36	-2.07 (14)	C30—C31—C32—C33	-0.46 (16)
C6-C1-C2-C3	0.37 (16)	C29—C28—C33—C32	1.20 (15)
C1—C2—C3—C4	0.93 (16)	C29—C28—C33—C34	-177.08 (9)
C2—C3—C4—C5	-1.23 (16)	C31—C32—C33—C28	-0.58 (15)
C3—C4—C5—C6	0.23 (16)	C31—C32—C33—C34	177.62 (9)
C4—C5—C6—C1	1.04 (15)	C48—N3—C34—C35	0.63 (11)
C4—C5—C6—C7	-175.23 (10)	C48—N3—C34—C33	179.57 (8)
C2—C1—C6—C5	-1.34 (15)	N4—C35—C34—N3	-0.48 (11)
C2—C1—C6—C7	175.14 (9)	C36—C35—C34—N3	-177.14 (10)
C21—N1—C7—C8	0.01 (11)	N4—C35—C34—C33	-179.29 (9)
C21—N1—C7—C6	-178.04 (9)	C36—C35—C34—C33	4.06 (18)
N2-C8-C7-N1	0.36 (11)	C28—C33—C34—N3	2.37 (14)
C9—C8—C7—N1	176.37 (10)	C32—C33—C34—N3	-175.81 (9)
N2—C8—C7—C6	178.19 (10)	C28—C33—C34—C35	-178.93 (10)
C9—C8—C7—C6	-5.80 (18)	C32—C33—C34—C35	2.88 (16)
C5-C6-C7-N1	156.07 (9)	C34—C35—C36—C41	-97.65 (14)
C1—C6—C7—N1	-20.20 (14)	N4—C35—C36—C41	86.10 (12)
C5—C6—C7—C8	-21.57 (16)	C34—C35—C36—C37	83.72 (14)
C1—C6—C7—C8	162.16 (10)	N4—C35—C36—C37	-92.53 (12)
C7—C8—C9—C10	87.87 (14)	C41—C36—C37—C38	-0.65 (15)
N2—C8—C9—C10	-96.66 (12)	C35—C36—C37—C38	178.00 (9)
C7—C8—C9—C14	-93.46 (13)	C36—C37—C38—C39	-0.25 (16)
N2—C8—C9—C14	82.00 (12)	C37—C38—C39—C40	1.19 (17)
C14—C9—C10—C11	0.98 (15)	C38—C39—C40—C41	-1.21 (17)
C8—C9—C10—C11	179.65 (9)	C37—C36—C41—C40	0.62 (16)
C9—C10—C11—C12	-1.08 (16)	C35—C36—C41—C40	-178.02 (10)
C10-C11-C12-C13	0.38 (16)	C39—C40—C41—C36	0.31 (17)
C11—C12—C13—C14	0.43 (16)	C48—N4—C42—C47	-80.28 (13)
C12—C13—C14—C9	-0.53 (15)	C35—N4—C42—C47	98.96 (11)
C10-C9-C14-C13	-0.17 (15)	C48—N4—C42—C43	97.24 (12)
C8—C9—C14—C13	-178.84 (9)	C35—N4—C42—C43	-83.52 (12)
C21—N2—C15—C20	-100.75 (12)	C47—C42—C43—C44	1.16 (16)
C8—N2—C15—C20	76.71 (12)	N4—C42—C43—C44	-176.33 (9)
C21—N2—C15—C16	73.93 (13)	C42—C43—C44—C45	0.07 (17)
C8—N2—C15—C16	-108.61 (11)	C43—C44—C45—C46	-0.63 (16)
C20-C15-C16-C17	2.31 (15)	C44—C45—C46—C47	-0.03 (16)
N2-C15-C16-C17	-172.35 (9)	C45—C46—C47—C42	1.24 (15)
C15—C16—C17—C18	-0.01 (15)	C43—C42—C47—C46	-1.81 (15)
C16—C17—C18—C19	-1.93 (16)	N4—C42—C47—C46	175.69 (9)
C17—C18—C19—C20	1.59 (16)	C34—N3—C48—N4	-0.53 (11)
C18—C19—C20—C15	0.70 (15)	C34—N3—C48—C49	179.85 (9)
C16—C15—C20—C19	-2.65 (15)	C35—N4—C48—N3	0.24 (11)
N2-C15-C20-C19	172.00 (9)	C42—N4—C48—N3	179.58 (9)
C7—N1—C21—N2	-0.39 (11)	C35—N4—C48—C49	179.83 (9)
C7—N1—C21—C22	177.82 (9)	C42—N4—C48—C49	-0.83 (16)
C8—N2—C21—N1	0.62 (11)	N3-C48-C49-C54	-2.92 (14)
C15—N2—C21—N1	178.44 (9)	N4—C48—C49—C54	177.54 (10)
C8—N2—C21—C22	-177.45 (9)	N3—C48—C49—C50	176.73 (10)

C15—N2—C21—C22 N1—C21—C22—C23 N2—C21—C22—C23 N1—C21—C22—C27 N2—C21—C22—C27 C27—C22—C23—C24 C21—C22—C23—C24	0.37 (16) -155.58 (10) 22.29 (16) 20.22 (14) -161.91 (10) 0.07 (15) 175.83 (9) 0.60 (16)	N4—C48—C49—C50 C54—C49—C50—C51 C48—C49—C50—C51 C49—C50—C51—C52 C50—C51—C52—C53 C51—C52—C53—C54 C52—C53—C54—C49	-2.81 (17) -0.73 (16) 179.62 (10) 1.32 (17) -0.72 (17) -0.42 (17) 1.01 (17)
C21—C22—C23—C24	175.83 (9)	C52—C53—C54—C49	1.01 (17)
C22—C23—C24—C25	-0.69 (16)	C50—C49—C54—C53	-0.42 (16)
C23—C24—C25—C26	0.45 (16)	C48—C49—C54—C53	179.26 (10)