metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[[lead(II)-bis(μ_2 -quinolin-8-olato)- $\kappa^3 N$,O:O; $\kappa^3 O$:N,O] N,N-dimethylformamide hemisolvate]

Akbar Ghaemi,^a‡ Zohreh Dadkhah,^a Seik Weng Ng^b and Edward R. T. Tiekink^c*

^aDepartment of Chemistry, Saveh Branch, Islamic Azad University, Saveh, Iran, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and Chemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203, Jeddah, Saudi Arabia, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia

Correspondence e-mail: edward.tiekink@gmail.com

Received 21 January 2012; accepted 23 January 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.006 Å; disorder in solvent or counterion; R factor = 0.021; wR factor = 0.049; data-to-parameter ratio = 14.2.

The asymmetric unit of the title compound, $\{[Pb(C_9H_6NO)_2]\cdot 0.5C_3H_7NO\}_n$, comprises Pb(quinolate)₂ and half a dimethylformamide molecule (which is disordered about a centre of inversion). The quinolate ligands *N*,*O*-chelate to a Pb^{II} ion and simultaneously bridge a neighbouring Pb^{II} ion to form a polymeric chain along [100] comprising Pb-linked Pb₂O₂ distorted rhombi. These chains pack to form a square grid, with the channels thus defined occupied by the disordered solvent molecules.

Related literature

For a recent Pb^{II} mixed quinolate carboxylate structure, see: Ghaemi *et al.* (2012). For the structure of the solvent-free Pb^{II} quinolate, see: Zhu *et al.* (2005).

‡ Additional correspondence author, e-mail: akbarghaemi@yahoo.com.

Experimental

Crystal data

[Pb(C₉H₆NO)₂]-0.5C₃H₇NO $M_r = 532.04$ Triclinic, *P*I a = 8.1841 (2) Å b = 9.6606 (3) Å c = 10.8619 (3) Å $\alpha = 96.683$ (3)° $\beta = 98.277$ (2)°

Data collection

Agilent SuperNova Dual diffractometer with Atlas detector Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2010) $T_{\rm min} = 0.152, T_{\rm max} = 0.689$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.049$ S = 1.013866 reflections 272 parameters

Table 1

Selected bond lengths (Å).

Pb-O2	2.408 (2)) P	b-N1		2.566 (3)
Pb-O1	2.468 (2)) P	$b - O1^i$		2.618 (2)
Pb-N2	2.470 (3) P	$b - O2^{ii}$		2.812 (2)
Summer and and (i)	 	1. (::)		 - 1 1	

 $\gamma = 94.225 \ (3)^{\circ}$

Z = 2

V = 840.48 (4) Å³

Mo $K\alpha$ radiation

 $0.30 \times 0.08 \times 0.04 \text{ mm}$

13299 measured reflections

3866 independent reflections

3613 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

 $\mu = 10.06 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.036$

36 restraints

 $\Delta \rho_{\rm max} = 1.23 \text{ e} \text{ Å}^-$

 $\Delta \rho_{\rm min} = -0.71$ e Å⁻³

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y + 1, -z + 1.

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The authors gratefully acknowledge practical support of this study by the Islamic Azad University (Saveh Branch), and thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (grant No. UM·C/HIR/MOHE/SC/12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5166).

References

- Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.
- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. Farrugia, L. J. (1997). J. Appl. Cryst. **30**, 565.
- Ghaemi, A., Dadkhah, Z., Ng, S. W. & Tiekink, E. R. T. (2012). Acta Cryst. E68, m97-m98.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Zhu, L.-H., Zeng, M.-H. & Ng, S. W. (2005). Acta Cryst. E61, m1082-m1084.

supporting information

Acta Cryst. (2012). E68, m210 [doi:10.1107/S1600536812002796]

catena-Poly[[lead(II)-bis(μ_2 -quinolin-8-olato)- $\kappa^3 N$,O:O; $\kappa^3 O$:N,O] N,N-dimethyl-formamide hemisolvate]

Akbar Ghaemi, Zohreh Dadkhah, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

During the course of recent studies into the structural chemistry of mixed Pb^{II} quinolate carboxylates (Ghaemi *et al.*, 2012), the title binary Pb^{II} quinolate was isolated as a DMF hemi-solvate, (I), from an attempted reaction with maleic acid. The crystal structure of the solvent free and polymeric Pb(quinolate)₂ has been described (Zhu *et al.*, 2005).

The asymmetric unit of (I) comprises Pb(quinolate)₂ and half a solvent DMF molecule (this is disordered over a centre of inversion), Fig. 1. Each quinolate anion *N*,*O*-chelates a Pb^{II} atom and at the same time bridges a neighbouring Pb^{II} atom *via* the carbonyl-O atom. The result is a polymeric chain comprising alternating Pb₂O₂ rhombi, Fig. 2. The degree in asymmetry in the Pb—O bridges varies, Table 1. The coordination geometry of the Pb^{II} atom is based on a distorted pentagonal bipyramid with one N atom occupying an axial site. The lone pair of electrons occupies the second axial position. It is noted that the O3 and O3' atoms (each with a 0.25 site occupancy factor) of disordered DMF molecule approach the Pb^{II} at distances 2.903 (12) and 2.977 (12) Å, respectively. These are not *trans* to the axial N atom forming angles of approximately 140°. If one of the DMF-O atoms is included as part of the coordination sphere, the coordination geometry would be described as ψ -dodecahedral.

In the crystal packing, the polymeric chains pack into a square grid which defines channels in which reside the disordered solvent molecules, Fig. 3. The aforementioned weak Pb···O(DMF) interactions serve to connect the polymeric chains into a layer in the *ab* plane.

S2. Experimental

The title complex was obtained by the following method. 8-Hydroxyquinoline (0.036 g, 0.25 mmol) was added to an aqueous solution (5 ml) of $Pb(NO_3)_2$ (0.082 g, 0.25 mmol). The mixture was stirred for 15 min. Then to this solution, a DMF solution (5 ml) of maleic acid (0.029 g, 0.25 mmol) which with triethylamine neutralized was added slowly at room temperature. This mixture was filtered. After keeping the filtrate in air, crystals were formed at the bottom of the vessel on slow evaporation of the solvents at room temperature. M.p. 590 K. Yield: 65%.

S3. Refinement

Carbon-bound H atoms were placed in calculated positions [C—H 0.95–0.98 Å, U_{iso} (H) 1.2–1.5 U_{eq} (C)] and were included in the refinement in the riding model approximation.

The DMF molecule is disordered over two sites over a centre of inversion. The C—O distances were restrained to 1.25 (1) Å, the $C_{carbonyl}$ —N distances to 1.35 (1) Å and the C_{methyl} —N distances to 1.45 (1) Å. Each component was restrained to lie on a plane; the anisotropic displacement parameters of the primed atoms were set to those of the unprimed ones, and they were tightly restrained to be nearly isotropic.

C6 C7 C5 C8 C4 01 6 C16 C9 C17 C3 **N1** C15 N2 C C14 C18 Pb C10 C13 C19 03 02 C12 N3 C11 C20

The final difference Fourier map had a peak of 1.23 Å⁻³ at 1.10 Å from the Pb atom.

Figure 1

The asymmetric unit of (I) showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level.

Figure 2

A view of the polymeric chain along [100] in (I).

Figure 3

A view in projection down the *a* axis of the unit-cell contents of (I) highlighting the square grid defined by the polymeric chains and the inclusion of the solvent molecules (shown in space-filling mode) in the channels.

catena-Poly[[lead(II)-bis(μ_2 -quinolin-8-olato)- $\kappa^3 N$,O:O; $\kappa^3 O$:N,O] N,N-dimethylformamide hemisolvate]

Crystal data	
$[Pb(C_{9}H_{6}NO)_{2}] \cdot 0.5C_{3}H_{7}NO$ $M_{r} = 532.04$ Triclinic, $P\overline{1}$ Hall symbol: -P 1 a = 8.1841 (2) Å b = 9.6606 (3) Å c = 10.8619 (3) Å a = 96.683 (3)° $\beta = 98.277$ (2)° $\gamma = 94.225$ (3)° V = 840.48 (4) Å ³	Z = 2 F(000) = 504 $D_x = 2.102 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8798 reflections $\theta = 2.5 - 27.5^{\circ}$ $\mu = 10.06 \text{ mm}^{-1}$ T = 100 K Block, yellow $0.30 \times 0.08 \times 0.04 \text{ mm}$
Data collection Agilent SuperNova Dual diffractometer with Atlas detector Radiation source: SuperNova (Mo) X-ray Source	Mirror monochromator Detector resolution: 10.4041 pixels mm ⁻¹ ω scans

Absorption correction: multi-scan	$R_{\rm int} = 0.036$
(CrysAlis PRO; Agilent, 2010)	$\theta_{\text{max}} = 27.6^{\circ}, \ \theta_{\text{min}} = 2.5^{\circ}$
$T_{\min} = 0.152, \ T_{\max} = 0.689$	$h = -10 \rightarrow 10$
13299 measured reflections	$k = -12 \rightarrow 12$
3866 independent reflections	$l = -14 \rightarrow 14$
3613 reflections with $I > 2\sigma(I)$	
Refinement	
Refinement on F^2	Secondary atom site location

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.021$	Hydrogen site location: inferred from
$wR(F^2) = 0.049$	neighbouring sites
S = 1.01	H-atom parameters constrained
3866 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0245P)^2 + 0.0115P]$
272 parameters	where $P = (F_o^2 + 2F_c^2)/3$
36 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.23 \text{ e} \text{ Å}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.71 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
Pb	0.758370 (14)	0.465630 (13)	0.543410 (11)	0.01554 (5)	
01	1.0552 (3)	0.4449 (3)	0.6130 (2)	0.0232 (6)	
O2	0.5307 (3)	0.5563 (3)	0.6350 (2)	0.0180 (5)	
N1	0.8296 (3)	0.4221 (3)	0.7727 (3)	0.0162 (6)	
N2	0.8215 (4)	0.7122 (3)	0.6385 (3)	0.0249 (7)	
C1	0.7215 (4)	0.4163 (4)	0.8528 (3)	0.0206 (8)	
H1	0.6154	0.4481	0.8308	0.025*	
C2	0.7575 (5)	0.3651 (4)	0.9686 (3)	0.0248 (8)	
H2	0.6775	0.3630	1.0238	0.030*	
C3	0.9089 (5)	0.3184 (4)	1.0005 (3)	0.0247 (8)	
Н3	0.9344	0.2833	1.0784	0.030*	
C4	1.0284 (4)	0.3217 (4)	0.9190 (3)	0.0204 (8)	
C5	1.1862 (5)	0.2725 (4)	0.9433 (4)	0.0259 (8)	
Н5	1.2177	0.2343	1.0190	0.031*	
C6	1.2937 (5)	0.2792 (4)	0.8591 (4)	0.0296 (9)	
Н6	1.3985	0.2434	0.8756	0.036*	
C7	1.2512 (4)	0.3389 (4)	0.7477 (4)	0.0253 (8)	
H7	1.3301	0.3448	0.6920	0.030*	
C8	1.0982 (4)	0.3891 (4)	0.7165 (3)	0.0193 (7)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

C9	0.9830 (4)	0.3776 (4)	0.8040 (3)	0.0178 (7)	
C10	0.9624 (5)	0.7881 (5)	0.6391 (6)	0.0462 (14)	
H10	1.0427	0.7492	0.5938	0.055*	
C11	0.9986 (6)	0.9237 (5)	0.7038 (7)	0.071 (2)	
H11	1.1016	0.9753	0.7023	0.086*	
C12	0.8836 (6)	0.9807 (5)	0.7689 (6)	0.0586 (17)	
H12	0.9070	1.0722	0.8134	0.070*	
C13	0.7312 (5)	0.9046 (4)	0.7703 (4)	0.0306 (9)	
C14	0.6057 (5)	0.9570 (4)	0.8344 (4)	0.0311 (9)	
H14	0.6214	1.0486	0.8795	0.037*	
C15	0.4614 (5)	0.8749 (4)	0.8309 (4)	0.0299 (9)	
H15	0.3775	0.9103	0.8744	0.036*	
C16	0.4342 (5)	0.7391 (4)	0.7644 (4)	0.0263 (9)	
H16	0.3319	0.6856	0.7640	0.032*	
C17	0.5523 (4)	0.6806 (4)	0.6993 (3)	0.0188 (7)	
C18	0.7048 (4)	0.7676 (4)	0.7030 (3)	0.0199 (7)	
O3	0.5643 (14)	0.2137 (13)	0.5793 (11)	0.0316 (18)	0.25
N3	0.476 (2)	-0.011(2)	0.4938 (14)	0.0236 (17)	0.25
C19	0.588 (2)	0.1025 (17)	0.5172 (12)	0.031 (4)	0.25
H19	0.6900	0.0971	0.4850	0.037*	0.25
C20	0.319 (3)	-0.009(3)	0.540(2)	0.026 (4)	0.25
H20A	0.3237	-0.0606	0.6134	0.039*	0.25
H20B	0.2305	-0.0539	0.4745	0.039*	0.25
H20C	0.2977	0.0877	0.5650	0.039*	0.25
C21	0.557 (2)	-0.112 (2)	0.4205 (18)	0.026 (4)	0.25
H21A	0.4848	-0.1461	0.3412	0.039*	0.25
H21B	0.5803	-0.1910	0.4675	0.039*	0.25
H21C	0.6618	-0.0679	0.4030	0.039*	0.25
O3′	0.7253 (14)	0.1552 (12)	0.5310(11)	0.0316 (18)	0.25
N3′	0.492 (3)	0.0002 (19)	0.4949 (14)	0.0236 (17)	0.25
C19′	0.5783 (18)	0.124 (2)	0.5450 (16)	0.031 (4)	0.25
H19′	0.5247	0.1905	0.5929	0.037*	0.25
C20′	0.511 (3)	-0.130(2)	0.4189 (19)	0.026 (4)	0.25
H20D	0.4190	-0.1498	0.3493	0.039*	0.25
H20E	0.5115	-0.2068	0.4708	0.039*	0.25
H20F	0.6162	-0.1220	0.3856	0.039*	0.25
C21′	0.323 (3)	-0.023(3)	0.518 (2)	0.026 (4)	0.25
H21D	0.3170	-0.0921	0.5772	0.039*	0.25
H21E	0.2505	-0.0590	0.4388	0.039*	0.25
H21F	0.2859	0.0649	0.5533	0.039*	0.25

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Pb	0.01436 (7)	0.01590 (8)	0.01590 (8)	0.00224 (5)	0.00048 (5)	0.00189 (5)
01	0.0172 (12)	0.0320 (15)	0.0241 (14)	0.0070 (11)	0.0044 (10)	0.0146 (12)
O2	0.0180 (12)	0.0203 (13)	0.0154 (13)	0.0008 (10)	0.0042 (10)	-0.0007 (10)
N1	0.0178 (14)	0.0164 (15)	0.0138 (15)	0.0004 (11)	0.0001 (11)	0.0032 (12)

Acta Cryst. (2012). E68, m210

supporting information

N2	0.0189 (16)	0.0168 (16)	0.040 (2)	0.0027 (12)	0.0041 (14)	0.0068 (15)
C1	0.0215 (18)	0.0200 (19)	0.0199 (19)	-0.0006 (14)	0.0047 (14)	-0.0002 (15)
C2	0.034 (2)	0.024 (2)	0.0167 (19)	-0.0017 (16)	0.0065 (16)	0.0016 (16)
C3	0.039 (2)	0.0175 (19)	0.0156 (18)	0.0003 (16)	-0.0020 (16)	0.0022 (15)
C4	0.0273 (19)	0.0124 (17)	0.0176 (18)	-0.0047 (14)	-0.0054 (14)	0.0012 (14)
C5	0.028 (2)	0.021 (2)	0.025 (2)	-0.0033 (15)	-0.0080 (16)	0.0071 (16)
C6	0.0201 (19)	0.022 (2)	0.047 (3)	0.0030 (15)	-0.0066 (17)	0.0151 (19)
C7	0.0186 (18)	0.025 (2)	0.034 (2)	0.0006 (15)	0.0031 (16)	0.0136 (18)
C8	0.0185 (17)	0.0180 (18)	0.0213 (19)	-0.0001 (14)	-0.0001 (14)	0.0072 (15)
C9	0.0184 (17)	0.0130 (17)	0.0195 (18)	-0.0032 (13)	-0.0028 (13)	0.0019 (14)
C10	0.021 (2)	0.024 (2)	0.095 (4)	0.0009 (17)	0.013 (2)	0.005 (3)
C11	0.031 (3)	0.021 (2)	0.158 (7)	-0.003 (2)	0.015 (3)	-0.003 (3)
C12	0.041 (3)	0.014 (2)	0.113 (5)	-0.0008 (19)	-0.002 (3)	-0.007 (3)
C13	0.035 (2)	0.0173 (19)	0.036 (2)	0.0053 (16)	-0.0092 (18)	0.0034 (18)
C14	0.048 (3)	0.019 (2)	0.024 (2)	0.0141 (18)	-0.0063 (18)	-0.0012 (17)
C15	0.049 (3)	0.031 (2)	0.0136 (19)	0.0164 (19)	0.0081 (17)	0.0035 (17)
C16	0.034 (2)	0.029 (2)	0.0175 (19)	0.0051 (17)	0.0097 (16)	0.0032 (17)
C17	0.0270 (19)	0.0208 (18)	0.0089 (16)	0.0056 (15)	0.0017 (14)	0.0023 (14)
C18	0.0213 (18)	0.0189 (18)	0.0193 (19)	0.0062 (14)	-0.0017 (14)	0.0044 (15)
O3	0.036 (4)	0.026 (3)	0.031 (4)	-0.003 (3)	0.005 (3)	0.003 (3)
N3	0.025 (4)	0.023 (3)	0.025 (3)	-0.001 (3)	0.012 (2)	0.007 (2)
C19	0.029 (5)	0.031 (8)	0.035 (8)	0.001 (5)	0.006 (5)	0.017 (7)
C20	0.024 (5)	0.031 (6)	0.025 (5)	0.000 (4)	0.007 (4)	0.007 (4)
C21	0.029 (5)	0.026 (6)	0.026 (6)	0.005 (4)	0.012 (4)	0.003 (4)
O3′	0.036 (4)	0.026 (3)	0.031 (4)	-0.003 (3)	0.005 (3)	0.003 (3)
N3′	0.025 (4)	0.023 (3)	0.025 (3)	-0.001 (3)	0.012 (2)	0.007 (2)
C19′	0.029 (5)	0.031 (8)	0.035 (8)	0.001 (5)	0.006 (5)	0.017 (7)
C20′	0.024 (5)	0.031 (6)	0.025 (5)	0.000 (4)	0.007 (4)	0.007 (4)
C21′	0.029 (5)	0.026 (6)	0.026 (6)	0.005 (4)	0.012 (4)	0.003 (4)

Geometric parameters (Å, °)

Pb—O2	2.408 (2)	C12—C13	1.403 (6)
Pb—O1	2.468 (2)	C12—H12	0.9500
Pb—N2	2.470 (3)	C13—C14	1.413 (6)
Pb—N1	2.566 (3)	C13—C18	1.421 (5)
Pb—O1 ⁱ	2.618 (2)	C14—C15	1.366 (6)
Pb—O2 ⁱⁱ	2.812 (2)	C14—H14	0.9500
Pb—O3	2.903 (12)	C15—C16	1.408 (6)
Pb—O3'	2.977 (12)	C15—H15	0.9500
O1—C8	1.317 (4)	C16—C17	1.392 (5)
O1—Pb ⁱ	2.618 (2)	C16—H16	0.9500
O2—C17	1.304 (4)	C17—C18	1.445 (5)
N1-C1	1.330 (4)	O3—C19	1.244 (10)
N1—C9	1.367 (4)	N3—C19	1.350 (10)
N2-C10	1.319 (5)	N3—C20	1.449 (10)
N2—C18	1.367 (5)	N3—C21	1.448 (10)
C1—C2	1.405 (5)	C19—H19	0.9500

C1—H1	0.9500	C20—H20A	0.9800
C2—C3	1.361 (5)	C20—H20B	0.9800
С2—Н2	0.9500	C20—H20C	0.9800
C3—C4	1.412 (5)	C21—H21A	0.9800
С3—Н3	0.9500	C21—H21B	0.9800
C4—C5	1 409 (5)	C21—H21C	0.9800
C4—C9	1 429 (5)	$O_{3'} - C_{19'}$	1.254(10)
C5-C6	1 361 (6)	N3'-C19'	1.257(10)
C5—H5	0.9500	N3'-C21'	1.357(10) 1.453(10)
C6-C7	1 410 (5)	N3'-C20'	1.455(10) 1.455(10)
C6 H6	0.9500	C10' H10'	0.9500
C7 C8	1 387 (5)	$C_{20'}$ H20D	0.9900
C7 H7	0.0500	C_{20} $-H_{20E}$	0.9800
C^{2}	1.420 (5)	C_{20} $-H_{20E}$	0.9800
$C_{0} - C_{9}$	1.439(3)	$C_{20} = H_{20F}$	0.9800
	1.402 (7)		0.9800
C10—H10	0.9500	C21 H21E	0.9800
	1.366 (8)	C21 H21F	0.9800
СП—НП	0.9500		
02 Ph 01	126 91 (9)	C11 C10 H10	119.6
$O_2 = P_0 = O_1$	130.01(0)	C12 C11 C10	110.0 (4)
$O_2 - r_0 - N_2$	07.01 (9) 84.04 (0)	C_{12} C_{11} U_{11}	119.0 (4)
O1 - Pb - N2	84.94 (9)		120.5
02—Pb—NI	(7.40.(8))		120.5
VI—Pb—NI	65.49 (8)	CII = CI2 = CI3	120.4 (5)
N2—Pb—NI	82.06 (10)	C11—C12—H12	119.8
02—Pb—01 ¹	133.72 (8)	С13—С12—Н12	119.8
O1—Pb—O1 ¹	67.90 (9)	C12—C13—C14	123.6 (4)
N2—Pb—O1 ¹	80.59 (10)	C12—C13—C18	117.0 (4)
N1—Pb—O1 ⁱ	131.30 (8)	C14—C13—C18	119.4 (4)
C8—O1—Pb	118.6 (2)	C15—C14—C13	119.4 (4)
$C8 - O1 - Pb^i$	129.3 (2)	C15—C14—H14	120.3
$Pb-O1-Pb^{i}$	112.10 (9)	C13—C14—H14	120.3
C17—O2—Pb	119.0 (2)	C14—C15—C16	121.6 (4)
C1—N1—C9	119.1 (3)	C14—C15—H15	119.2
C1—N1—Pb	124.9 (2)	C16—C15—H15	119.2
C9—N1—Pb	114.9 (2)	C17—C16—C15	122.2 (4)
C10—N2—C18	119.0 (4)	C17—C16—H16	118.9
C10—N2—Pb	124.8 (3)	C15—C16—H16	118.9
C18—N2—Pb	116.1 (2)	O2—C17—C16	124.0 (3)
N1—C1—C2	122.8 (3)	O2—C17—C18	119.8 (3)
N1—C1—H1	118.6	C16—C17—C18	116.2 (3)
C2—C1—H1	118.6	N2-C18-C13	121.8 (3)
C3—C2—C1	118.9 (3)	N2—C18—C17	117.0 (3)
С3—С2—Н2	120.5	C13—C18—C17	121.3 (3)
С1—С2—Н2	120.5	C19—N3—C20	121.2 (19)
C2—C3—C4	120.7 (3)	C19—N3—C21	103.1 (15)
С2—С3—Н3	119.6	C20—N3—C21	135.6 (19)
С4—С3—Н3	119.6	O3—C19—N3	122.8 (18)

C^2 C^4 C^5	1244(2)	O2 C10 H10	119.6
$C_3 = C_4 = C_3$	124.4(3) 1168(2)	$N_{2} = C_{10} = H_{10}$	118.0
$C_{5} = C_{4} = C_{9}$	110.0(3) 118.8(2)	$N_{3} = C_{19} = H_{19}$	110.0
C_{3}	110.0(3)	C19 - N3 - C21	110(2)
$C_0 - C_3 - C_4$	120.3 (4)	C19 - N3 - C20	141(2)
C6C5H5	119.8	$C_2 I = N_3 = C_2 U^2$	101.4 (16)
C4—C5—H5	119.8	O3' - C19' - N3'	123 (2)
C5-C6-C7	120.7 (3)	O3'—C19'—H19'	118.6
С5—С6—Н6	119.6	N3'—C19'—H19'	118.6
С7—С6—Н6	119.6	N3'—C20'—H20D	109.5
C8—C7—C6	122.4 (3)	N3'—C20'—H20E	109.5
С8—С7—Н7	118.8	H20D—C20′—H20E	109.5
С6—С7—Н7	118.8	N3'—C20'—H20F	109.5
O1—C8—C7	123.6 (3)	H20D—C20'—H20F	109.5
O1—C8—C9	119.8 (3)	H20E—C20'—H20F	109.5
C7—C8—C9	116.6 (3)	N3'—C21'—H21D	109.5
N1—C9—C4	121.6 (3)	N3'—C21'—H21E	109.5
N1—C9—C8	117.4 (3)	H21D—C21′—H21E	109.5
C4—C9—C8	120.9 (3)	N3′—C21′—H21F	109.5
N2-C10-C11	122.8 (4)	H21D—C21′—H21F	109.5
N2-C10-H10	118.6	$H_{21E} = C_{21'} = H_{21E}$	109.5
	110.0		109.0
02 - Pb - 01 - C8	50.9 (3)	C6-C7-C8-C9	0.0.(6)
N2 Pb O1 C8	100.2(3)	C1 N1 C9 C4	1.6(5)
$N_2 = 10 = 01 = 03$	166(2)	C1 - N1 - C9 - C4	-167.0(3)
Ω_1^{i} Db Ω_1^{i} C8	-1780(2)	10 - 11 - 0 - 04	-178.2(3)
$O_1 - P_0 - O_1 - C_0$	-1/8.0(3)	CI = NI = C9 = C8	-1/8.3(3)
02-Pb-O1-Pb	-131.10(11)	Pb = N1 = C9 = C8	13.1 (4)
$N2 - Pb - OI - Pb^{4}$	-81.88 (12)	C3—C4—C9—N1	-1.8(5)
NI—Pb—OI—Pb'	-165.45 (14)	C5—C4—C9—N1	177.5 (3)
$O1^{1}$ Pb $O1$ Pb ¹	0.0	C3—C4—C9—C8	178.2 (3)
O1—Pb—O2—C17	48.0 (3)	C5—C4—C9—C8	-2.6(5)
N2—Pb—O2—C17	-6.7 (2)	O1—C8—C9—N1	2.0 (5)
N1—Pb—O2—C17	79.7 (2)	C7—C8—C9—N1	-177.8 (3)
$O1^{i}$ —Pb—O2—C17	-57.0 (3)	O1—C8—C9—C4	-177.9 (3)
O2—Pb—N1—C1	20.5 (3)	C7—C8—C9—C4	2.3 (5)
O1—Pb—N1—C1	177.2 (3)	C18—N2—C10—C11	0.3 (8)
N2—Pb—N1—C1	89.2 (3)	Pb-N2-C10-C11	-174.2 (5)
O1 ⁱ —Pb—N1—C1	159.2 (2)	N2-C10-C11-C12	-0.2 (10)
O2—Pb—N1—C9	-171.7 (2)	C10-C11-C12-C13	-0.4 (10)
O1—Pb—N1—C9	-14.9 (2)	C11—C12—C13—C14	-179.3(5)
N2—Pb—N1—C9	-103.0(2)	C11—C12—C13—C18	0.7 (8)
$O1^{i}$ Pb N1 C9	-330(3)	C12-C13-C14-C15	-1797(5)
Ω_{2} Pb N2 C10	-1794(4)	C18 - C13 - C14 - C15	03(6)
01 - Pb - N2 - C10	34 7 (4)	C13 - C14 - C15 - C16	-0.3(6)
$N1_Pb_N2_C10$	100 6 (4)	C_{14} C_{15} C_{16} C_{17}	0.3 (6)
Ω^{1i} Pb N2 C10	-33.7(4)	Ph = 0.2 = 0.17 = 0.16	-174.8(3)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	55.7(+)	10-02-017-010	1/4.0(3)
$02 - r_0 - n_2 - 0.18$	-1200(2)	10-02-01/-010	0.0(4)
	-139.9(3)	C13 - C10 - C17 - O2	-1/8.8(3)
N1 - Pb - N2 - C18	-/4.0(3)	CI3-CI6-CI7-CI8	-0.4 (5)

O1 ⁱ —Pb—N2—C18	151.7 (3)	C10—N2—C18—C13	0.0 (6)
C9—N1—C1—C2	-0.5 (5)	Pb-N2-C18-C13	175.1 (3)
Pb—N1—C1—C2	166.9 (3)	C10-N2-C18-C17	179.9 (4)
N1—C1—C2—C3	-0.4 (6)	Pb-N2-C18-C17	-5.1 (4)
C1—C2—C3—C4	0.2 (6)	C12-C13-C18-N2	-0.5 (6)
C2—C3—C4—C5	-178.4 (4)	C14—C13—C18—N2	179.5 (3)
C2—C3—C4—C9	0.8 (5)	C12-C13-C18-C17	179.6 (4)
C3—C4—C5—C6	179.7 (4)	C14—C13—C18—C17	-0.3 (6)
C9—C4—C5—C6	0.5 (5)	O2—C17—C18—N2	-0.9 (5)
C4—C5—C6—C7	1.7 (6)	C16—C17—C18—N2	-179.4 (3)
C5—C6—C7—C8	-2.0 (6)	O2—C17—C18—C13	178.9 (3)
Pb—O1—C8—C7	162.6 (3)	C16—C17—C18—C13	0.4 (5)
Pb ⁱ	-14.9 (5)	C20—N3—C19—O3	0.0 (3)
Pb-O1-C8-C9	-17.2 (4)	C21—N3—C19—O3	-179.9 (3)
Pb ⁱ	165.3 (2)	C21'—N3'—C19'—O3'	179.9 (3)
C6—C7—C8—O1	-179.8 (4)	C20'—N3'—C19'—O3'	0.0 (5)

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+1, -z+1.