metal-organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Tris(1,2-dimethoxyethane- $\kappa^2 O, O'$)-iodidocalcium iodide

Siou-Wei Ou,^a Wei-Yi Lu^b and Hsuan-Ying Chen^a*

^aDepartment of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan, and ^bDepartment of Chemistry, National Chung Hsing University, Taichung 402, Taiwan Correspondence e-mail: hchen@kmu.edu.tw

Received 6 January 2012; accepted 8 January 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.016; wR factor = 0.043; data-to-parameter ratio = 24.4.

In the title complex, $[CaI(C_4H_{10}O_2)_3]I$, the Ca^{II} atom is sevencoordinated by six O atoms from three 1,2-dimethoxyethane (DME) ligands and one iodide anion in a distorted pentagonal–bipyramidal geometry. The I atom and one of the O atoms from a DME ligand lie in the axial positions while the other O atoms lie in the basal plane. The other iodide anion is outside the complex cation.

Related literature

For background to polylactide and its copolymers, see: Ha & Gardella (2005); Simpson *et al.* (2008). For ring-opening polymerization of lactides with calcium-based catalysts, see: Chen *et al.* (2007); Chisholm *et al.* (2003, 2004); Darensbourg *et al.* (2002, 2003*a*,*b*); Zhong *et al.* (2001).

Experimental

Crystal data $[CaI(C_4H_{10}O_2)_3]I$ $M_r = 564.24$ Monoclinic, $P2_1/c$ a = 12.1503 (6) Å

Z = 4
Mo $K\alpha$ radiation
$\mu = 3.26 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2001)
$T_{\min} = 0.522, \ T_{\max} = 0.647$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.016$ $wR(F^2) = 0.043$ S = 1.194791 reflections

Table 1Selected bond lengths (Å).

Ca1-O1	2.4046 (12)	Ca1-O5	2.4254 (12)
Ca1-O2	2.3872 (12)	Ca1-O6	2.5138 (11)
Ca1-O3	2.4871 (11)	Ca1-I1	3.0525 (3)
Ca1-O4	2.4415 (11)		

T = 100 K

 $R_{\rm int} = 0.017$

196 parameters

 $\Delta \rho_{\rm max} = 0.35 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -0.91 \text{ e} \text{ Å}^{-3}$

 $0.23 \times 0.23 \times 0.15 \text{ mm}$

14842 measured reflections 4791 independent reflections

4627 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL*.

Financial support from the National Science Council of the Republic of China is gratefully appreciated. Helpful comments from the reviewers are also greatly appreciated.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HY2505).

References

- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Chen, H.-Y., Tang, H.-Y. & Lin, C.-C. (2007). Polymer, 48, 2257-2262.
- Chisholm, M. H., Gallucci, J. & Phomphrai, K. (2003). Chem. Commun. pp. 48– 49.
- Chisholm, M. H., Gallucci, J. & Phomphrai, K. (2004). *Inorg. Chem.* 43, 6717–6725.
- Darensbourg, D. J., Adams, M. J., Yarbrough, J. C. & Phelps, A. L. (2003a). Inorg. Chem. 42, 7809–7818.
- Darensbourg, D. J., Lewis, S. J., Rodgers, J. L. & Yarbrough, J. C. (2003b). Inorg. Chem. 42, 581–589.
- Darensbourg, D. J., Wildeson, J. R. & Yarbrough, J. C. (2002). *Inorg. Chem.* 41, 973–980.
- Ha, C.-S. & Gardella, J. A. Jr (2005). Chem. Rev. 105, 4205-4232.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
- Simpson, R. L., Wiria, F. E., Amis, A. A., Chua, C. K., Leong, K. F., Hansen, U. N., Chandrasekaran, M. & Lee, M. W. (2008). J. Biomed. Mater. Res. Part B: Appl. Biomater. 84B, 17–25.
- Zhong, Z., Dijkstra, P. J., Birg, C., Westerhausen, M. & Feijen, J. (2001). Macromolecules, 34, 3863–3868.

supporting information

Acta Cryst. (2012). E68, m172 [doi:10.1107/S160053681200075X]

Tris(1,2-dimethoxyethane- $\kappa^2 O, O'$)iodidocalcium iodide

Siou-Wei Ou, Wei-Yi Lu and Hsuan-Ying Chen

S1. Comment

Polylactide and its copolymers are so popular and have been researched widely because of their diversiform applications in biomaterial fields (Ha & Gardella, 2005; Simpson *et al.*, 2008). The ring-opening polymerization (ROP) is the major way to polymerize lactides. Because of the biomaterial purpose the catalysts with non-cytotoxic character are required and calcium is paid much attention for this reason. Recently, ROP of lactides with calcium-based catalysts has been reported (Chen *et al.*, 2007; Chisholm *et al.*, 2003, 2004; Darensbourg *et al.*, 2002, 2003*a*,b; Zhong *et al.*, 2001) and calcium bis[bis(trimethylsilyl)amide] or calcium iodide is the common precursor. But the low dissolution of calcium iodide in organic solvent is its problem. In this paper we used 1,2-dimethoxyethane (DME) as ligand and solvent to react with calcium iodide, and the solution was refluxed until it showed clear. When the temperature of the solution was cooled to 0° C, the rectangular crystals, [Ca(DME)₃I]I, appeared. The compound was dissoluble in DME, THF and CH₂Cl₂. The low dissolution problem of calcium iodide in organic solvent was solved through the synthesis of [Ca(DME)₃I]I, if calcium iodide was the necessary precursor.

In the title compound, the Ca^{II} atom is heptacoordinated with a distorted pentagonal-bipyramidal geometry, in which five O atoms occupied the basal positions are almost coplanar. One Cl atom and one O atom lie on the axial positions. The Ca—O distances are 2.3872 (12)–2.5138 (11) Å and the Ca—I distance is 3.0525 (3) Å (Table 1).

S2. Experimental

A suspension of calcium iodide (2.94 g, 10 mmol) in 1,2-dimethoxyethane (10 ml) was stirred and refluxed until it showed clear. When the solution was cooled down to 0°C slowly, the rectangular colorless crystals appeared. The solution was filtered to remove the excess 1,2-dimethoxyethane. Volatile materials were then removed under a vacuum. Yield: 78%.

S3. Refinement

H atoms were positioned geometrically and refined as riding atoms, with C—H = 0.99 (CH₂) and 0.98 (CH₃) Å and with U_{iso} (H) = 1.2(1.5 for methyl) U_{eq} (C).

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are shown at the 40% probability level.

Tris(1,2-dimethoxyethane- $\kappa^2 O, O'$)iodidocalcium iodide

I2 🗑

Crystal data	
$[CaI(C_4H_{10}O_2)_3]I$	F(000) = 1104
$M_r = 564.24$	$D_x = 1.788 \text{ Mg m}^{-3}$
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$
Hall symbol: -P 2 _y bc	Cell parameters from 9874 reflections
a = 12.1503 (6) A	$\theta = 2.0-28.0^{\circ}$
b = 10.7767 (5) Å	$\mu = 3.26 \text{ mm}^{-1}$
c = 16.2295 (8) Å	T = 100 K
$\beta = 99.514 (1)^{\circ}$ $V = 2095.86 (18) Å^{3}$ Z = 4	Blocks, colourless $0.23 \times 0.23 \times 0.15 \text{ mm}$
Data collection	
Bruker APEXII CCD	14842 measured reflections
diffractometer	4791 independent reflections
Radiation source: fine-focus sealed tube	4627 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{int} = 0.017$
φ and ω scans	$\theta_{max} = 27.5^{\circ}, \theta_{min} = 1.7^{\circ}$
Absorption correction: multi-scan	$h = -15 \rightarrow 15$
(<i>SADABS</i> ; Bruker, 2001)	$k = -13 \rightarrow 14$
$T_{\min} = 0.522, T_{\max} = 0.647$	$l = -21 \rightarrow 20$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.016$	Hydrogen site location: inferred from
$wR(F^2) = 0.043$	neighbouring sites
S = 1.19	H-atom parameters constrained
4791 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0191P)^2 + 0.9088P]$
196 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{max} = 0.005$
Primary atom site location: structure-invariant	$\Delta\rho_{max} = 0.35$ e Å ⁻³
direct methods	$\Delta\rho_{min} = -0.91$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $U_{\rm iso} * / U_{\rm eq}$ v Ζ х Ca1 0.01103 (6) 0.74096(2)0.25280(3)0.987454 (18) I1 0.589004(9)0.206685 (9) 1.116467 (6) 0.01643 (4) I2 0.169983 (9) 0.297669 (9) 0.264013 (7) 0.01675 (4) **O**1 0.91500 (9) 0.19272 (10) 1.07103 (7) 0.0141(2)02 0.91541 (7) 0.89431 (10) 0.28746 (10) 0.0165(2)O3 0.80225 (9) 0.44050 (10) 1.07187 (7) 0.0152(2)04 0.66028 (9) 0.44389 (10) 0.92287 (7) 0.0163 (2) 05 0.60542(9)0.17389(11) 0.87284(7)0.0164(2)06 0.77110 (9) 0.02920 (10) 0.95308(7) 0.0155(2)C1 0.92225 (14) 0.09314 (15) 1.13105 (10) 0.0178 (3) H1A 0.8532 0.0897 1.1548 0.027* H1B 0.9857 0.1078 1.1758 0.027*H1C 0.9328 0.0143 1.1033 0.027* C2 1.01205 (14) 0.19625 (14) 1.03155 (10) 0.0166(3)H2A 1.0198 0.1169 1.0024 0.020* H2B 1.0797 0.2086 1.0740 0.020* C3 0.99948 (14) 0.30183 (15) 0.96992 (11) 0.0185(3)H3A 1.0016 0.3821 0.9998 0.022* H3B 0.3005 0.9371 0.022* 1.0613 C4 0.88796 (16) 0.3613(2)0.84086 (12) 0.0305 (4) H4A 0.8171 0.3450 0.8040 0.046* H4B 0.9500 0.3397 0.8119 0.046* H4C 0.8925 0.4494 0.8559 0.046* C5 0.84956 (14) 0.42976 (16) 1.15957 (10) 0.0193(3)H5A 0.9184 0.3808 1.1655 0.029* 0.029* H5B 0.7960 1.1894 0.3885 1.1831 0.029* H5C 0.5127 0.8663 C6 0.71418 (14) 0.53093 (15) 1.05910(10) 0.0187(3)H6A 0.6076 1.0907 0.022* 0.7380 0.022* H6B 0.6471 0.4981 1.0790 C7 0.96726 (11) 0.0200(3)0.68799(15) 0.55864 (15) H7A 0.6170 0.9559 0.024* 0.6244 H7B 0.7534 0.5975 0.9484 0.024* C8 0.61548 (15) 0.46988 (16) 0.83621 (10) 0.0213 (3) H8A 0.6066 0.3920 0.8046 0.032*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

H8B	0.6668	0.5246	0.8127	0.032*	
H8C	0.5427	0.5106	0.8327	0.032*	
C9	0.48713 (14)	0.20029 (17)	0.85691 (12)	0.0231 (4)	
H9A	0.4718	0.2731	0.8893	0.035*	
H9B	0.4460	0.1287	0.8733	0.035*	
H9C	0.4635	0.2169	0.7972	0.035*	
C10	0.63075 (14)	0.06361 (15)	0.82961 (10)	0.0178 (3)	
H10A	0.6216	0.0796	0.7688	0.021*	
H10B	0.5797	-0.0045	0.8393	0.021*	
C11	0.74998 (14)	0.02824 (15)	0.86297 (10)	0.0179 (3)	
H11A	0.7652	-0.0557	0.8427	0.021*	
H11B	0.8010	0.0873	0.8417	0.021*	
C12	0.71396 (15)	-0.07020 (15)	0.98863 (11)	0.0201 (3)	
H12A	0.7403	-0.0744	1.0490	0.030*	
H12B	0.7294	-0.1491	0.9628	0.030*	
H12C	0.6334	-0.0544	0.9782	0.030*	

Atomic displacement parameters (\mathring{A}^2)

U^{23} -0.00006 (10) 0.00003 (3) 0.00072 (3) 0.0007 (4) 0.0048 (4) -0.0025 (4) 0.0010 (4) 0.0025 (4)
-0.00006 (10) 0.00003 (3) 0.00072 (3) 0.0007 (4) 0.0048 (4) -0.0025 (4) 0.0010 (4)
0.00003 (3) 0.00072 (3) 0.0007 (4) 0.0048 (4) -0.0025 (4) 0.0010 (4)
0.00072 (3) 0.0007 (4) 0.0048 (4) -0.0025 (4) 0.0010 (4)
0.0007 (4) 0.0048 (4) -0.0025 (4) 0.0010 (4)
0.0048 (4) -0.0025 (4) 0.0010 (4)
-0.0025 (4) 0.0010 (4)
0.0010 (4)
0.0025(4)
-0.0023 (4)
-0.0011 (4)
0.0029 (6)
-0.0010 (6)
0.0001 (6)
0.0214 (8)
-0.0037 (6)
-0.0043 (6)
-0.0007 (6)
0.0045 (6)
0.0016 (7)
-0.0028(6)
0.0020(0)
-0.0023(0) -0.0043(6)

Geometric parameters (Å, °)

Ca1—O1	2.4046 (12)	C3—H3B	0.9900	
Ca1—O2	2.3872 (12)	C4—H4A	0.9800	
Ca1—O3	2.4871 (11)	C4—H4B	0.9800	
Cal—O4	2.4415 (11)	C4—H4C	0.9800	

Cal 05	2 4254 (12)	C5 U5A	0.0800
Cal=05	2.4234(12)	C5 USD	0.9800
Cal = 00	2.3136(11) 2.0525(2)	С5—П5В	0.9800
	5.0525 (3)	CS—HSC	0.9800
01-02	1.4325 (19)		1.502 (2)
01	1.4421 (18)	С6—Н6А	0.9900
02	1.437 (2)	С6—Н6В	0.9900
O2—C4	1.439 (2)	С7—Н7А	0.9900
O3—C6	1.4369 (19)	С7—Н7В	0.9900
O3—C5	1.4489 (18)	C8—H8A	0.9800
O4—C7	1.4427 (19)	C8—H8B	0.9800
O4—C8	1.4490 (19)	C8—H8C	0.9800
O5—C10	1.4390 (19)	С9—Н9А	0.9800
O5—C9	1.446 (2)	С9—Н9В	0.9800
O6—C11	1.4425 (19)	С9—Н9С	0.9800
O6—C12	1.4473 (19)	C10—C11	1.509 (2)
C1—H1A	0.9800	C10—H10A	0.9900
C1—H1B	0.9800	C10—H10B	0.9900
C1—H1C	0.9800	С11—Н11А	0.9900
$C^2 - C^3$	1 506 (2)	C11—H11B	0 9900
$C_2 H_2 A$	0.9900	C12—H12A	0.9800
C_2 H2B	0.9900	C12 H12R	0.9800
C3_H3A	0.9900	C12 $H12D$	0.9800
C5—115A	0.9900	012—11120	0.9800
$02 C_{2} 1 01$	68 51 (4)	$O^2 C^4 H^4 B$	100 5
02 - Ca1 - 01	00.51(4)		109.5
02 - Ca1 - 05	33.31(4)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	109.5
01 - Ca1 - 03	139.31(4)		109.5
02 - Ca1 - 04	87.03 (4)	H4A—C4—H4C	109.5
01 - Ca1 - 04	136.26 (4)	H4B-C4-H4C	109.5
05—Ca1—04	/8.05 (4)	U3—C5—H5A	109.5
02—Ca1—O3	87.46 (4)	03—C5—H5B	109.5
01—Ca1—O3	75.70 (4)	H5A—C5—H5B	109.5
O5—Ca1—O3	144.21 (4)	O3—C5—H5C	109.5
O4—Ca1—O3	67.23 (4)	H5A—C5—H5C	109.5
O2—Ca1—O6	83.52 (4)	H5B—C5—H5C	109.5
O1—Ca1—O6	73.76 (4)	O3—C6—C7	107.98 (13)
O5—Ca1—O6	66.36 (4)	O3—C6—H6A	110.1
O4—Ca1—O6	140.91 (4)	С7—С6—Н6А	110.1
O3—Ca1—O6	149.37 (4)	O3—C6—H6B	110.1
O2—Ca1—I1	166.17 (3)	С7—С6—Н6В	110.1
O1—Ca1—I1	98.31 (3)	H6A—C6—H6B	108.4
O5—Ca1—I1	93.32 (3)	O4—C7—C6	108.59 (13)
04—Ca1—I1	100.74 (3)	O4—C7—H7A	110.0
O_3 — C_{a1} — I_1	85 10 (3)	C6-C7-H7A	110.0
O6-Ca1-I1	97.06 (3)	04—C7—H7B	110.0
2 - 01 - 01	111 03 (12)	C6-C7-H7B	110.0
$C_{2} = 01 = C_{1}$	116.02 (0)	H7A - C7 - H7B	108.4
$C_2 = O_1 = C_{a1}$	122 (9)	04 C8 H8A	100.4
$C_1 = C_1 = C_1$	122.07(7)	$O_{4} = C_{0} = H_{0} P_{0}$	109.5
02-02-04	112.11 (13)	04—Сб—ПбВ	109.5

C3—O2—Ca1	113.70 (9)	H8A—C8—H8B	109.5
C4—O2—Ca1	124.09 (10)	O4—C8—H8C	109.5
C6—O3—C5	111.16 (12)	H8A—C8—H8C	109.5
C6—O3—Ca1	108.91 (9)	H8B—C8—H8C	109.5
C5—O3—Ca1	120.68 (9)	О5—С9—Н9А	109.5
C7—O4—C8	109.77 (12)	O5—C9—H9B	109.5
C7—O4—Ca1	117.68 (9)	H9A—C9—H9B	109.5
C8—O4—Ca1	129.75 (9)	О5—С9—Н9С	109.5
C10—O5—C9	111.20 (12)	H9A—C9—H9C	109.5
C10—O5—Ca1	119.39 (9)	H9B—C9—H9C	109.5
C9—O5—Ca1	126.65 (10)	O5—C10—C11	107.67 (12)
C11—O6—C12	112.47 (12)	O5—C10—H10A	110.2
C11—O6—Ca1	102.93 (8)	C11—C10—H10A	110.2
C12—O6—Ca1	121.60 (9)	O5—C10—H10B	110.2
O1—C1—H1A	109.5	C11—C10—H10B	110.2
O1—C1—H1B	109.5	H10A-C10-H10B	108.5
H1A—C1—H1B	109.5	O6—C11—C10	111.17 (13)
01—C1—H1C	109.5	O6—C11—Ca1	50.70 (7)
H1A—C1—H1C	109.5	C10-C11-Ca1	84.46 (9)
H1B—C1—H1C	109.5	O6—C11—H11A	109.4
O1—C2—C3	108.45 (13)	C10-C11-H11A	109.4
O1—C2—H2A	110.0	Ca1—C11—H11A	159.8
C3—C2—H2A	110.0	O6—C11—H11B	109.4
O1—C2—H2B	110.0	C10-C11-H11B	109.4
С3—С2—Н2В	110.0	Ca1—C11—H11B	79.7
H2A—C2—H2B	108.4	H11A—C11—H11B	108.0
O2—C3—C2	108.03 (13)	O6—C12—H12A	109.5
O2—C3—H3A	110.1	O6—C12—H12B	109.5
С2—С3—НЗА	110.1	H12A—C12—H12B	109.5
O2—C3—H3B	110.1	O6—C12—H12C	109.5
С2—С3—Н3В	110.1	H12A—C12—H12C	109.5
НЗА—СЗ—НЗВ	108.4	H12B-C12-H12C	109.5
O2—C4—H4A	109.5		