# organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

## 2-Iodo-3-(4-methoxyanilino)-5,5dimethylcyclohex-2-en-1-one

## S. Paramasivam,<sup>a</sup> G. Bhaskar,<sup>b</sup> P. R. Seshadri<sup>a</sup>\* and P. T. Perumal<sup>b</sup>

<sup>a</sup>Post Graduate and Research Department of Physics, Agurchand Manmull Jain College, Chennai 600 114, India, and <sup>b</sup>Organic Chemistry Division, Central Leather Research Institute, Chennai 600 020, India Correspondence e-mail: seshadri\_pr@yahoo.com

Received 12 January 2012; accepted 18 January 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.027; wR factor = 0.074; data-to-parameter ratio = 22.0.

The cyclohexene ring in the title compound,  $C_{15}H_{18}INO_2$ , adopts a sofa conformation. The dihedral angle between the cyclohexene (through all ring atoms) and benzene rings is  $63.3 (1)^\circ$ . The molecular conformation features an N-H···I short contact and the crystal packing features C-H···O hydrogen bonds.

### **Related literature**

For the biological activity of cyclohex-2-enone derivatives, see: Correia *et al.* (2001); Rebacz *et al.* (2007); Stadler *et al.* (1994). For the use of cyclohex-2-enone in organic synthesis, see: Cokcer *et al.* (1995); Pandey *et al.* (2004). For pukering parameters, see: Cremer & Pople, (1975). For related structures, see: Mohan *et al.* (2008); North *et al.* (2011).



## Experimental

Crystal data  $C_{15}H_{18}INO_2$  $M_r = 371.20$ 

Orthorhombic, *Pbca* a = 15.922 (5) Å b = 10.107 (5) Å c = 19.034 (5) Å  $V = 3063 (2) \text{ Å}^{3}$ Z = 8

#### Data collection

Bruker SMART APEXII areadetector diffractometer 15382 measured reflections

### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.027$  $wR(F^2) = 0.074$ S = 0.933785 reflections

# Table 1 Hydrogen-bond geometry (Å. °).

| $D - H \cdots A$                                                      | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - H \cdots A$ |
|-----------------------------------------------------------------------|------|-------------------------|--------------|------------------|
| $\begin{array}{c} C14-H14\cdots O1^{i} \\ N1-H1\cdots I1 \end{array}$ | 0.93 | 2.39                    | 3.313 (3)    | 174              |
|                                                                       | 0.86 | 2.71                    | 3.227 (2)    | 120              |

Mo *K* $\alpha$  radiation  $\mu = 2.09 \text{ mm}^{-1}$ 

 $0.20 \times 0.20 \times 0.20$  mm

3785 independent reflections

2793 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

T = 298 K

 $R_{\rm int} = 0.025$ 

172 parameters

 $\Delta \rho_{\rm max} = 0.46 \text{ e} \text{ Å}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.53 \ {\rm e} \ {\rm \AA}^{-3}$ 

Symmetry code: (i) -x + 1, -y, -z + 1.

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *SHELXL97*, *PLATON* and *publCIF* (Westrip, 2010).

The authors acknowledge the Technology Business Incubator (TBI), CAS in Crystallography, University of Madras, Chennai 600 025, India, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2383).

#### References

- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cokcer, W., Grayson, D. H. & Shannon, P. V. R. (1995). J. Chem. Soc. Perkin Trans. 1, pp. 1153–1162.
- Correia, S. D., David, J. M., David, J. P., Chai, H. B., Pezzuto, J. M. & Cordell, G. A. (2001). *Phytochemistry*, 56, 781–784.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Mohan, R. T. S., Kamatchi, S., Subramanyam, M., Thiruvalluvar, A. & Linden, A. (2008). Acta Cryst. E64, o1066.
- North, H., Wutoh, K., Odoom, M. K., Karla, P., Scott, K. R. & Butcher, R. J. (2011). Acta Cryst. E67, 0603–0604.
- Pandey, S. C., Singh, S. S., Patro, B. & Ghosh, A. C. (2004). Indian J. Chem. Sect. B, 43, 2705–2707.
- Rebacz, B., Larsen, T. O., Clausen, M. H., Ronnest, M. H., Löffler, H., Ho, A. D. & Krämer, A. (2007). *Cancer Res.* 67, 6342–6350.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stadler, M., Anke, H. & Sterner, O. J. (1994). J. Antibiot. 47, 1284–1289.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

# supporting information

Acta Cryst. (2012). E68, o506 [doi:10.1107/S1600536812002255]

## 2-Iodo-3-(4-methoxyanilino)-5,5-dimethylcyclohex-2-en-1-one

## S. Paramasivam, G. Bhaskar, P. R. Seshadri and P. T. Perumal

## S1. Comment

Cyclohex-2-enone derivative exhibits antibacterial (Stadler *et al.*, 1994) and anticancer (Correia *et al.*, 2001; Rebacz *et al.*, 2007) activities. Cyclohex-2-enone plays an important role in organic synthesis (Cokcer *et al.*, 1995; Pandey *et al.*, 2004). Against this background, the title compound was chosen for X-ray structure analysis (Fig. 1). The cyclohexene ring adopts a sofa conformation with the pukering parameters (Cremer & Pople, 1975) being  $q_2$ =0.409 (3) Å,  $q_3$ =-0.247 (3)Å and  $Q_T$ =0.478 (3) Å. The molecular structure is stabilised by N—H…I intramolecular interactions and the crystal packing is stabilised by C—H…O hydrogen bonds (Fig. 2 and Table 1).

## **S2. Experimental**

1,3-cyclohexanedione (2 mmol), FeCl<sub>3</sub>.6H<sub>2</sub>O (5 mol), and 50 mg of sodium sulfate were succesively added in a dry Schlenk tube under argon. The solids were then dissolved in 3 mL of dichloromethane and stirred for 5 m. Aniline (2 mmol) was slowly added and the dark brown cloloured mixture was allowed to stir overnight. After completion, solvents were removed under vacuum and the crude oil was filtered on a plug of neutral alumina (eluent: dichloromethane/ methanol, 90/10). Solvents were then removed and enaminone product was obtained as a bright yellow solid. Then iodine (3 mmol) dissolved in CCl<sub>4</sub>/pyridine (1;1, 10 mL) was added dropwise under an atmosphere of argon to a solution of enaminone (1.5 mmol) in CCl<sub>4</sub>/pyridine (1;1, 10 mL) at 273 K. The mixture was stirred for 2 h during that time the temperature was allowed to raise to room temperature. The mixture was diluted with ethyl acetate (50 mL) and washed successively with 1 NHCl (4× 10 mL), sat. NaHCo<sub>3</sub> (20 mL), 20% aqueous Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (20 mL) and dried (Na<sub>2</sub>SO<sub>4</sub>). Filtered and concentrated under reduced pressure, the residue was further purified by column chromatography to afford pure 2-iodo-5,5-dimethyl-3-(Phenylamino) cyclohex-2-enone.

## **S3. Refinement**

Hydrogen atoms were positioned geometrically and allowed to ride on their parent atoms, with C—H = 0.93 - 0.97 Å and  $U_{iso}(H) = 1.5U_{eq}(C)$  for methyl H atoms and 1.2  $U_{eq}(C)$  for other H atoms.



## Figure 1

The molecular structure of the title compound showing the atom-numbering scheme and displacement ellipsoids drawn at the 30% probability level.

## Figure 2

The crystal packing of the title compound. Hydrogen bonds are shown by dashed lines.

## 2-Iodo-3-(4-methoxyanilino)-5,5-dimethylcyclohex-2-en-1-one

Crystal data

| $C_{15}H_{18}INO_2$                      | F(000) = 1472                                                             |
|------------------------------------------|---------------------------------------------------------------------------|
| $M_r = 371.20$                           | $D_{\rm x} = 1.610 {\rm Mg} {\rm m}^{-3}$                                 |
| Orthorhombic, Pbca                       | Mo <i>K</i> $\alpha$ radiation, $\lambda = 0.71073$ Å                     |
| Hall symbol: -P 2ac 2ab                  | Cell parameters from 3785 reflections                                     |
| a = 15.922 (5)  Å                        | $\theta = 2.1 - 28.3^{\circ}$                                             |
| b = 10.107 (5) Å                         | $\mu = 2.09 \text{ mm}^{-1}$                                              |
| c = 19.034 (5) Å                         | T = 298  K                                                                |
| V = 3063 (2) Å <sup>3</sup>              | Block, colourless                                                         |
| Z = 8                                    | $0.20 \times 0.20 \times 0.20$ mm                                         |
| Data collection                          |                                                                           |
| Bruker SMART APEXII area-detector        | 2793 reflections with $I > 2\sigma(I)$                                    |
| diffractometer                           | $R_{\rm int} = 0.025$                                                     |
| Radiation source: fine-focus sealed tube | $\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$ |
| Graphite monochromator                   | $h = -20 \rightarrow 21$                                                  |
| $\omega$ and $\varphi$ scans             | $k = -13 \rightarrow 13$                                                  |
| 15382 measured reflections               | $l = -18 \rightarrow 25$                                                  |
| 3785 independent reflections             |                                                                           |
| Refinement                               |                                                                           |

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.027$  $wR(F^2) = 0.074$ S = 0.933785 reflections 172 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

| Hydrogen site location: inferred from | $w = 1/[\sigma^2(F_o^2) + (0.0379P)^2 + 1.6353P]$        |
|---------------------------------------|----------------------------------------------------------|
| neighbouring sites                    | where $P = (F_o^2 + 2F_c^2)/3$                           |
| H-atom parameters constrained         | $(\Delta/\sigma)_{\rm max} = 0.001$                      |
|                                       | $\Delta  ho_{ m max} = 0.46 \  m e \  m \AA^{-3}$        |
|                                       | $\Delta \rho_{\rm min} = -0.53 \text{ e} \text{ Å}^{-3}$ |

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

|     | x             | У             | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|---------------|---------------|---------------|-----------------------------|--|
| I1  | 0.423501 (11) | 0.337299 (16) | 0.478996 (11) | 0.05300 (8)                 |  |
| 01  | 0.52198 (11)  | 0.14887 (18)  | 0.37743 (10)  | 0.0540 (5)                  |  |
| O2  | 0.07995 (12)  | -0.1517 (2)   | 0.71999 (11)  | 0.0631 (6)                  |  |
| N1  | 0.30564 (14)  | 0.1095 (2)    | 0.54533 (12)  | 0.0460 (5)                  |  |
| H1  | 0.3092        | 0.1935        | 0.5520        | 0.055*                      |  |
| C1  | 0.45213 (16)  | -0.0582 (3)   | 0.38180 (14)  | 0.0477 (6)                  |  |
| H1A | 0.4938        | -0.1126       | 0.4052        | 0.057*                      |  |
| H1B | 0.4621        | -0.0650       | 0.3317        | 0.057*                      |  |
| C2  | 0.46504 (15)  | 0.0831 (2)    | 0.40367 (13)  | 0.0401 (5)                  |  |
| C3  | 0.40963 (15)  | 0.1356 (2)    | 0.45650 (14)  | 0.0390 (5)                  |  |
| C4  | 0.35334 (15)  | 0.0597 (2)    | 0.49300 (12)  | 0.0378 (5)                  |  |
| C5  | 0.34440 (16)  | -0.0847 (2)   | 0.47456 (12)  | 0.0417 (5)                  |  |
| H5A | 0.2873        | -0.1125       | 0.4844        | 0.050*                      |  |
| H5B | 0.3816        | -0.1360       | 0.5044        | 0.050*                      |  |
| C6  | 0.36464 (17)  | -0.1148 (3)   | 0.39783 (13)  | 0.0456 (6)                  |  |
| C7  | 0.3655 (2)    | -0.2658 (3)   | 0.38817 (17)  | 0.0698 (9)                  |  |
| H7A | 0.3780        | -0.2866       | 0.3401        | 0.105*                      |  |
| H7B | 0.3115        | -0.3012       | 0.4003        | 0.105*                      |  |
| H7C | 0.4076        | -0.3039       | 0.4181        | 0.105*                      |  |
| C8  | 0.29981 (18)  | -0.0539 (3)   | 0.34872 (15)  | 0.0585 (7)                  |  |
| H8A | 0.3142        | -0.0742       | 0.3009        | 0.088*                      |  |
| H8B | 0.2990        | 0.0403        | 0.3550        | 0.088*                      |  |
| H8C | 0.2453        | -0.0895       | 0.3592        | 0.088*                      |  |
| C9  | 0.24994 (15)  | 0.0393 (2)    | 0.59096 (12)  | 0.0381 (5)                  |  |
| C10 | 0.16832 (16)  | 0.0851 (2)    | 0.59962 (13)  | 0.0424 (5)                  |  |
| H10 | 0.1502        | 0.1594        | 0.5751        | 0.051*                      |  |
| C11 | 0.11454 (15)  | 0.0208 (3)    | 0.64420 (13)  | 0.0455 (6)                  |  |
| H11 | 0.0605        | 0.0536        | 0.6508        | 0.055*                      |  |
| C12 | 0.13951 (16)  | -0.0923 (3)   | 0.67950 (12)  | 0.0437 (6)                  |  |
| C13 | 0.22144 (16)  | -0.1371 (3)   | 0.67234 (13)  | 0.0437 (6)                  |  |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

# supporting information

| H13  | 0.2393       | -0.2119     | 0.6965       | 0.052*     |
|------|--------------|-------------|--------------|------------|
| C14  | 0.27628 (15) | -0.0696 (2) | 0.62894 (13) | 0.0432 (5) |
| H14  | 0.3317       | -0.0978     | 0.6252       | 0.052*     |
| C15  | 0.1004 (2)   | -0.2714 (3) | 0.75369 (18) | 0.0698 (9) |
| H15A | 0.0528       | -0.3020     | 0.7801       | 0.105*     |
| H15B | 0.1469       | -0.2573     | 0.7849       | 0.105*     |
| H15C | 0.1154       | -0.3364     | 0.7191       | 0.105*     |
|      |              |             |              |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$     | $U^{22}$     | $U^{33}$     | $U^{12}$     | $U^{13}$     | $U^{23}$     |
|-----|--------------|--------------|--------------|--------------|--------------|--------------|
| I1  | 0.05114 (12) | 0.03804 (11) | 0.06982 (15) | -0.00787 (7) | 0.00678 (9)  | -0.00135 (8) |
| 01  | 0.0359 (9)   | 0.0657 (12)  | 0.0603 (12)  | -0.0075 (8)  | 0.0092 (9)   | 0.0037 (9)   |
| O2  | 0.0516 (12)  | 0.0801 (16)  | 0.0577 (12)  | -0.0013 (10) | 0.0190 (9)   | 0.0170 (10)  |
| N1  | 0.0504 (12)  | 0.0374 (11)  | 0.0503 (12)  | -0.0041 (9)  | 0.0158 (10)  | -0.0014 (9)  |
| C1  | 0.0425 (13)  | 0.0544 (15)  | 0.0463 (14)  | 0.0056 (12)  | 0.0054 (12)  | -0.0065 (12) |
| C2  | 0.0310 (11)  | 0.0487 (14)  | 0.0406 (13)  | -0.0014 (10) | -0.0019 (10) | 0.0016 (11)  |
| C3  | 0.0388 (12)  | 0.0349 (12)  | 0.0432 (13)  | -0.0038 (9)  | -0.0004 (10) | -0.0004 (10) |
| C4  | 0.0368 (12)  | 0.0384 (12)  | 0.0381 (12)  | -0.0022 (10) | -0.0006 (10) | -0.0005 (10) |
| C5  | 0.0459 (14)  | 0.0373 (12)  | 0.0419 (13)  | -0.0069 (10) | 0.0024 (11)  | 0.0000 (10)  |
| C6  | 0.0489 (14)  | 0.0450 (14)  | 0.0428 (14)  | -0.0053 (11) | 0.0023 (12)  | -0.0077 (11) |
| C7  | 0.088 (2)    | 0.0530 (18)  | 0.0683 (19)  | -0.0100 (17) | 0.0057 (18)  | -0.0191 (15) |
| C8  | 0.0502 (15)  | 0.075 (2)    | 0.0503 (16)  | -0.0110 (15) | -0.0060 (13) | -0.0034 (14) |
| C9  | 0.0406 (12)  | 0.0369 (11)  | 0.0370 (12)  | -0.0015 (10) | 0.0040 (10)  | -0.0040 (10) |
| C10 | 0.0464 (13)  | 0.0411 (13)  | 0.0398 (13)  | 0.0056 (11)  | 0.0006 (11)  | 0.0000 (10)  |
| C11 | 0.0354 (12)  | 0.0572 (16)  | 0.0440 (13)  | 0.0067 (11)  | 0.0054 (11)  | -0.0043 (12) |
| C12 | 0.0440 (13)  | 0.0552 (15)  | 0.0318 (12)  | -0.0019 (11) | 0.0072 (11)  | -0.0021 (11) |
| C13 | 0.0458 (14)  | 0.0488 (14)  | 0.0367 (13)  | 0.0052 (11)  | 0.0041 (11)  | 0.0042 (10)  |
| C14 | 0.0358 (12)  | 0.0499 (14)  | 0.0440 (13)  | 0.0078 (11)  | 0.0038 (11)  | -0.0008 (11) |
| C15 | 0.083 (2)    | 0.067 (2)    | 0.0587 (18)  | -0.0143 (18) | 0.0167 (17)  | 0.0092 (16)  |
|     |              |              |              |              |              |              |

## Geometric parameters (Å, °)

| I1—C3  | 2.095 (3) | С7—Н7А  | 0.9600    |
|--------|-----------|---------|-----------|
| O1—C2  | 1.230 (3) | C7—H7B  | 0.9600    |
| O2—C12 | 1.361 (3) | C7—H7C  | 0.9600    |
| O2—C15 | 1.407 (4) | C8—H8A  | 0.9600    |
| N1-C4  | 1.350 (3) | C8—H8B  | 0.9600    |
| N1—C9  | 1.430 (3) | C8—H8C  | 0.9600    |
| N1—H1  | 0.8600    | C9—C14  | 1.382 (3) |
| C1—C2  | 1.501 (4) | C9—C10  | 1.389 (3) |
| C1—C6  | 1.537 (4) | C10—C11 | 1.369 (3) |
| C1—H1A | 0.9700    | C10—H10 | 0.9300    |
| C1—H1B | 0.9700    | C11—C12 | 1.385 (4) |
| C2—C3  | 1.439 (3) | C11—H11 | 0.9300    |
| C3—C4  | 1.369 (3) | C12—C13 | 1.387 (3) |
| C4—C5  | 1.508 (3) | C13—C14 | 1.382 (3) |
| C5—C6  | 1.526 (3) | С13—Н13 | 0.9300    |
|        |           |         |           |

| С5—Н5А      | 0.9700       | C14—H14        | 0.9300     |
|-------------|--------------|----------------|------------|
| С5—Н5В      | 0.9700       | C15—H15A       | 0.9600     |
| C6—C8       | 1.523 (4)    | C15—H15B       | 0.9600     |
| C6—C7       | 1.537 (4)    | С15—Н15С       | 0.9600     |
|             |              |                |            |
| C12—O2—C15  | 118.4 (2)    | С6—С7—Н7С      | 109.5      |
| C4—N1—C9    | 127.7 (2)    | H7A—C7—H7C     | 109.5      |
| C4—N1—H1    | 116.1        | H7B—C7—H7C     | 109.5      |
| C9—N1—H1    | 116.1        | C6—C8—H8A      | 109.5      |
| C2—C1—C6    | 115.0 (2)    | C6—C8—H8B      | 109.5      |
| C2—C1—H1A   | 108.5        | H8A—C8—H8B     | 109.5      |
| C6—C1—H1A   | 108.5        | C6—C8—H8C      | 109.5      |
| C2—C1—H1B   | 108.5        | H8A—C8—H8C     | 109.5      |
| C6—C1—H1B   | 108.5        | H8B—C8—H8C     | 109.5      |
| H1A—C1—H1B  | 107.5        | C14—C9—C10     | 119.1 (2)  |
| O1—C2—C3    | 122.4 (2)    | C14—C9—N1      | 121.7 (2)  |
| O1—C2—C1    | 120.2 (2)    | C10—C9—N1      | 119.1 (2)  |
| C3—C2—C1    | 117.4 (2)    | C11—C10—C9     | 120.0 (2)  |
| C4—C3—C2    | 123.3 (2)    | С11—С10—Н10    | 120.0      |
| C4—C3—I1    | 120.70 (18)  | C9—C10—H10     | 120.0      |
| C2—C3—I1    | 115.92 (17)  | C10—C11—C12    | 120.9 (2)  |
| N1—C4—C3    | 122.3 (2)    | C10—C11—H11    | 119.6      |
| N1—C4—C5    | 118.7 (2)    | C12—C11—H11    | 119.6      |
| C3—C4—C5    | 119.1 (2)    | O2—C12—C11     | 116.0 (2)  |
| C4—C5—C6    | 113.3 (2)    | O2—C12—C13     | 124.5 (2)  |
| С4—С5—Н5А   | 108.9        | C11—C12—C13    | 119.4 (2)  |
| С6—С5—Н5А   | 108.9        | C14—C13—C12    | 119.5 (2)  |
| C4—C5—H5B   | 108.9        | C14—C13—H13    | 120.3      |
| С6—С5—Н5В   | 108.9        | C12—C13—H13    | 120.3      |
| H5A—C5—H5B  | 107.7        | C9—C14—C13     | 120.9 (2)  |
| C8—C6—C5    | 111.3 (2)    | C9—C14—H14     | 119.5      |
| C8—C6—C1    | 110.0 (2)    | C13—C14—H14    | 119.5      |
| C5—C6—C1    | 107.9 (2)    | O2—C15—H15A    | 109.5      |
| C8—C6—C7    | 109.5 (2)    | O2—C15—H15B    | 109.5      |
| C5—C6—C7    | 108.3 (2)    | H15A—C15—H15B  | 109.5      |
| C1—C6—C7    | 109.7 (2)    | O2—C15—H15C    | 109.5      |
| С6—С7—Н7А   | 109.5        | H15A—C15—H15C  | 109.5      |
| С6—С7—Н7В   | 109.5        | H15B—C15—H15C  | 109.5      |
| H7A—C7—H7B  | 109.5        |                |            |
|             |              |                |            |
| C6-C1-C2-O1 | -160.3 (2)   | C2-C1-C6-C8    | 71.8 (3)   |
| C6—C1—C2—C3 | 20.7 (3)     | C2-C1-C6-C5    | -49.8 (3)  |
| O1—C2—C3—C4 | -171.1 (2)   | C2-C1-C6-C7    | -167.7 (2) |
| C1—C2—C3—C4 | 7.9 (4)      | C4—N1—C9—C14   | 53.2 (4)   |
| O1—C2—C3—I1 | 6.0 (3)      | C4—N1—C9—C10   | -129.6 (3) |
| C1—C2—C3—I1 | -174.98 (17) | C14—C9—C10—C11 | -1.4 (4)   |
| C9—N1—C4—C3 | -174.5 (2)   | N1-C9-C10-C11  | -178.7 (2) |
| C9—N1—C4—C5 | 5.2 (4)      | C9—C10—C11—C12 | -2.0 (4)   |
|             |              |                |            |

| C2-C3-C4-N1<br>I1-C3-C4-N1<br>C2-C3-C4-C5<br>I1-C3-C4-C5<br>N1-C4-C5-C6<br>C3-C4-C5-C6<br>C4-C5-C6-C8<br>C4-C5-C6-C1 | 175.8 (2)<br>-1.1 (3)<br>-3.9 (4)<br>179.19 (17)<br>151.7 (2)<br>-28.6 (3)<br>-67.4 (3)<br>53.4 (3) | C15-O2-C12-C11<br>C15-O2-C12-C13<br>C10-C11-C12-O2<br>C10-C11-C12-C13<br>O2-C12-C13-C14<br>C11-C12-C13-C14<br>C10-C9-C14-C13<br>N1-C9-C14-C13 | 176.3 (3)<br>-4.2 (4)<br>-177.1 (2)<br>3.3 (4)<br>179.2 (2)<br>-1.3 (4)<br>3.4 (4)<br>-179.4 (2) |
|----------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|
| C4—C5—C6—C7                                                                                                          | 172.1 (2)                                                                                           | C12—C13—C14—C9                                                                                                                                | -1/9.4(2)<br>-2.0(4)                                                                             |
|                                                                                                                      |                                                                                                     |                                                                                                                                               |                                                                                                  |

Hydrogen-bond geometry (Å, °)

| D—H···A                 | D—H  | H···A | D···A     | D—H··· $A$ |
|-------------------------|------|-------|-----------|------------|
| C14—H14…O1 <sup>i</sup> | 0.93 | 2.39  | 3.313 (3) | 174        |
| N1—H1…I1                | 0.86 | 2.71  | 3.227 (2) | 120        |

Symmetry code: (i) -x+1, -y, -z+1.