Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

3,12-Diaza-6,9-diazonia-2,13-dioxotetradecane bis(perchlorate)

Tilo Söhnel, ${ }^{\text {a* }}$ Kathrin A. Wichmann, ${ }^{\text {a,b }}$ Thomas Doert ${ }^{\text {c }}$ and Garth J. S. Cooper ${ }^{\text {b,d,e }}$
${ }^{\text {a }}$ School of Chemical Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand, ${ }^{\mathbf{b}}$ School of Biological Sciences, The University of Auckland, Private Bag 92019, Auckland, New Zealand, ${ }^{\text {c }}$ Department of Chemistry and Food Chemistry, Technical University of Dresden, 01062 Dresden, Germany,
${ }^{\text {d}}$ Centre for Advanced Discovery and Experimental Therapeutics, NIHR Manchester Biomedical Research Centre, Central Manchester University, Hospitals NHS, Foundation Trust, York Place, Manchester M13 9WL, England, and ${ }^{\mathbf{e}}$ School of Medicine, University of Manchester, Oxford Road, Manchester M13, England
Correspondence e-mail: t.soehnel@auckland.ac.nz

Received 19 December 2011; accepted 23 December 2011
Key indicators: single-crystal X-ray study; $T=150 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$; R factor $=0.039 ; w R$ factor $=0.087$; data-to-parameter ratio $=17.6$.

The crystal structure of the title diprotonated diacetyltriethylenetetramine (DAT) perchorate salt, $\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{2+} \cdot 2 \mathrm{ClO}_{4}{ }^{-}$, can be described as a three-dimensional assembly of alternating layers consisting of diprotonated diacetyltriethylenetetramine $\left(\mathrm{H}_{2} \mathrm{DAT}\right)^{2+}$ strands along [100] and the anionic species ClO_{4}^{-}. The $\left(\mathrm{H}_{2} \mathrm{DAT}\right)^{2+}$ cations in the strands are connected via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonding between the acetyl groups and the amine groups of neighbouring $\left(\mathrm{H}_{2} \mathrm{DAT}\right)^{2+}$ cations. Layers of $\left(\mathrm{H}_{2} \mathrm{DAT}\right)^{2+}$ strands and perchlorate anions are connected by a network of hydrogen bonds between the NH and NH_{2} groups and the O atoms of the perchlorate anion. The asymmetric unit consits of one perchlorate anion in a general position, as well as of one cation that is located on a center of inversion.

Related literature

For background to pharmaceutical chelating agents in the treatment of diabetes, see: Cooper et al. (2004); Gong et al. (2006, 2008); Jüllig et al. (2007); Lu et al. (2010). For the detection of a new group of TETA metabolites, see: Lu et al. (2007). For the preparation and characterization of DAT mono- and dihydrochloride salts, see: Jonas et al. (2006); Wichmann et al. (2011). For related structures, see: Elaoud et al. (1999); Fu et al. (2005); Ilioudis et al. (2000, 2002); Ilioudis \& Steed (2003); Wichmann et al. (2007).

Experimental

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{2+} \cdot 2 \mathrm{ClO}_{4}^{-}$

$$
\begin{aligned}
& V=922.44(13) \AA^{3} \\
& Z=2 \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=0.41 \mathrm{~mm}^{-1}
\end{aligned}
$$

$M_{r}=431.23$
Monoclinic, $P 2_{1} / c$
$a=6.0888$ (5) A
$b=10.9415$ (9) \AA
$c=14.8160$ (11) A
$\beta=110.846(6)^{\circ}$
Data collection
Stoe IPDS II diffractometer Absorption correction: numerical (X-RED32; Stoe \& Cie, 2001)
$T_{\text {min }}=0.837, T_{\text {max }}=0.936$
11528 measured reflections 2113 independent reflections 1624 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.114$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039 \quad 120$ parameters
$w R\left(F^{2}\right)=0.087$
H -atom parameters constrained
$S=1.03$
$\Delta \rho_{\max }=0.38 \mathrm{e}^{-3} \AA^{-3}$
$\Delta \rho_{\min }=-0.42 \mathrm{e}^{-3}$
2113 reflections

Table 1
Hydrogen-bond geometry ($\AA,^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N3-H3 \cdots O4	0.88	2.12	$2.989(2)$	167
N6-H6A \cdots O1 $^{\mathrm{i}}$	0.92	1.77	$2.6745(19)$	168
N6-H6B \cdots O $^{\mathrm{ii}}$	0.92	2.13	$2.9265(17)$	145
N6-H6B $\cdots 5^{\text {ii }}$	0.92	2.40	$3.2141(19)$	147

Symmetry codes: (i) $x-1, y, z$; (ii) $-x+1, y+\frac{1}{2},-z+\frac{3}{2}$.
Data collection: X-AREA (Stoe \& Cie, 2002); cell refinement: X $A R E A$; data reduction: $X-A R E A$; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: VESTA (Momma \& Izumi, 2011); software used to prepare material for publication: publCIF (Westrip, 2010).

We acknowledge support from the following funding sources: Endocore Research Associates; the Maurice and Phyllis Paykel Trust; Lottery Health (New Zealand); the Auckland Medical Research Foundation; the University of Auckland; the Department of Education (New Zealand) through a grant to the Maurice Wilkins Centre of Excellence for Molecular Biodiscovery; Protemix Corporation Ltd; and by program grants from the Foundation for Research Science and Technology, New Zealand and from the Health Research Council of New Zealand.

[^0]
organic compounds

References

Cooper, G. J. S., Phillips, A. R. J., Choong, S. Y., Leonard, B. L., Crossman, D. J., Brunton, D. H., Saafi, E. L., Dissanayake, A. M., Cowan, B. R., Young, A. A., Occleshaw, C. J., Chan, Y.-K., Leahy, F. E., Keogh, G. F., Gamble, G. D., Allen, G. R., Pope, A. J., Boyd, P. D. W., Poppitt, S. D., Borg, T. K., Doughty, R. N. \& Baker, J. R. (2004). Diabetes, 53, 2501-2508.
Elaoud, Z., Kamoun, S. \& Mhiri, T. (1999). J. Chem. Crystallogr. 29, 12871290.

Fu, Y.-L., Xu, Z.-W., Ren, J.-L. \& Ng, S. W. (2005). Acta Cryst. E61, o774-o775. Gong, D., Lu, J., Chen, X., Choong, S. Y., Zhang, S., Chan, Y.-K., Glyn-Jones, S., Gamble, G. D., Phillips, A. R. J. \& Cooper, G. J. S. (2006). Mol. Pharmacol. 70, 2045-2051.
Gong, D., Lu, J., Chen, X., Reddy, S., Crossman, D. J., Glyn-Jones, S., Choong, Y.-S., Kennedy, J., Barry, B., Zhang, S., Chan, Y.-K., Ruggiero, K., Phillips, A. R. J. \& Cooper, G. J. S. (2008). Diabetologia, 51, 1741-1751.

Ilioudis, C. A., Georganopoulou, D. G. \& Steed, J. W. (2002). CrystEngComm, 4, 26-36.
Ilioudis, C. A., Hancock, K. S. B., Georganopoulou, D. G. \& Steed, J. W. (2000). New J. Chem. 24, 787-798.
Ilioudis, C. A. \& Steed, J. W. (2003). J. Supramol. Chem. 1, 165-187.

Jonas, M., Vaulont, I., Soi, A. \& Schmidt, G. (2006). US Patent Appl. 20060041170.

Jüllig, M., Chen, X., Hickey, A. J., Crossman, D. J., Xu, A., Wang, Y., Greenwood, D. R., Choong, Y. S., Schönberger, S. J., Middleditch, M. J., Phillips, A. R. J. \& Cooper, G. J. S. (2007). Proteomics Clin. Appl. 1, 387-399.
Lu, J., Chan, Y.-K., Poppitt, S. D., Othman, A. A. \& Cooper, G. J. S. (2007). J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 859, 62-68.
Lu, J., Gong, D., Choong, S. Y., Xu, H., Chan, Y. K., Chen, X., Fitzpatrick, S., Glyn-Jones, S., Zhang, S., Nakamura, T., Ruggiero, K., Obolonkin, V., Poppitt, S. D., Phillips, A. R. J. \& Cooper, G. J. S. (2010). Diabetologia, 53, 1217-1226.
Momma, K. \& Izumi, F. (2011). J. Appl. Cryst. 44, 1272-1276.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Stoe \& Cie (2001). X-RED32. Stoe \& Cie GmbH, Darmstadt, Germany. Stoe \& Cie (2002). X-AREA. Stoe \& Cie GmbH, Darmstadt, Germany. Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
Wichmann, K. A., Boyd, P. D. W., Söhnel, T., Allen, G. R., Phillips, A. R. J. \& Cooper, G. J. S. (2007). Cryst. Growth Des. 7, 1844-1850.
Wichmann, K. A., Söhnel, T. \& Cooper, G. J. S. (2011). J. Mol. Struct. doi:10.1016/j.molstruc.2011.12.020.

supporting information

Acta Cryst. (2012). E68, o333-o334 [doi:10.1107/S1600536811055516]

3,12-Diaza-6,9-diazonia-2,13-dioxotetradecane bis(perchlorate)

Tilo Söhnel, Kathrin A. Wichmann, Thomas Doert and Garth J. S. Cooper

S1. Comment

As part of a larger project focusing on TETA and its metabolites as pharmaceutical chelating agents in Diabetes treatment (Cooper et al., 2004, Gong et al. 2006, 2008, Jüllig et al. 2007, Lu et al. 2010), we previously published the detection of a new group of TETA metabolites, N^{1}-Monoacetyltriethylenetetramine (MAT) and the N^{1}, N^{10}-Diacetyltriethylenetetramine (DAT) (Lu et al. 2007), as well as just recently the development of a new selective synthetic route and the characterization of the DAT mono- and dihydrochloride salts (Wichmann et al., 2011).
TETA and its metabolites belong into the polyamine family, ambivalent and multidentate ligands, which are well known for their ability to form a variety of interesting open-chain, macrocyclic and three-dimensional architectures. TETA salts exist in variable protonation states with different anionic species (Ilioudis, et al. 2000, 2002, 2003, Elaoud et al. 1999, Fu et al. 2005, Wichmann et al. 2007). Therefore, we investigated the metabolite forms MAT and DAT towards their protonation and complexation behaviour (Wichmann et al., 2011). The obtained crystal structure of the new DAT salt $\left[\left(\mathrm{H}_{2} \mathrm{DAT}\right) * 2 \mathrm{ClO}_{4}\right]$ is described in this paper.
The $\left(\mathrm{H}_{2} \mathrm{DAT}\right)^{2+}$ cations are arranged as a linear symmetric chain with the terminal $\mathrm{NH}-\mathrm{CO}-\mathrm{CH}_{3}$ groups in transposition to each other (Fig. 1).
The crystal structure consists of a three-dimensional-network, containing alternating assembly of two-dimensionallayers of $\left(\mathrm{H}_{2} \mathrm{DAT}\right)^{2+}$ cations (Fig. 2) and the $\mathrm{ClO}_{4}{ }^{-}$anions. The $\left(\mathrm{H}_{2} \mathrm{DAT}\right)^{2+}$ cations form linear strands along [100] (Fig. 3), connected via hydrogen bonding between the acetyl groups and the amine groups of neighbouring $\left(\mathrm{H}_{2} \mathrm{DAT}\right)^{2+}$ cations, with a $\mathrm{C} 2=\mathrm{O} 1 \cdots \mathrm{H} 6 \mathrm{~A} / \mathrm{N} 6$ distance of 1.767 (1) \AA. These linear strands of the $\left(\mathrm{H}_{2} \mathrm{DAT}\right)^{2+}$ cations form two-dimensionallayers in the (001) plane. However, the two-dimensional-layers of $\left(\mathrm{H}_{2} \mathrm{DAT}\right)^{2+}$ cations and the perchlorate anions were stabilized by a network of intermolecular hydrogen bonds between the NH - and NH_{2}-groups and the oxygen atoms of the perchlorate anion, with $\mathrm{N} 6-\mathrm{H} 6 \mathrm{~B} \cdots \mathrm{O} 2-\mathrm{Cl} 1-\mathrm{O} 4 \cdots \mathrm{H} 3-\mathrm{N} 3$ between 2.126 (1) \AA and 2.125 (1) \AA, (Table 1). The terminal NH-groups of a $\left(\mathrm{H}_{2} \mathrm{DAT}\right)^{2+}$ cation binds to an O -atom of a perchlorate anion, which itself bound to an internal NH-group of another $\left(\mathrm{H}_{2} \mathrm{DAT}\right)^{2+}$ cation and vice versa. Therefore each $\left(\mathrm{H}_{2} \mathrm{DAT}\right)^{2+}$ cation is connected to four different $\left(\mathrm{H}_{2} \mathrm{DAT}\right)^{2+}$ cations, two from the above and two from the below layer.

S2. Experimental

The DAT * 2 HCl powder material was synthesized by CarboGen, Switzerland according to literature procedure (Jonas et al. 2006, Wichmann et al. 2011). $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}$ is commercially available and was used as received. Crystals of the title compound were grown by slow evaporation of an aqueous solution of $\mathrm{DAT} * 2 \mathrm{HCl}$ and $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}$ in stoichiometric ratio in water over a period of 6 weeks.

S3. Refinement

H atoms bonded to C and N atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.98-0.99 \AA, \mathrm{~N}-\mathrm{H}=0.88-0.92 \AA$) and refined using a riding-model approximation, with $U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{C}, \mathrm{N})$.

Figure 1

Crystal structure of the title compound with labeling and displacement ellipsoids drawn at the 75% probabiliyt level. [symmetry code: (i) $-x,-y-z+1$].

Figure 2
Crystal structure of the title compound with view along the a axis. Hydrogen bonding interactions are shown as dashed lines.

Figure 3
The strands of $\left(\mathrm{H}_{2} \mathrm{DAT}\right)^{2+}$ cations viewed along the a axis. The dashed bonds indicate the hydrogen bonds.

3,12-Diaza-6,9-diazonia-2,13-dioxotetradecane bis(perchlorate)

Crystal data

$\mathrm{C}_{10} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{2}{ }^{2+} \cdot 2 \mathrm{ClO}_{4}^{-}$
$M_{r}=431.23$
Monoclinic, $P 2_{1} / c$
Hall symbol: -P 2ybc
$a=6.0888$ (5) \AA
$b=10.9415$ (9) \AA
$c=14.8160(11) \AA$
$\beta=110.846(6)^{\circ}$
$V=922.44(13) \AA^{3}$
$Z=2$
$F(000)=452$
$D_{\mathrm{x}}=1.553 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 12054 reflections
$\theta=4.7-59.0^{\circ}$
$\mu=0.41 \mathrm{~mm}^{-1}$
$T=150 \mathrm{~K}$
Not regular, colourless
$0.45 \times 0.35 \times 0.17 \mathrm{~mm}$

Data collection

Stoe IPDS II
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Image plate detector scans
Absorption correction: numerical
(X-RED32; Stoe \& Cie, 2001)
$T_{\text {min }}=0.837, T_{\text {max }}=0.936$

> 11528 measured reflections
> 2113 independent reflections
> 1624 reflections with $I>2 \sigma(I)$
> $R_{\text {int }}=0.114$
> $\theta_{\max }=27.5^{\circ}, \theta_{\min }=2.4^{\circ}$
> $h=-7 \rightarrow 6$
> $k=-14 \rightarrow 14$
> $l=-19 \rightarrow 19$

Refinement

Refinement on F^{2}

Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.087$
$S=1.03$
2113 reflections
120 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0435 P)^{2}+0.0412 P\right]$
where $P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.38$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-0.42$ e \AA^{-3}
Extinction correction: SHELXL97 (Sheldrick, 2008), $\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}$

Extinction coefficient: 0.0082 (19)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\AA^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
O1	$0.7492(2)$	$-0.27758(14)$	$0.49858(8)$	$0.0292(3)$
N3	$0.4849(2)$	$-0.35281(14)$	$0.55667(8)$	$0.0203(3)$
H3	0.4552	-0.3783	0.6075	0.030^{*}

N6	$0.1286(2)$	$-0.15588(13)$
H6A	0.0102	-0.2008
H6B	0.2493	-0.1497
C1	$0.8854(3)$	$-0.3315(2)$
H1A	0.9869	-0.4013
H1B	0.8082	-0.3455
H1C	0.9805	-0.2570
C2	$0.7025(3)$	$-0.31761(17)$
C4	$0.2944(3)$	$-0.35009(17)$
H4A	0.1589	-0.3965
H4B	0.3476	-0.3914
C5	$0.2149(3)$	$-0.22157(17)$
H5A	0.3478	-0.1757
H5B	0.0875	-0.2255
C7	$0.0392(3)$	$-0.03159(17)$
H7A	-0.0947	-0.0376
H7B	0.1647	0.0169
C11	$0.43802(6)$	$-0.55724(4)$
O2	$0.4296(2)$	$-0.55967(14)$
O3	$0.2285(3)$	$-0.60503(17)$
O4	$0.4650(3)$	$-0.43253(15)$
O5	$0.6382(3)$	$-0.62675(18)$

$0.49690(8)$	$0.0180(3)$
0.5058	0.027^{*}
0.5556	0.027^{*}
$0.66635(12)$	$0.0306(4)$
0.6669	0.046^{*}
0.7133	0.046^{*}
0.6835	0.046^{*}
$0.56731(10)$	$0.0212(3)$
$0.46258(10)$	$0.0218(4)$
0.4668	0.033^{*}
0.4145	0.033^{*}
$0.42777(10)$	$0.0211(3)$
0.4205	0.032^{*}
0.3637	0.032^{*}
$0.46280(11)$	$0.0230(4)$
0.4008	0.035^{*}
0.4518	0.035^{*}
$0.77065(2)$	$0.02264(14)$
$0.86654(8)$	$0.0337(3)$
$0.70295(10)$	$0.0478(4)$
$0.74660(10)$	$0.0461(4)$
$0.77258(10)$	$0.0507(5)$

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
O1	$0.0253(6)$	$0.0377(9)$	$0.0282(5)$	$-0.0049(6)$	$0.0139(5)$	$-0.0020(5)$
N3	$0.0192(6)$	$0.0211(8)$	$0.0200(6)$	$0.0012(6)$	$0.0062(5)$	$0.0024(5)$
N6	$0.0164(6)$	$0.0183(7)$	$0.0180(5)$	$0.0012(6)$	$0.0044(4)$	$0.0009(5)$
C1	$0.0222(8)$	$0.0346(12)$	$0.0290(8)$	$0.0027(8)$	$0.0020(6)$	$0.0014(8)$
C2	$0.0204(7)$	$0.0180(9)$	$0.0251(7)$	$0.0018(7)$	$0.0081(6)$	$-0.0024(6)$
C4	$0.0192(7)$	$0.0211(9)$	$0.0226(7)$	$-0.0001(7)$	$0.0041(5)$	$-0.0031(6)$
C5	$0.0214(7)$	$0.0231(9)$	$0.0185(6)$	$0.0032(7)$	$0.0069(5)$	$0.0001(6)$
C7	$0.0251(8)$	$0.0201(9)$	$0.0265(7)$	$0.0083(7)$	$0.0124(6)$	$0.0060(6)$
C11	$0.0200(2)$	$0.0276(2)$	$0.01913(18)$	$0.00163(17)$	$0.00557(13)$	$0.00246(15)$
O2	$0.0382(7)$	$0.0424(9)$	$0.0237(6)$	$0.0036(7)$	$0.0150(5)$	$0.0075(5)$
O3	$0.0355(8)$	$0.0518(11)$	$0.0400(7)$	$-0.0072(8)$	$-0.0063(6)$	$-0.0065(7)$
O4	$0.0564(9)$	$0.0378(10)$	$0.0441(7)$	$-0.0072(8)$	$0.0180(7)$	$0.0166(7)$
O5	$0.0381(8)$	$0.0661(13)$	$0.0463(8)$	$0.0256(8)$	$0.0130(6)$	$-0.0092(8)$

Geometric parameters $\left(\AA,{ }^{\circ}\right)$

$\mathrm{O} 1-\mathrm{C} 2$	$1.231(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.517(2)$
$\mathrm{N} 3-\mathrm{C} 2$	$1.334(2)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	0.9900
$\mathrm{~N} 3-\mathrm{C} 4$	$1.4622(17)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	0.9900
$\mathrm{~N} 3-\mathrm{H} 3$	0.8800	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	0.9900
$\mathrm{~N} 6-\mathrm{C} 7$	$1.485(2)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~B}$	0.9900
$\mathrm{~N} 6-\mathrm{C} 5$	$1.492(2)$	$\mathrm{C} 7-\mathrm{C} 7^{\mathrm{i}}$	$1.515(3)$

N6-H6A	0.9200	C7-H7A	0.9900
N6-H6B	0.9200	C7-H7B	0.9900
$\mathrm{C} 1-\mathrm{C} 2$	1.501 (2)	$\mathrm{Cl1}-\mathrm{O} 3$	1.4129 (13)
C1-H1A	0.9800	Cl1-O5	1.4284 (15)
C1-H1B	0.9800	Cl1-O4	1.4344 (16)
C1-H1C	0.9800	C11-O2	1.4401 (12)
C2-N3-C4	121.60 (13)	N3-C4-H4B	109.0
C2-N3-H3	119.2	C5-C4-H4B	109.0
C4-N3-H3	119.2	$\mathrm{H} 4 \mathrm{~A}-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~B}$	107.8
C7-N6-C5	112.56 (12)	N6-C5-C4	111.17 (13)
C7-N6-H6A	109.1	N6-C5-H5A	109.4
C5-N6-H6A	109.1	C4-C5-H5A	109.4
C7-N6-H6B	109.1	N6-C5-H5B	109.4
C5-N6-H6B	109.1	C4-C5-H5B	109.4
H6A-N6-H6B	107.8	H5A-C5-H5B	108.0
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~A}$	109.5	N6-C7-C7 ${ }^{\text {i }}$	110.03 (16)
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	N6-C7-H7A	109.7
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~B}$	109.5	C7- ${ }^{\text {i }} 7-\mathrm{H} 7 \mathrm{~A}$	109.7
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	N6-C7-H7B	109.7
$\mathrm{H} 1 \mathrm{~A}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	C7- ${ }^{\text {i }} 7$ - H 7 B	109.7
$\mathrm{H} 1 \mathrm{~B}-\mathrm{C} 1-\mathrm{H} 1 \mathrm{C}$	109.5	H7A-C7-H7B	108.2
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{N} 3$	121.11 (13)	$\mathrm{O} 3-\mathrm{Cl} 1-\mathrm{O} 5$	111.45 (11)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	122.39 (15)	$\mathrm{O} 3-\mathrm{Cl} 1-\mathrm{O} 4$	109.27 (10)
N3-C2-C1	116.49 (14)	$\mathrm{O} 5-\mathrm{Cl} 1-\mathrm{O} 4$	109.82 (11)
N3-C4-C5	113.08 (13)	$\mathrm{O} 3-\mathrm{Cl} 1-\mathrm{O} 2$	110.69 (9)
N3-C4-H4A	109.0	$\mathrm{O} 5-\mathrm{Cl} 1-\mathrm{O} 2$	107.47 (8)
C5-C4-H4A	109.0	$\mathrm{O} 4-\mathrm{Cl} 1-\mathrm{O} 2$	108.06 (10)

Symmetry code: (i) $-x,-y,-z+1$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 3 — \mathrm{H} 3 \cdots \mathrm{O} 4$	0.88	2.12	$2.989(2)$	167
$\mathrm{~N} 6-\mathrm{H} 6 A \cdots \mathrm{O} 1^{\mathrm{ii}}$	0.92	1.77	$2.6745(19)$	168
$\mathrm{~N} 6-\mathrm{H} 6 B \cdots \mathrm{O} 2^{\mathrm{iii}}$	0.92	2.13	$2.9265(17)$	145
$\mathrm{~N} 6-\mathrm{H} 6 B \cdots 5^{\mathrm{iii}}$	0.92	2.40	$3.2141(19)$	147

Symmetry codes: (ii) $x-1, y, z$; (iii) $-x+1, y+1 / 2,-z+3 / 2$.

[^0]: Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: NC2261).

