Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 6-Chloro-N-(2-methoxyphenyl)pyridazin-3-amine

### Abdul Qayyum Ather,<sup>a,b</sup> M. Nawaz Tahir,<sup>c</sup>\* Muhammad Naeem Khan,<sup>b</sup> Misbahul Ain Khan<sup>a</sup> and Muhammad Makshoof Athar<sup>d</sup>

<sup>a</sup>Department of Chemistry, Islamia University, Bahawalpur, Pakistan, <sup>b</sup>Applied Chemistry Research Center, PCSIR Laboratories complex, Lahore 54600, Pakistan, <sup>c</sup>University of Sargodha, Department of Physics, Sargodha, Pakistan, and <sup>d</sup>Institute of Chemistry, University of the Punjab, Lahore, Pakistan Correspondence e-mail: dmntahir\_uos@yahoo.com

Received 7 January 2012; accepted 13 January 2012

Key indicators: single-crystal X-ray study; T = 295 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.039; wR factor = 0.110; data-to-parameter ratio = 15.1.

The asymmetric unit of the title compound,  $C_{11}H_{10}CIN_3O$ , contains two geometrically different molecules, A and B, in both of which the pyridazine rings are essentially planar with r.m.s. deviations of 0.0137 and 0.0056Å, respectively. In molecule A, the dihedral angle between the pyridazine and benzene rings is 6.5 (2)°, whereas in molecule B it is 27.93 (7)°. In molecule *B*, an intramolecular  $N-H \cdots O$  hydrogen bond forms an S(5) ring motif. In both molecules, S(6) ring motifs are present due to non-classical  $C-H \cdots N$  hydrogen bonds. The  $\pi$ - $\pi$  interactions between the pyridazine rings of A molecules [3.4740 (13) Å] and B molecules [3.4786 (17) Å]have very similar centroid-centroid separations.  $\pi$ - $\pi$  Interactions also occur between the benzene rings of B molecules with a centroid-centroid separation of 3.676 (2) Å and a slippage of 1.02 Å. In the crystal, the molecules are linked into chains extending along [010] by  $C-H\cdots N$  and  $C-H\cdots Cl$ interactions.

#### **Related literature**

For general background and related structures, see: Ather et al. (2010a,b,c; 2011). For graph-set notation, see: Bernstein et al. (1995).



Monoclinic, P2/c

a = 14.6018 (5) Å

### **Experimental**

Crystal data C11H10ClN3O  $M_r = 235.67$ 

b = 10.8574 (3) Å c = 17.4630 (6) Å  $\beta = 126.438 \ (2)^{\circ}$ V = 2227.29 (14) Å<sup>3</sup> Z = 8

### Data collection

| Bruker Kappa APEXII CCD                | 17904 measured reflections             |
|----------------------------------------|----------------------------------------|
| diffractometer                         | 4387 independent reflections           |
| Absorption correction: multi-scan      | 2815 reflections with $I > 2\sigma(I)$ |
| (SADABS; Bruker, 2005)                 | $R_{\rm int} = 0.027$                  |
| $T_{\min} = 0.938, \ T_{\max} = 0.957$ |                                        |

Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.039$ | 291 parameters                                             |
|---------------------------------|------------------------------------------------------------|
| $wR(F^2) = 0.110$               | H-atom parameters constrained                              |
| S = 1.03                        | $\Delta \rho_{\rm max} = 0.20 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 4387 reflections                | $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$ |

Mo  $K\alpha$  radiation

 $0.32 \times 0.16 \times 0.14 \text{ mm}$ 

 $\mu = 0.32 \text{ mm}^{-1}$ 

T = 295 K

| Table 1       |          |     |     |
|---------------|----------|-----|-----|
| Hydrogen-bond | geometry | (Å, | °). |

| $D - H \cdots A$                   | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|------------------------------------|------|-------------------------|--------------|---------------------------|
| N3-H3···O1                         | 0.86 | 2.14                    | 2.579 (3)    | 111                       |
| N3-H3···N4                         | 0.86 | 2.48                    | 3.278 (2)    | 155                       |
| $N6-H6A\cdots N1^{i}$              | 0.86 | 2.44                    | 3.270 (3)    | 161                       |
| $C2-H2 \cdot \cdot \cdot Cl2^{ii}$ | 0.93 | 2.79                    | 3.526 (2)    | 137                       |
| $C3-H3A\cdots N5$                  | 0.93 | 2.61                    | 3.503 (3)    | 161                       |
| $C6-H6\cdots N2$                   | 0.93 | 2.31                    | 2.913 (4)    | 122                       |
| C17−H17···N5                       | 0.93 | 2.50                    | 2.992 (3)    | 113                       |

Symmetry codes: (i) x, y + 1, z; (ii)  $-x + 1, y, -z + \frac{1}{2}$ .

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors acknowledge the provision of funds for the purchase of diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana International, Karachi, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2330).

#### References

- Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010a). Acta Cryst. E66, o2107.
- Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2010b). Acta Cryst. E66. o2499.
- Ather, A. Q., Tahir, M. N., Khan, M. A. & Athar, M. M. (2011). Acta Cryst. E67. o1020.
- Ather, A. Q., Tahir, M. N., Khan, M. A., Athar, M. M. & Bueno, E. A. S. (2010c). Acta Cryst. E66, o2493.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.



Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Spek, A. L. (2009). Acta Cryst. D65, 148–155.

# supporting information

Acta Cryst. (2012). E68, o438-o439 [doi:10.1107/S1600536812001535]

# 6-Chloro-N-(2-methoxyphenyl)pyridazin-3-amine

# Abdul Qayyum Ather, M. Nawaz Tahir, Muhammad Naeem Khan, Misbahul Ain Khan and Muhammad Makshoof Athar

### S1. Comment

In continuation to 6-chloropyridazin derivatives (Ather *et al.*, 2010*a*,*b*,*c*; 2011), the title compound **I** (Fig. 1) is being reported here.

The two molecules in the asymmetric unit are present, which differ from each other geometrically. In one molecule, the pyridazin ring A (C1-C4/N1/N2) and the phenyl ring B (C5-C10) are planar with r. m. s. deviation of 0.0137Å and 0.0065Å, respectively. The dihedral angle between A/B is 6.5 (2)°. In second molecule, the pyridazin ring C (C12-C15/N4/N5) and the phenyl ring D (C16-C21) are planar with r. m. s. deviation of 0.0056 and 0.0053Å, respectively and the dihedral angle between C/D is 27.93 (7)°. In the more planar molecule, there exists classical intramolecular H-bonding of N–H…O type (Table 1, Fig. 2) with *S*(5) ring motif (Bernstein *et al.*, 1995). In both molecules *S*(6) ring motifs are formed due to non-classical C–H…N type of H-bondings (Table 1, Fig. 2). The molecules are interlinked due to the H-bondings of C–H…N and C–H…Cl types (Table 1, Fig. 2) to form the one dimensional polymeric chains extending along [0 1 0]. There exist  $\pi$ - $\pi$  interactions between the centroids of a phenyl and two pyridazin rings with *Cg*A…*Cg*A<sup>i</sup> = 3.4740 (13)Å, *Cg*C…*Cg*C<sup>i</sup> = 3.4786 (17)Å and *Cg*D…*Cg*D<sup>ii</sup> = 3.676 (2)Å (slippage = 1.021Å), where *Cg*A, *Cg*C and *Cg*D are the centroids of the rings A, C and D, respectively. Symmetry codes: (i) 1-*x*, *y*, 1/2-*z*; (ii) -*x*, 1-*y*, -*z*.

### **S2.** Experimental

An equimolar quantity (6.71 mmol) of 3,6-dichloropyradizine and 2-methoxyaniline in 10 ml of ethanol was heated under reflux for 3 h. The reaction mixture was concentrated under reduced pressure, cooled and poured over 50 ml of distilled water. The precipitate was filtered and dried in oven on 333 K. The dried crude product was recrystallized in ethanol to obtain colourless needles of **I**.

### **S3. Refinement**

The H-atoms were positioned geometrically (C–H = 0.93-0.96Å, N–H = 0.86Å) and refined as riding with  $U_{iso}(H) = xU_{eq}(C, N)$ , where x = 1.5 for methyl groups and x = 1.2 for other H atoms.



## Figure 1

View of the title compound with the atom numbering scheme. The displacement ellipsoids are drawn at the 30% probability level. The H atoms are shown as small spheres of arbitrary radii.



## Figure 2

Packing diagram of the title compound showing that molecules form one dimensional polymeric chains along [0 1 0].

### 6-Chloro-N-(2-methoxyphenyl)pyridazin-3-amine

| Crystal data                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $C_{11}H_{10}CIN_{3}O$ $M_{r} = 235.67$ Monoclinic, <i>P2/c</i> Hall symbol: -P 2yc<br>a = 14.6018 (5) Å<br>b = 10.8574 (3) Å<br>c = 17.4630 (6) Å<br>$\beta = 126.438$ (2)°<br>V = 2227.29 (14) Å <sup>3</sup><br>Z = 8 | F(000) = 976<br>$D_x = 1.406 \text{ Mg m}^{-3}$<br>Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$<br>Cell parameters from 773 reflections<br>$\theta = 2.4-25.3^{\circ}$<br>$\mu = 0.32 \text{ mm}^{-1}$<br>T = 295  K<br>Needle, colourless<br>$0.32 \times 0.16 \times 0.14 \text{ mm}$ |
| Data collection                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                |
| Bruker Kappa APEXII CCD<br>diffractometer<br>Radiation source: fine-focus sealed tube<br>Graphite monochromator<br>Detector resolution: 8.0 pixels mm <sup>-1</sup><br>ω scans                                           | Absorption correction: multi-scan<br>( <i>SADABS</i> ; Bruker, 2005)<br>$T_{min} = 0.938$ , $T_{max} = 0.957$<br>17904 measured reflections<br>4387 independent reflections<br>2815 reflections with $I > 2\sigma(I)$<br>$R_{int} = 0.027$                                                     |

| $\theta_{\rm max} = 26.0^\circ,  \theta_{\rm min} = 1.9^\circ$ | $k = -13 \rightarrow 12$                                   |
|----------------------------------------------------------------|------------------------------------------------------------|
| $h = -17 \rightarrow 18$                                       | $l = -21 \rightarrow 21$                                   |
| Refinement                                                     |                                                            |
| Refinement on $F^2$                                            | Secondary atom site location: difference Fourier           |
| Least-squares matrix: full                                     | map                                                        |
| $R[F^2 > 2\sigma(F^2)] = 0.039$                                | Hydrogen site location: inferred from                      |
| $wR(F^2) = 0.110$                                              | neighbouring sites                                         |
| S = 1.03                                                       | H-atom parameters constrained                              |
| 4387 reflections                                               | $w = 1/[\sigma^2(F_o^2) + (0.048P)^2 + 0.3696P]$           |
| 291 parameters                                                 | where $P = (F_o^2 + 2F_c^2)/3$                             |
| 0 restraints                                                   | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| Primary atom site location: structure-invariant                | $\Delta  ho_{ m max} = 0.20 \ { m e} \ { m \AA}^{-3}$      |
| direct methods                                                 | $\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$ |

#### Special details

**Geometry**. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x            | у             | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ |
|-----|--------------|---------------|---------------|-----------------------------|
| Cl1 | 0.46850 (6)  | -0.13866 (5)  | 0.05144 (5)   | 0.0738 (2)                  |
| 01  | 0.24223 (15) | 0.23518 (15)  | 0.32088 (12)  | 0.0808 (7)                  |
| N1  | 0.36545 (16) | -0.13820 (14) | 0.13098 (13)  | 0.0619 (6)                  |
| N2  | 0.32177 (15) | -0.08784 (14) | 0.17449 (13)  | 0.0607 (7)                  |
| N3  | 0.28781 (15) | 0.08591 (15)  | 0.23280 (13)  | 0.0659 (7)                  |
| C1  | 0.40898 (17) | -0.06681 (16) | 0.10082 (14)  | 0.0523 (7)                  |
| C2  | 0.41035 (19) | 0.06066 (17)  | 0.10578 (15)  | 0.0626 (8)                  |
| C3  | 0.3676 (2)   | 0.11179 (16)  | 0.14842 (16)  | 0.0645 (9)                  |
| C4  | 0.32520 (17) | 0.03400 (16)  | 0.18478 (14)  | 0.0528 (7)                  |
| C5  | 0.23884 (17) | 0.0334 (2)    | 0.27383 (15)  | 0.0622 (8)                  |
| C6  | 0.2125 (2)   | -0.0903 (2)   | 0.26998 (19)  | 0.0792 (10)                 |
| C7  | 0.1651 (3)   | -0.1314 (3)   | 0.3150 (2)    | 0.1053 (16)                 |
| C8  | 0.1428 (3)   | -0.0507 (3)   | 0.3617 (2)    | 0.1073 (14)                 |
| C9  | 0.1660 (2)   | 0.0735 (3)    | 0.36443 (19)  | 0.0881 (11)                 |
| C10 | 0.21385 (19) | 0.1147 (2)    | 0.32131 (16)  | 0.0673 (9)                  |
| C11 | 0.2238 (3)   | 0.3246 (3)    | 0.3706 (2)    | 0.0938 (11)                 |
| Cl2 | 0.56300 (6)  | 0.35556 (5)   | 0.46367 (4)   | 0.0777 (2)                  |
| O2  | 0.08261 (14) | 0.73892 (13)  | -0.00138 (12) | 0.0856 (7)                  |
| N4  | 0.40277 (16) | 0.36064 (13)  | 0.28154 (14)  | 0.0582 (7)                  |
| N5  | 0.32848 (15) | 0.41352 (13)  | 0.19496 (13)  | 0.0575 (6)                  |
| N6  | 0.25123 (16) | 0.59100 (15)  | 0.10279 (14)  | 0.0722 (7)                  |
| C12 | 0.47012 (18) | 0.42988 (16)  | 0.35550 (15)  | 0.0537 (7)                  |
| C13 | 0.47274 (19) | 0.55815 (17)  | 0.35300 (17)  | 0.0622 (8)                  |

| C14  | 0.3991 (2)   | 0.61149 (17) | 0.26792 (17)  | 0.0655 (9)  |
|------|--------------|--------------|---------------|-------------|
| C15  | 0.32556 (18) | 0.53634 (16) | 0.18843 (16)  | 0.0550 (8)  |
| C16  | 0.15632 (19) | 0.54289 (18) | 0.01765 (16)  | 0.0592 (8)  |
| C17  | 0.1480 (2)   | 0.4246 (2)   | -0.01534 (18) | 0.0705 (9)  |
| C18  | 0.0498 (3)   | 0.3871 (2)   | -0.10086 (19) | 0.0834 (10) |
| C19  | -0.0397 (2)  | 0.4662 (3)   | -0.15407 (19) | 0.0842 (11) |
| C20  | -0.0322 (2)  | 0.5845 (2)   | -0.12320 (19) | 0.0760 (10) |
| C21  | 0.0649 (2)   | 0.62309 (19) | -0.03823 (17) | 0.0633 (9)  |
| C22  | -0.0100 (3)  | 0.8233 (3)   | -0.0472 (2)   | 0.1089 (13) |
| H2   | 0.43954      | 0.10860      | 0.08075       | 0.0752*     |
| H3   | 0.29570      | 0.16458      | 0.23890       | 0.0791*     |
| H3A  | 0.36609      | 0.19688      | 0.15370       | 0.0775*     |
| H6   | 0.22645      | -0.14566     | 0.23738       | 0.0949*     |
| H7   | 0.14864      | -0.21451     | 0.31319       | 0.1261*     |
| H8   | 0.11179      | -0.07923     | 0.39190       | 0.1288*     |
| Н9   | 0.14920      | 0.12855      | 0.39529       | 0.1058*     |
| H11A | 0.26440      | 0.30060      | 0.43607       | 0.1408*     |
| H11B | 0.14394      | 0.32969      | 0.34210       | 0.1408*     |
| H11C | 0.25074      | 0.40345      | 0.36695       | 0.1408*     |
| H6A  | 0.26458      | 0.66753      | 0.10045       | 0.0866*     |
| H13  | 0.52290      | 0.60433      | 0.40746       | 0.0747*     |
| H14  | 0.39682      | 0.69672      | 0.26167       | 0.0786*     |
| H17  | 0.20860      | 0.37019      | 0.02014       | 0.0846*     |
| H18  | 0.04463      | 0.30724      | -0.12243      | 0.1002*     |
| H19  | -0.10576     | 0.43986      | -0.21125      | 0.1013*     |
| H20  | -0.09290     | 0.63851      | -0.15978      | 0.0912*     |
| H22A | -0.07363     | 0.78708      | -0.05266      | 0.1638*     |
| H22B | -0.03118     | 0.84205      | -0.10951      | 0.1638*     |
| H22C | 0.01230      | 0.89754      | -0.01038      | 0.1638*     |
|      |              |              |               |             |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| C11 | 0.1073 (5)  | 0.0477 (3)  | 0.0915 (4)  | 0.0106 (3)   | 0.0727 (4)  | 0.0023 (3)   |
| 01  | 0.1095 (13) | 0.0681 (10) | 0.0948 (12) | 0.0036 (9)   | 0.0771 (11) | -0.0063 (9)  |
| N1  | 0.0869 (13) | 0.0357 (8)  | 0.0751 (12) | -0.0041 (8)  | 0.0547 (11) | -0.0027 (8)  |
| N2  | 0.0787 (13) | 0.0389 (8)  | 0.0778 (13) | -0.0060 (8)  | 0.0537 (11) | -0.0029 (8)  |
| N3  | 0.0868 (14) | 0.0455 (9)  | 0.0894 (14) | 0.0022 (9)   | 0.0654 (12) | 0.0000 (9)   |
| C1  | 0.0654 (13) | 0.0360 (9)  | 0.0545 (13) | 0.0019 (9)   | 0.0350 (11) | 0.0012 (9)   |
| C2  | 0.0921 (17) | 0.0368 (9)  | 0.0779 (16) | -0.0039 (10) | 0.0608 (14) | 0.0000 (10)  |
| C3  | 0.0981 (18) | 0.0305 (9)  | 0.0837 (16) | -0.0042 (10) | 0.0642 (15) | -0.0031 (10) |
| C4  | 0.0581 (13) | 0.0406 (10) | 0.0582 (13) | 0.0001 (9)   | 0.0338 (11) | 0.0015 (9)   |
| C5  | 0.0549 (13) | 0.0675 (13) | 0.0651 (14) | -0.0018 (10) | 0.0361 (12) | 0.0015 (11)  |
| C6  | 0.0869 (18) | 0.0732 (15) | 0.099 (2)   | -0.0176 (13) | 0.0670 (17) | -0.0098 (14) |
| C7  | 0.120 (3)   | 0.100 (2)   | 0.129 (3)   | -0.0425 (18) | 0.092 (2)   | -0.0195 (19) |
| C8  | 0.121 (2)   | 0.129 (3)   | 0.112 (2)   | -0.048 (2)   | 0.091 (2)   | -0.026 (2)   |
| C9  | 0.0869 (19) | 0.113 (2)   | 0.0851 (19) | -0.0225 (16) | 0.0623 (17) | -0.0181 (16) |
| C10 | 0.0607 (15) | 0.0811 (16) | 0.0631 (15) | -0.0031 (12) | 0.0384 (13) | -0.0040 (12) |
|     |             |             |             |              |             |              |

| C11 | 0.122 (2)   | 0.0861 (18) | 0.097 (2)   | 0.0192 (16)  | 0.0780 (19) | -0.0074 (15) |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| Cl2 | 0.1150 (5)  | 0.0491 (3)  | 0.0793 (4)  | 0.0085 (3)   | 0.0634 (4)  | 0.0085 (3)   |
| O2  | 0.0938 (13) | 0.0507 (9)  | 0.0976 (12) | 0.0108 (8)   | 0.0489 (11) | 0.0039 (8)   |
| N4  | 0.0806 (13) | 0.0349 (8)  | 0.0777 (13) | 0.0005 (8)   | 0.0572 (11) | -0.0002 (9)  |
| N5  | 0.0726 (12) | 0.0352 (8)  | 0.0763 (12) | -0.0019 (8)  | 0.0505 (11) | -0.0007 (8)  |
| N6  | 0.0799 (14) | 0.0406 (9)  | 0.0811 (14) | -0.0046 (9)  | 0.0397 (12) | 0.0088 (9)   |
| C12 | 0.0736 (14) | 0.0378 (9)  | 0.0731 (14) | 0.0029 (9)   | 0.0564 (13) | 0.0027 (10)  |
| C13 | 0.0846 (16) | 0.0377 (10) | 0.0767 (16) | -0.0088 (10) | 0.0546 (14) | -0.0064 (10) |
| C14 | 0.0877 (17) | 0.0320 (9)  | 0.0839 (17) | -0.0032 (10) | 0.0549 (15) | 0.0024 (10)  |
| C15 | 0.0677 (14) | 0.0369 (10) | 0.0758 (15) | -0.0039 (9)  | 0.0510 (13) | 0.0006 (10)  |
| C16 | 0.0677 (15) | 0.0510 (11) | 0.0696 (15) | -0.0030 (11) | 0.0466 (13) | 0.0021 (11)  |
| C17 | 0.0809 (17) | 0.0608 (13) | 0.0805 (17) | 0.0063 (12)  | 0.0537 (15) | -0.0031 (12) |
| C18 | 0.106 (2)   | 0.0732 (15) | 0.0828 (19) | -0.0028 (15) | 0.0625 (19) | -0.0188 (14) |
| C19 | 0.0857 (19) | 0.093 (2)   | 0.0746 (18) | -0.0053 (16) | 0.0480 (16) | -0.0130 (15) |
| C20 | 0.0761 (18) | 0.0790 (16) | 0.0781 (18) | 0.0104 (13)  | 0.0487 (16) | 0.0077 (14)  |
| C21 | 0.0755 (16) | 0.0548 (12) | 0.0738 (16) | 0.0020 (11)  | 0.0521 (15) | 0.0042 (11)  |
| C22 | 0.116 (2)   | 0.0680 (16) | 0.137 (3)   | 0.0319 (16)  | 0.072 (2)   | 0.0163 (17)  |
|     |             |             |             |              |             |              |

Geometric parameters (Å, °)

| Cl1—C1  | 1.731 (3) | C2—H2    | 0.9300    |
|---------|-----------|----------|-----------|
| Cl2—C12 | 1.737 (2) | С3—НЗА   | 0.9300    |
| O1—C10  | 1.374 (3) | С6—Н6    | 0.9300    |
| 01—C11  | 1.431 (4) | С7—Н7    | 0.9300    |
| O2—C21  | 1.366 (3) | C8—H8    | 0.9300    |
| O2—C22  | 1.422 (4) | С9—Н9    | 0.9300    |
| N1—N2   | 1.363 (3) | C11—H11B | 0.9600    |
| N1-C1   | 1.296 (3) | C11—H11C | 0.9600    |
| N2-C4   | 1.332 (2) | C11—H11A | 0.9600    |
| N3—C5   | 1.399 (4) | C12—C13  | 1.395 (3) |
| N3—C4   | 1.365 (3) | C13—C14  | 1.342 (3) |
| N3—H3   | 0.8600    | C14—C15  | 1.405 (3) |
| N4—N5   | 1.358 (3) | C16—C21  | 1.395 (4) |
| N4—C12  | 1.301 (3) | C16—C17  | 1.383 (3) |
| N5-C15  | 1.337 (2) | C17—C18  | 1.381 (4) |
| N6-C15  | 1.356 (3) | C18—C19  | 1.366 (5) |
| N6-C16  | 1.399 (3) | C19—C20  | 1.372 (4) |
| N6—H6A  | 0.8600    | C20—C21  | 1.374 (4) |
| C1—C2   | 1.386 (3) | C13—H13  | 0.9300    |
| C2—C3   | 1.343 (4) | C14—H14  | 0.9300    |
| C3—C4   | 1.402 (4) | C17—H17  | 0.9300    |
| C5—C10  | 1.400 (4) | C18—H18  | 0.9300    |
| C5—C6   | 1.388 (3) | C19—H19  | 0.9300    |
| С6—С7   | 1.394 (5) | C20—H20  | 0.9300    |
| С7—С8   | 1.362 (5) | C22—H22A | 0.9600    |
| C8—C9   | 1.384 (5) | C22—H22B | 0.9600    |
| C9—C10  | 1.371 (4) | C22—H22C | 0.9600    |
|         |           |          |           |

| C10—O1—C11     | 118.5 (3)   | H11B—C11—H11C | 109.00      |
|----------------|-------------|---------------|-------------|
| C21—O2—C22     | 118.5 (2)   | H11A—C11—H11B | 110.00      |
| N2—N1—C1       | 119.43 (16) | O1—C11—H11B   | 109.00      |
| N1—N2—C4       | 118.8 (2)   | O1—C11—H11C   | 109.00      |
| C4—N3—C5       | 131.21 (18) | H11A—C11—H11C | 109.00      |
| C5—N3—H3       | 114.00      | O1—C11—H11A   | 109.00      |
| C4—N3—H3       | 114.00      | N4—C12—C13    | 124.4 (2)   |
| N5—N4—C12      | 119.61 (15) | Cl2—C12—N4    | 116.94 (14) |
| N4—N5—C15      | 118.73 (17) | Cl2—C12—C13   | 118.68 (17) |
| C15—N6—C16     | 130.36 (18) | C12—C13—C14   | 116.5 (2)   |
| C15—N6—H6A     | 115.00      | C13—C14—C15   | 118.86 (18) |
| C16—N6—H6A     | 115.00      | N5-C15-C14    | 121.9 (2)   |
| N1—C1—C2       | 124.3 (2)   | N6-C15-C14    | 118.47 (17) |
| Cl1—C1—C2      | 119.2 (2)   | N5—C15—N6     | 119.65 (19) |
| Cl1—C1—N1      | 116.44 (15) | C17—C16—C21   | 118.5 (2)   |
| C1—C2—C3       | 116.9 (2)   | N6-C16-C17    | 125.2 (2)   |
| C2—C3—C4       | 118.53 (18) | N6-C16-C21    | 116.29 (19) |
| N2—C4—C3       | 121.9 (2)   | C16—C17—C18   | 120.1 (3)   |
| N3—C4—C3       | 118.34 (17) | C17—C18—C19   | 120.6 (2)   |
| N2—C4—N3       | 119.8 (2)   | C18—C19—C20   | 120.0 (3)   |
| N3—C5—C10      | 116.0 (2)   | C19—C20—C21   | 120.0 (3)   |
| N3—C5—C6       | 125.5 (2)   | C16—C21—C20   | 120.7 (2)   |
| C6—C5—C10      | 118.5 (3)   | O2—C21—C16    | 114.2 (2)   |
| C5—C6—C7       | 119.9 (3)   | O2—C21—C20    | 125.1 (2)   |
| C6—C7—C8       | 120.5 (3)   | C12—C13—H13   | 122.00      |
| C7—C8—C9       | 120.5 (4)   | C14—C13—H13   | 122.00      |
| C8—C9—C10      | 119.5 (3)   | C13—C14—H14   | 121.00      |
| C5—C10—C9      | 121.1 (2)   | C15—C14—H14   | 121.00      |
| O1—C10—C9      | 124.6 (3)   | C16—C17—H17   | 120.00      |
| O1—C10—C5      | 114.3 (2)   | C18—C17—H17   | 120.00      |
| C1—C2—H2       | 122.00      | C17—C18—H18   | 120.00      |
| С3—С2—Н2       | 122.00      | C19—C18—H18   | 120.00      |
| С4—С3—НЗА      | 121.00      | C18—C19—H19   | 120.00      |
| С2—С3—НЗА      | 121.00      | С20—С19—Н19   | 120.00      |
| С7—С6—Н6       | 120.00      | C19—C20—H20   | 120.00      |
| С5—С6—Н6       | 120.00      | C21—C20—H20   | 120.00      |
| С6—С7—Н7       | 120.00      | O2—C22—H22A   | 109.00      |
| С8—С7—Н7       | 120.00      | O2—C22—H22B   | 109.00      |
| С7—С8—Н8       | 120.00      | O2—C22—H22C   | 109.00      |
| С9—С8—Н8       | 120.00      | H22A—C22—H22B | 109.00      |
| С8—С9—Н9       | 120.00      | H22A—C22—H22C | 110.00      |
| С10—С9—Н9      | 120.00      | H22B—C22—H22C | 110.00      |
|                |             |               |             |
| C11-O1-C10-C5  | -177.8 (2)  | N3—C5—C6—C7   | 179.2 (3)   |
| C11—O1—C10—C9  | 1.7 (4)     | C10—C5—C6—C7  | -1.7 (4)    |
| C22—O2—C21—C16 | -172.8 (3)  | N3-C5-C10-O1  | -0.4 (3)    |
| C22—O2—C21—C20 | 8.1 (5)     | C6—C5—C10—C9  | 1.0 (4)     |
| N2—N1—C1—C2    | -3.0 (3)    | N3—C5—C10—C9  | -179.8 (2)  |

| C4-N3-C5-C6 $-3.1$ (4) $C12-C12-C13-C14$ $-1$ $C4-N3-C5-C10$ $177.8$ (2) $N4-C12-C13-C14$ $0.8$ $C12-N4-N5-C15$ $-1.0$ (4) $C12-C13-C14-C15$ $0.0$ $N5-N4-C12-C12$ $-179.8$ (2) $C13-C14-C15-N5$ $-1$ $N5-N4-C12-C13$ $-0.3$ (5) $C13-C14-C15-N6$ $17$ $N4-N5-C15-C14$ $1.8$ (4) $N6-C16-C17-C18$ $-1$ $N4-N5-C15-N6$ $-179.4$ (3) $C21-C16-C17-C18$ $-1$                                                                                                             | 8 (3)<br>0 (5)<br>1.3 (5)<br>79.8 (3)<br>179.9 (3)                                                                                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| N3N4C12C12 $179.8(2)$ $C13C14C13N5$ $1179.8(2)$ N5N4C12C13 $-0.3(5)$ $C13C14C15N6$ $17$ N4N5C15C14 $1.8(4)$ N6C16C17C18 $-1$ N4N5C15N6 $-179.4(3)$ $C21C16C17C18$ $-1$ C15N6C16C17 $-35.8(5)$ N6C16C21O2 $0.8$ C16N6C15N5 $14.6(5)$ N6C16C21C20 $18$ C16N6C15C14 $-166.5(3)$ $C17C16C21O2$ $-1$ C15N6C16C21 $145.7(3)$ $C17C16C21C20$ $1.4$ C11C1C2C3 $-177.19(19)$ $C16C17C18C19$ $0.5$ N1C1C2C3 $2.9(4)$ $C17C18C19C20$ $0.6$ C1C2C3C4 $0.1(4)$ $C18C19C20C21$ $-0$ | 1.3 (3)         '9.8 (3)         .79.9 (3)         1.4 (5)         8 (4)         30.0 (3)         177.8 (3)         4 (5)         5 (6)         6 (6)         0.7 (5) |
| C2—C3—C4—N3       176.3 (2)       C19—C20—C21—O2       17         C2—C3—C4—N2       -3.0 (4)       C19—C20—C21—C16       -0                                                                                                                                                                                                                                                                                                                                           | <sup>7</sup> 8.8 (3)                                                                                                                                                  |

Hydrogen-bond geometry (Å, °)

| D—H···A                   | D—H  | H···A | $D \cdots A$ | D—H···A |
|---------------------------|------|-------|--------------|---------|
| N3—H3…O1                  | 0.86 | 2.14  | 2.579 (3)    | 111     |
| N3—H3…N4                  | 0.86 | 2.48  | 3.278 (2)    | 155     |
| N6—H6A···N1 <sup>i</sup>  | 0.86 | 2.44  | 3.270 (3)    | 161     |
| C2—H2···Cl2 <sup>ii</sup> | 0.93 | 2.79  | 3.526 (2)    | 137     |
| C3—H3 <i>A</i> ···N5      | 0.93 | 2.61  | 3.503 (3)    | 161     |
| C6—H6…N2                  | 0.93 | 2.31  | 2.913 (4)    | 122     |
| C17—H17…N5                | 0.93 | 2.50  | 2.992 (3)    | 113     |
|                           |      |       |              |         |

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*+1, *y*, –*z*+1/2.