metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-Aminopyridinium bis(pyridine-2,6dicarboxylato)ferrate(III)

Masoud Mirzaei,^a* Hossein Eshtiagh-Hosseini^a and Joel T. Mague^{b*}

^aDepartment of Chemistry, Ferdowsi University of Mashhad, 917791436 Mashhad, Iran, and ^bDepartment of Chemistry, Tulane University, New Orleans, LA 70118. USA

Correspondence e-mail: mirzaeesh@um.ac.ir, joelt@tulane.edu

Received 9 January 2012; accepted 12 January 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.033; wR factor = 0.086; data-to-parameter ratio = 16.6.

In the title compound, $(C_5H_7N_2)$ [Fe $(C_7H_3NO_4)_2$] or [2-apyH]- $[Fe(pydc)_2]$, the asymmetric unit contains an $[Fe(pydc)_2]^-$ (pvdc is pyridine-2,6-dicarboxylate) anion and a protonated 2aminopyridine cation ([2-apyH]⁺). The complex anion contains an Fe^{III} atom within a distorted octahedral FeN_2O_4 coordination geometry. N-H···O and C-H···O hydrogen bonding, offset $\pi - \pi$ stacking [centroid–centroid distance = 3.805 (13) Å] and C=O··· π interactions [3.494 (14) Å] generate a three-dimensional network structure.

Related literature

For related structures, see: Mirzaei et al. (2011); Eshtiagh-Hosseini et al. (2010, 2011); Hseu et al. (1991); Marsh (1993); Aghabozorg, Nemati et al. (2007); Aghabozorg, Sadrkhanlou et al. (2007); Soleimannejad et al. (2010). For details on the importance of coordinative covalent bonds and weak intermolecular forces in forming extended organized networks, see: Steiner (2002). For graph-set analysis of hydrogen-bonding patterns, see: Bernstein et al. (1995).

Experimental

Crystal data $(C_5H_7N_2)[Fe(C_7H_3NO_4)_2]$ $M_r = 481.18$ Orthorhombic, Pbca a = 7.9288 (10) Å

b = 15.881 (2) Å c = 30.069 (4) Å V = 3786.2 (8) Å³ Z = 8

Mo	Κα	radiation	
<i>u</i> =	0.86	5 mm^{-1}	

Data collection

Bruker SMART APEX CCD diffractometer Absorption correction: numerical (SADABS; Sheldrick, 2009) $T_{\rm min}=0.696,\ T_{\rm max}=0.932$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.033$ H atoms treated by a mixture of $wR(F^2) = 0.086$ S = 1.05 $\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$ 5007 reflections $\Delta \rho_{\rm min} = -0.38 \text{ e } \text{\AA}^{-3}$ 301 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$\begin{array}{cccccccccccccccccccccccccccccccccccc$					
N3-H3AO2 ⁱ 0.85 (2) 1.99 (2) 2.7786 (18) 153 (2) N4-H4AO2 ⁱ 0.91 (3) 2.07 (3) 2.862 (2) 145 (2) N4-H4BO6 ⁱⁱ 0.83 (2) 1.98 (2) 2.8045 (19) 171 (2) C3-H3O4 ⁱⁱ 0.95 2.44 3.3466 (19) 159 C12-H12O5 ⁱⁱⁱ 0.95 2.43 3.281 (2) 150 C10-H10O1 ^{iv} 0.95 2.58 3.2380 (19) 127	$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$N3 - H3A \cdots O2^{i}$ $N4 - H4A \cdots O2^{i}$ $N4 - H4B \cdots O6^{ii}$ $C3 - H3 \cdots O4^{ii}$ $C12 - H12 \cdots O5^{iii}$ $C10 - H10 \cdots O1^{iv}$	0.85 (2) 0.91 (3) 0.83 (2) 0.95 0.95 0.95	1.99 (2) 2.07 (3) 1.98 (2) 2.44 2.43 2.58	2.7786 (18) 2.862 (2) 2.8045 (19) 3.3466 (19) 3.281 (2) 3.2398 (19)	153 (2) 145 (2) 171 (2) 159 150 127

T = 100 K

 $R_{\rm int} = 0.051$

refinement

 $0.34 \times 0.25 \times 0.08 \text{ mm}$

62788 measured reflections

5007 independent reflections

4354 reflections with $I > 2\sigma(I)$

independent and constrained

Symmetry codes: (i) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$; (ii) $-x + \frac{3}{2}, y + \frac{1}{2}, z$; (iii) x - 1, y, z; (iv) -x + 1, -y, -z + 1.

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors express their appreciation to the Ferdowsi University of Mashhad for financial support of this research paper (grant No. P/18).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2696).

References

- Aghabozorg, H., Nemati, A., Derikvand, Z. & Ghadermazi, M. (2007). Acta Crvst. E63, m2921.
- Aghabozorg, H., Sadrkhanlou, E., Soleimannejad, J. & Adams, H. (2007). Acta Cryst. E63, m1760.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Bruker (2009). SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2010). APEX2. Bruker AXS Inc., Madison, Wisconsin, USA.
- Eshtiagh-Hosseini, H., Mirzaei, M., Yousefi, Z., Puschmann, H., Shokrollahi, A. & Aghaei, R. (2011). J. Coord. Chem. 64, 3969-3979.
- Eshtiagh-Hosseini, H., Yousefi, Z., Shafiee, M. & Mirzaei, M. (2010). J. Coord. Chem. 63, 3187-3197.
- Hseu, J. F., Chen, J. J., Chuang, C. C., Wei, H. H., Cheng, M. C., Wang, Y. & Yao, Y. D. (1991). Inorg. Chim. Acta, 184, 1-5.
- Marsh, R. E. (1993). Acta Cryst. C49, 643.
- Mirzaei, M., Aghabozorg, H. & Eshtiagh-Hosseini, H. (2011). J. Iran. Chem. Soc. 8, 580-607.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sheldrick, G. M. (2009). SADABS. University of Göttingen, Germany.
- Soleimannejad, J., Aghabozorg, H. & Sheshmani, S. (2010). Acta Cryst. E66, m411.

Steiner, T. (2002). Angew. Chem. Int. Ed. 41, 48-76.

supporting information

Acta Cryst. (2012). E68, m174 [doi:10.1107/S1600536812001493]

2-Aminopyridinium bis(pyridine-2,6-dicarboxylato)ferrate(III)

Masoud Mirzaei, Hossein Eshtiagh-Hosseini and Joel T. Mague

S1. Comment

For the synthesis of supramolecular systems, coordinative covalent bonds and weak intermolecular forces are important to the assembly into extended organized networks (Steiner, 2002). Our research group has worked on the synthesis of supramolecular systems including proton transfer compounds and their complexes and are exploring the role of noncovalent interactions such as hydrogen bonding, ion pairing and π - π stacking in constructing the supramolecular crystalline compounds and their metal complexes (Mirzaei *et al.*, 2011; Eshtiagh-Hosseini *et al.*, 2011, Eshtiagh-Hosseini, *et al.*, 2010).

The asymmetric unit of the title compound (I) is shown in Fig. 1. The Fe atom is hexa-coordinated by two N and four O atoms from two (pydc)^{2–} ions resulting in a distorted octahedral coordination environment. Although it would be reasonable to consider O1, O3, O5, and O7 as the equatorial "plane" and the N1 and N2 atoms to occupy the apical positions, the geometric constraints of the pydc^{2–} ligand generate a considerable tetrahedral distortion of this "plane" as seen from the angles O1–Fe1–O3 and O5–Fe1–O7 which are, respectively 150.46 (5)° and 151.47 (5)°. Although the O1–Fe1–O3 and O5–Fe1–O7 planes are close to being orthogonal (dihedral angle = 88.49 (7)°), the remainder of the ligands are noticeably less so. In particular, the ligand containing N1 is folded along the O1–O3 line by 30.4 (1)° which is likely caused by a close contact with the carbonyl group containing O8 in the anion at 1 + x, *y*, *z*. This distortion is the largest of all those found in the related complexes [Cat][Fe(py-2,6-dc)₂] (Cat = (H₅O₂) (Hseu *et al.*, 1991, Marsh *et al.*, 1993), 2,9-dimethyl-1,10-phenanthrolinium (Aghabozorg, Sadrkhanlou *et al.*, 2007), piperazinium (Aghabozorg, Nemati *et al.*, 2010), 2-aminopyrimidinium (Eshtiagh-Hosseini *et al.*, 2011)).

The solid state architecture of I is generated *via* intermolecular N–H···O and C–H···O hydrogen bonding (Table 1 and Fig. 2) having the graph-set motifs $R_4^4(24)$ and $R_2^1(6)$ as well as offset π - π stacking interactions between the pyridine unit containing N2 and the cation at 1 - *x*, -*y*, 1 - *z* (centroid-centroid distance = 3.805 (13) Å) and a C14=O8··· π interaction with the centroid of the pyridine ring containing N1 (3.494 (14) Å).

S2. Experimental

A solution of 2-aminopyridine (0.06 g, 0.60 mmol) and pyridine-2,6-dicarboxylic acid (0.05 g, 0.30 mmol) was refluxed for 1 h. Then a solution of FeCl₃. $6H_2O$ (0.04 g, 0.15 mmol) was added dropwise and the refluxing continued for 6 hrs at 60°C. The resulting solution was light green in colour. After slow evaporation of solvent at laboratory temperature plate-like yellow crystals were collected.

S3. Refinement

The N-bound H atoms were located in a difference Fourier map and refined freely. The C-bound H-atoms were placed in calculated positions and treated as riding atoms, with C-H = 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

Perspective view of I with 50% probability ellipsoids for the non-H atoms.

Figure 2

Packing of I viewed down *a* with H-bonding interactions shown as dashed lines. Displacement ellipsoids are drawn at the 30% probability level. H atoms not involved in hydrogen bonding are omitted. Key: Fe = brown, O = red, N = blue, C = grey, H = green.

2-Aminopyridinium bis(pyridine-2,6-dicarboxylato)ferrate(III)

Crystal data	
$(C_5H_7N_2)[Fe(C_7H_3NO_4)_2]$	F(000) = 1960
$M_r = 481.18$	$D_{\rm x} = 1.688 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbca	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 9998 reflections
a = 7.9288 (10) Å	$\theta = 2.7 - 29.0^{\circ}$
b = 15.881 (2) Å	$\mu = 0.86 ext{ mm}^{-1}$
c = 30.069 (4) Å	T = 100 K
V = 3786.2 (8) Å ³	Plate, yellow
Z = 8	$0.34 \times 0.25 \times 0.08 \text{ mm}$
Data collection	
Bruker SMART APEX CCD	62788 measured reflections
diffractometer	5007 independent reflections
Radiation source: fine-focus sealed tube	4354 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.051$
φ and ω scans	$\theta_{\rm max} = 29.1^\circ, \ \theta_{\rm min} = 2.6^\circ$
Absorption correction: numerical	$h = -10 \rightarrow 10$
(SADABS; Sheldrick, 2009)	$k = -21 \rightarrow 21$
$T_{\min} = 0.696, \ T_{\max} = 0.932$	$l = -40 \rightarrow 40$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.033$	Hydrogen site location: inferred from
$wR(F^2) = 0.086$	neighbouring sites
S = 1.05	H atoms treated by a mixture of independent
5007 reflections	and constrained refinement
301 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0387P)^2 + 2.8224P]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.002$
direct methods	$\Delta ho_{ m max} = 0.47 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.38 \text{ e} \text{ Å}^{-3}$

Special details

Experimental. The diffraction data were obtained from 3 sets of 400 frames, each of width 0.5° . in omega, collected at phi = 0.00, 90.00 and 180.00°. and 2 sets of 800 frames, each of width 0.45° in phi, collected at omega = -30.00 and 210.00°. The scan time was 10 sec/frame.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger. H-atoms attached to carbon were placed in calculated positions (C—H = 0.95 Å) and included as riding contributions with isotropic displacement parameters 1.2 times those of the attached atoms. Those attached to nitrogen were independently refined.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Fe1	0.59560 (3)	0.000219 (13)	0.381592 (7)	0.01464 (7)	
01	0.71089 (13)	0.10747 (7)	0.40025 (3)	0.0189 (2)	
O2	0.86897 (14)	0.21717 (7)	0.37918 (4)	0.0207 (2)	
03	0.57386 (14)	-0.09825 (7)	0.33979 (4)	0.0193 (2)	
O4	0.58951 (16)	-0.14205 (7)	0.26911 (4)	0.0260 (3)	
05	0.72260 (13)	-0.06573 (7)	0.42789 (4)	0.0200 (2)	
O6	0.71032 (17)	-0.14212 (9)	0.49034 (4)	0.0340 (3)	
O7	0.38240 (14)	0.05590 (7)	0.35875 (4)	0.0203 (2)	
08	0.09948 (14)	0.06009 (8)	0.36268 (4)	0.0282 (3)	
N1	0.71877 (15)	0.03920 (8)	0.32474 (4)	0.0151 (2)	
N2	0.41237 (15)	-0.03392 (8)	0.42709 (4)	0.0155 (2)	
C1	0.79204 (18)	0.15161 (9)	0.37119 (5)	0.0169 (3)	
C2	0.78632 (17)	0.11562 (9)	0.32459 (5)	0.0152 (3)	
C3	0.83948 (19)	0.15243 (10)	0.28506 (5)	0.0182 (3)	
H3	0.8871	0.2073	0.2846	0.022*	
C4	0.8203 (2)	0.10578 (10)	0.24610 (5)	0.0207 (3)	
H4	0.8547	0.1293	0.2185	0.025*	
C5	0.7509 (2)	0.02482 (9)	0.24716 (5)	0.0196 (3)	
Н5	0.7388	-0.0075	0.2208	0.024*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C6	0.70041 (18)	-0.00665 (9)	0.28810 (5)	0.0165 (3)
C7	0.61493 (19)	-0.09005 (9)	0.29832 (5)	0.0182 (3)
C8	0.6451 (2)	-0.09916 (10)	0.46131 (5)	0.0205 (3)
С9	0.4578 (2)	-0.08052 (10)	0.46189 (5)	0.0182 (3)
C10	0.3381 (2)	-0.10642 (11)	0.49278 (5)	0.0242 (3)
H10	0.3692	-0.1383	0.5182	0.029*
C11	0.1704 (2)	-0.08385 (11)	0.48508 (6)	0.0278 (4)
H11	0.0858	-0.1009	0.5056	0.033*
C12	0.1253 (2)	-0.03686 (11)	0.44795 (6)	0.0244 (3)
H12	0.0109	-0.0224	0.4423	0.029*
C13	0.25309 (19)	-0.01181 (10)	0.41939 (5)	0.0178 (3)
C14	0.23732 (19)	0.03925 (10)	0.37688 (5)	0.0192 (3)
N3	0.69376 (17)	0.22722 (8)	0.63929 (4)	0.0190 (3)
H3A	0.589 (3)	0.2371 (14)	0.6420 (7)	0.030 (6)*
N4	0.6725 (2)	0.28438 (10)	0.56932 (5)	0.0301 (3)
H4A	0.561 (3)	0.2940 (15)	0.5747 (8)	0.043 (7)*
H4B	0.712 (3)	0.3010 (15)	0.5452 (8)	0.039 (6)*
C15	0.7672 (2)	0.24858 (9)	0.60028 (5)	0.0212 (3)
C16	0.9402 (2)	0.22941 (10)	0.59494 (6)	0.0276 (4)
H16	0.9963	0.2433	0.5680	0.033*
C17	1.0264 (2)	0.19094 (11)	0.62851 (7)	0.0288 (4)
H17	1.1421	0.1772	0.6246	0.035*
C18	0.9461 (2)	0.17143 (11)	0.66875 (6)	0.0264 (3)
H18	1.0067	0.1456	0.6924	0.032*
C19	0.7792 (2)	0.19028 (10)	0.67326 (5)	0.0218 (3)
H19	0.7225	0.1775	0.7003	0.026*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Fe1	0.01050 (11)	0.01760 (12)	0.01583 (12)	0.00026 (7)	0.00200 (7)	0.00414 (7)
01	0.0182 (5)	0.0206 (5)	0.0178 (5)	-0.0026 (4)	0.0036 (4)	0.0010 (4)
02	0.0186 (5)	0.0173 (5)	0.0261 (6)	-0.0019 (4)	0.0028 (4)	-0.0004 (4)
03	0.0194 (5)	0.0171 (5)	0.0214 (5)	-0.0013 (4)	0.0020 (4)	0.0041 (4)
04	0.0326 (7)	0.0191 (6)	0.0264 (6)	-0.0023 (5)	0.0022 (5)	-0.0028 (4)
05	0.0121 (5)	0.0254 (6)	0.0225 (5)	0.0011 (4)	-0.0011 (4)	0.0070 (4)
06	0.0318 (7)	0.0410 (7)	0.0292 (6)	0.0014 (6)	-0.0093 (5)	0.0163 (6)
07	0.0160 (5)	0.0248 (6)	0.0199 (5)	0.0043 (4)	0.0001 (4)	0.0054 (4)
08	0.0168 (6)	0.0336 (7)	0.0342 (7)	0.0092 (5)	-0.0079 (5)	-0.0039 (5)
N1	0.0108 (5)	0.0165 (6)	0.0180 (6)	0.0019 (5)	0.0024 (4)	0.0023 (4)
N2	0.0119 (6)	0.0195 (6)	0.0152 (6)	-0.0014 (5)	0.0005 (4)	0.0000 (5)
C1	0.0122 (6)	0.0178 (7)	0.0206 (7)	0.0029 (5)	0.0022 (5)	0.0023 (5)
C2	0.0105 (6)	0.0165 (7)	0.0186 (7)	0.0017 (5)	0.0021 (5)	0.0022 (5)
C3	0.0146 (7)	0.0178 (7)	0.0222 (7)	0.0007 (5)	0.0026 (5)	0.0047 (5)
C4	0.0207 (7)	0.0234 (7)	0.0179 (7)	0.0017 (6)	0.0056 (6)	0.0051 (6)
C5	0.0208 (7)	0.0196 (7)	0.0184 (7)	0.0029 (6)	0.0034 (6)	0.0008 (6)
C6	0.0131 (6)	0.0165 (7)	0.0199 (7)	0.0026 (5)	0.0016 (5)	0.0015 (5)
C7	0.0152 (7)	0.0161 (7)	0.0234 (7)	0.0022 (5)	0.0014 (6)	0.0025 (5)

supporting information

C8	0.0190 (7)	0.0228 (7)	0.0198 (7)	-0.0016 (6)	-0.0036 (6)	0.0044 (6)
C9	0.0189 (7)	0.0203 (7)	0.0153 (7)	-0.0038 (6)	0.0004 (5)	0.0008 (5)
C10	0.0296 (9)	0.0250 (8)	0.0180 (7)	-0.0064 (7)	0.0055 (6)	0.0020 (6)
C11	0.0241 (8)	0.0305 (9)	0.0289 (8)	-0.0085 (7)	0.0144 (7)	-0.0030 (7)
C12	0.0137 (7)	0.0286 (8)	0.0310 (8)	-0.0035 (6)	0.0064 (6)	-0.0081 (7)
C13	0.0116 (6)	0.0204 (7)	0.0215 (7)	-0.0006 (5)	0.0006 (5)	-0.0049 (5)
C14	0.0151 (7)	0.0208 (7)	0.0218 (7)	0.0030 (6)	-0.0020 (5)	-0.0044 (6)
N3	0.0149 (6)	0.0207 (6)	0.0214 (6)	0.0011 (5)	0.0045 (5)	0.0024 (5)
N4	0.0420 (10)	0.0285 (8)	0.0197 (7)	0.0062 (7)	0.0093 (6)	0.0062 (6)
C15	0.0270 (8)	0.0136 (7)	0.0228 (8)	-0.0013 (6)	0.0083 (6)	0.0000 (5)
C16	0.0289 (9)	0.0194 (8)	0.0344 (9)	-0.0062 (7)	0.0188 (7)	-0.0033 (6)
C17	0.0164 (8)	0.0205 (8)	0.0494 (11)	-0.0024 (6)	0.0084 (7)	-0.0074 (7)
C18	0.0189 (8)	0.0239 (8)	0.0365 (9)	0.0012 (6)	-0.0024 (7)	-0.0004 (7)
C19	0.0182 (7)	0.0233 (8)	0.0239 (8)	-0.0004 (6)	0.0007 (6)	0.0028 (6)

Geometric parameters (Å, °)

Fe1—O5	2.0122 (11)	С5—Н5	0.9500
Fe1—O1	2.0128 (11)	C6—C7	1.519 (2)
Fe1—O3	2.0137 (11)	C8—C9	1.514 (2)
Fe1—O7	2.0277 (11)	C9—C10	1.390 (2)
Fe1—N1	2.0638 (12)	C10-C11	1.396 (3)
Fe1—N2	2.0679 (12)	C10—H10	0.9500
01—C1	1.2919 (18)	C11—C12	1.390 (3)
O2—C1	1.2305 (19)	C11—H11	0.9500
O3—C7	1.2954 (19)	C12—C13	1.387 (2)
O4—C7	1.2221 (19)	C12—H12	0.9500
O5—C8	1.2920 (19)	C13—C14	1.519 (2)
O6—C8	1.2227 (19)	N3—C15	1.353 (2)
O7—C14	1.3002 (19)	N3—C19	1.359 (2)
O8—C14	1.2192 (19)	N3—H3A	0.85 (2)
N1-C2	1.3266 (19)	N4—C15	1.324 (2)
N1-C6	1.3287 (19)	N4—H4A	0.91 (3)
N2-C13	1.3311 (19)	N4—H4B	0.83 (2)
N2—C9	1.3316 (19)	C15—C16	1.414 (2)
C1—C2	1.514 (2)	C16—C17	1.364 (3)
C2—C3	1.390 (2)	C16—H16	0.9500
C3—C4	1.395 (2)	C17—C18	1.402 (3)
С3—Н3	0.9500	C17—H17	0.9500
C4—C5	1.399 (2)	C18—C19	1.363 (2)
C4—H4	0.9500	C18—H18	0.9500
C5—C6	1.388 (2)	С19—Н19	0.9500
O5—Fe1—O1	91.17 (5)	O4—C7—C6	121.15 (14)
O5—Fe1—O3	94.04 (5)	O3—C7—C6	113.23 (13)
O1—Fe1—O3	150.46 (4)	O6—C8—O5	125.69 (15)
O5—Fe1—O7	151.47 (4)	O6—C8—C9	121.04 (15)
01—Fe1—07	95.97 (5)	O5—C8—C9	113.27 (13)

03—Fe1—07	93 20 (5)	N2	120 29 (15)
05—Fe1—N1	119 50 (5)	N2-C9-C8	111 41 (13)
01—Fe1—N1	76 24 (5)	C10-C9-C8	128 29 (15)
O3—Fe1—N1	75.90 (5)	C9-C10-C11	117.61 (15)
07—Fe1—N1	89.03 (5)	C9-C10-H10	121.2
$O_5 = F_{e1} = N_2$	75.06 (5)	$C_{11} = C_{10} = H_{10}$	121.2
$O_1 = V_1 = N_2$	110.80(5)	C_{12} C_{11} C_{10}	121.2 121.00(15)
$O_1 = P_1 = N_2$ $O_2 = E_2 I = N_2$	110.09(5)	$C_{12} = C_{11} = C_{10}$	121.09 (13)
03 - 101 - N2	76.56 (5)		119.5
$0/-rei-N_2$	1(2,55,(5))		119.5
N1 - FeI - N2	105.55(5)	C13 - C12 - C11	117.39(13)
CI-OI-Fel	119.79 (10)	C13—C12—H12	121.2
C/O3Fel	120.09 (10)	CII—CI2—HI2	121.2
C8—O5—Fel	120.93 (10)	N2—C13—C12	120.67 (15)
C14—07—Fe1	120.45 (10)	N2-C13-C14	111.43 (13)
C2—N1—C6	122.87 (13)	C12—C13—C14	127.89 (15)
C2—N1—Fe1	117.92 (10)	O8—C14—O7	126.22 (15)
C6—N1—Fe1	118.08 (10)	O8—C14—C13	120.90 (15)
C13—N2—C9	122.70 (13)	O7—C14—C13	112.88 (13)
C13—N2—Fe1	118.84 (10)	C15—N3—C19	123.04 (14)
C9—N2—Fe1	118.39 (10)	C15—N3—H3A	117.3 (15)
O2—C1—O1	125.02 (14)	C19—N3—H3A	119.6 (15)
O2—C1—C2	121.01 (13)	C15—N4—H4A	119.9 (15)
01—C1—C2	113.98 (13)	C15—N4—H4B	122.3 (16)
N1—C2—C3	120.67 (14)	H4A—N4—H4B	118 (2)
N1—C2—C1	110.75 (12)	N4—C15—N3	118.23 (15)
C3—C2—C1	128.58 (14)	N4—C15—C16	124.22 (16)
C2—C3—C4	117.51 (14)	N3—C15—C16	117.53 (16)
С2—С3—Н3	121.2	C17—C16—C15	119.88 (15)
С4—С3—Н3	121.2	С17—С16—Н16	120.1
$C_{3}-C_{4}-C_{5}$	120.81 (14)	C15—C16—H16	120.1
C3—C4—H4	119.6	C16-C17-C18	120 70 (16)
C5-C4-H4	119.6	C_{16} C_{17} H_{17}	1197
C6-C5-C4	117.69 (14)	C18 - C17 - H17	119.7
C6-C5-H5	121.2	C19 - C18 - C17	119.7
C4-C5-H5	121.2	C19 - C18 - H18	120.7
N1 C6 C5	121.2 120.44(13)	$C_{17} C_{18} H_{18}$	120.7
N1C6C7	120.44(13) 111.03(13)	$N_{2} = C_{10} = C_{18}$	120.7 120.28(15)
$N_1 = C_0 = C_7$	111.05 (13)	$N_{3} = C_{19} = C_{10}$	120.28 (13)
$C_{3} = C_{0} = C_{7}$	126.46(14)	$N_{3} = C_{19} = H_{19}$	119.9
04-0-03	125.01 (14)	C18—C19—H19	119.9
O5—Fe1—O1—C1	124.47 (11)	N1—C2—C3—C4	-0.5(2)
O_3 —Fe1— O_1 — C_1	24.16 (16)	C1 - C2 - C3 - C4	-179.94 (14)
07 - Fe1 - 01 - C1	-83 20 (11)	$C_2 - C_3 - C_4 - C_5$	-0.4(2)
N_1 —Fe1— O_1 — C_1	4 33 (11)	C_{3} C_{4} C_{5} C_{6}	0.8(2)
N_2 —Fe1—O1—C1	-160 13 (10)	$C_2 = N_1 = C_5 = C_5$	-0.7(2)
05 - Fe1 - 03 - 07	-130.21(11)	$E_{2} = 101 = C_{2} = C_{2}$	166.92(11)
01 - Fe1 - 03 - 07	-30.65(16)	C_{2} N1 C_{6} C_{7}	-17835(12)
07 = 101 = 03 = 07	77.40(11)	$C_2 = N_1 = C_0 = C_1$	-10.74(15)
0/—rei—03—0/	//.40(11)	$\Gamma C I - I N I - C O - C /$	-10.74 (15)

N1—Fe1—O3—C7	-10.79 (11)	C4—C5—C6—N1	-0.3 (2)
N2—Fe1—O3—C7	153.40 (11)	C4—C5—C6—C7	176.96 (14)
O1—Fe1—O5—C8	113.09 (12)	Fe1—O3—C7—O4	-171.34 (12)
O3—Fe1—O5—C8	-96.00 (12)	Fe1—O3—C7—C6	8.32 (16)
O7—Fe1—O5—C8	8.31 (18)	N1—C6—C7—O4	-178.53 (14)
N1—Fe1—O5—C8	-172.08 (11)	C5—C6—C7—O4	4.0 (2)
N2—Fe1—O5—C8	1.84 (12)	N1—C6—C7—O3	1.79 (18)
O5—Fe1—O7—C14	-14.53 (18)	C5—C6—C7—O3	-175.64 (15)
O1—Fe1—O7—C14	-118.14 (11)	Fe1—O5—C8—O6	177.84 (14)
O3—Fe1—O7—C14	89.99 (12)	Fe1—O5—C8—C9	-1.99 (18)
N1—Fe1—O7—C14	165.81 (12)	C13—N2—C9—C10	-1.8 (2)
N2—Fe1—O7—C14	-8.06 (11)	Fe1—N2—C9—C10	-178.61 (12)
O5—Fe1—N1—C2	-93.42 (11)	C13—N2—C9—C8	177.56 (14)
O1—Fe1—N1—C2	-9.99 (10)	Fe1—N2—C9—C8	0.72 (17)
O3—Fe1—N1—C2	179.94 (11)	O6-C8-C9-N2	-179.09 (15)
O7—Fe1—N1—C2	86.39 (11)	O5C8C9N2	0.76 (19)
N2—Fe1—N1—C2	107.84 (19)	O6—C8—C9—C10	0.2 (3)
O5—Fe1—N1—C6	98.35 (11)	O5—C8—C9—C10	-179.99 (16)
O1—Fe1—N1—C6	-178.22 (11)	N2-C9-C10-C11	1.8 (2)
O3—Fe1—N1—C6	11.71 (10)	C8-C9-C10-C11	-177.39 (16)
O7—Fe1—N1—C6	-81.84 (11)	C9-C10-C11-C12	-0.3 (3)
N2—Fe1—N1—C6	-60.4 (2)	C10-C11-C12-C13	-1.3 (3)
O5—Fe1—N2—C13	-178.28 (12)	C9—N2—C13—C12	0.1 (2)
O1—Fe1—N2—C13	95.90 (12)	Fe1—N2—C13—C12	176.91 (12)
O3—Fe1—N2—C13	-86.23 (12)	C9—N2—C13—C14	-178.55 (13)
O7—Fe1—N2—C13	4.90 (11)	Fe1—N2—C13—C14	-1.72 (17)
N1—Fe1—N2—C13	-17.3 (3)	C11—C12—C13—N2	1.4 (2)
O5—Fe1—N2—C9	-1.31 (11)	C11—C12—C13—C14	179.82 (15)
O1—Fe1—N2—C9	-87.13 (12)	Fe1-07-C14-08	-170.02 (13)
O3—Fe1—N2—C9	90.74 (12)	Fe1-07-C14-C13	9.43 (17)
O7—Fe1—N2—C9	-178.13 (12)	N2-C13-C14-O8	174.77 (15)
N1—Fe1—N2—C9	159.71 (16)	C12—C13—C14—O8	-3.7 (3)
Fe1—O1—C1—O2	-178.75 (12)	N2-C13-C14-O7	-4.71 (18)
Fe1—O1—C1—C2	1.11 (16)	C12—C13—C14—O7	176.78 (15)
C6—N1—C2—C3	1.1 (2)	C19—N3—C15—N4	-179.95 (15)
Fe1—N1—C2—C3	-166.53 (11)	C19—N3—C15—C16	1.4 (2)
C6—N1—C2—C1	-179.40 (13)	N4-C15-C16-C17	-178.71 (16)
Fe1—N1—C2—C1	12.98 (15)	N3-C15-C16-C17	-0.1 (2)
O2-C1-C2-N1	170.78 (13)	C15—C16—C17—C18	-1.2 (3)
O1-C1-C2-N1	-9.09 (17)	C16—C17—C18—C19	1.2 (3)
O2—C1—C2—C3	-9.8 (2)	C15—N3—C19—C18	-1.3 (2)
O1—C1—C2—C3	170.37 (14)	C17—C18—C19—N3	0.0 (3)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H… <i>A</i>
N3—H3A···O2 ⁱ	0.85 (2)	1.99 (2)	2.7786 (18)	153 (2)
N4—H4A····O2 ⁱ	0.91 (3)	2.07 (3)	2.862 (2)	145 (2)

supporting information

N4—H4 <i>B</i> ···O6 ⁱⁱ	0.83 (2)	1.98 (2)	2.8045 (19)	171 (2)
C3—H3…O4 ⁱⁱ	0.95	2.44	3.3466 (19)	159
C12—H12…O5 ⁱⁱⁱ	0.95	2.43	3.281 (2)	150
C10—H10…O1 ^{iv}	0.95	2.58	3.2398 (19)	127

Symmetry codes: (i) x-1/2, -y+1/2, -z+1; (ii) -x+3/2, y+1/2, z; (iii) x-1, y, z; (iv) -x+1, -y, -z+1.