## organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## (2E)-1-(2,6-Dichloro-3-fluorophenyl)-3-(4-fluorophenyl)prop-2-en-1-one

### Richard Betz,<sup>a</sup>\* Thomas Gerber,<sup>a</sup> Eric Hosten,<sup>a</sup> Aletti S. Praveen,<sup>b</sup> Hemmige S. Yathirajan<sup>b</sup> and Badiadka Narayana<sup>c</sup>

<sup>a</sup>Nelson Mandela Metropolitan University, Summerstrand Campus, Department of Chemistry, University Way, Summerstrand, PO Box 77000, Port Elizabeth 6031, South Africa, <sup>b</sup>University of Mysore, Department of Studies in Chemistry, Manasagangotri, Mysore 570 006, India, and <sup>c</sup>Mangalore University, Department of Studies in Chemistry, Mangalagangotri 574 199, India Correspondence e-mail: richard.betz@webmail.co.za

Received 13 January 2012; accepted 20 January 2012

Key indicators: single-crystal X-ray study; T = 200 K; mean  $\sigma$ (C–C) = 0.002 Å; disorder in main residue; R factor = 0.035; wR factor = 0.092; data-to-parameter ratio = 17.4.

In the title compound,  $C_{15}H_8Cl_2F_2O$ , the C=C double bond is in the *E* configuration. In the cyrstal,  $C-H\cdots O$  hydrogen bonds connect the molecules into chains along the c axis. A  $\pi$ - $\pi$  interaction of 3.628 (1) Å is also observed between two polyhalogenated benzene rings. The dichlorosubstituted ring exhibits partial disorder over two sets of sites, with siteoccupancy factors of 0.573 (3) and 0.427 (3).

### **Related literature**

For pharmaceutical background to chalcones, see: Nielsen et al. (2004); Modzelewska et al. (2006); Nowakowska (2007); Ni et al. (2004). For related structures, see: Yathirajan et al. (2006, 2007); Betz et al. (2011). For graph-set analysis of hydrogen bonds, see: Etter et al. (1990); Bernstein et al. (1995).



### **Experimental**

Crystal data

 $C_{15}H_8Cl_2F_2O$  $M_{\rm m} = 313.11$ Monoclinic,  $P2_1/c$ a = 12.2311 (3) Å b = 10.3115 (2) Å

```
c = 11.2468 (3) Å
\beta = 108.935 (1)^{\circ}
V = 1341.70 (6) Å<sup>3</sup>
Z = 4
Mo K\alpha radiation
```



 $0.48 \times 0.34 \times 0.27 \text{ mm}$ 

 $\mu = 0.50 \text{ mm}^{-1}$ T = 200 K

#### Data collection

| Bruker APEXII CCD                            | 12634 measured reflections             |
|----------------------------------------------|----------------------------------------|
| diffractometer                               | 3328 independent reflections           |
| Absorption correction: multi-scan            | 2724 reflections with $I > 2\sigma(I)$ |
| (SADABS; Bruker, 2008)                       | $R_{\rm int} = 0.015$                  |
| $T_{\rm min} = 0.825, \ T_{\rm max} = 1.000$ |                                        |
|                                              |                                        |

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.035$ 191 parameters  $wR(F^2) = 0.092$ H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.24 \text{ e} \text{ Å}^{-2}$ S = 1.06 $\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$ 3328 reflections

#### Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                                                                | D-H  | $H \cdots A$ | $D \cdots A$ | $D - \mathbf{H} \cdots A$ |
|---------------------------------------------------------------------------------|------|--------------|--------------|---------------------------|
| $\begin{array}{c} C1 - H1 \cdots O1^{i} \\ C12 - H12 \cdots O1^{i} \end{array}$ | 0.95 | 2.51         | 3.3982 (16)  | 156                       |
|                                                                                 | 0.95 | 2.55         | 3.4266 (19)  | 153                       |

Symmetry code: (i)  $x, -y + \frac{1}{2}, z + \frac{1}{2}$ .

Data collection: APEX2 (Bruker, 2010); cell refinement: SAINT (Bruker, 2010); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2008); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

ASP thanks the University of Mysore for research facilities.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WN2465).

#### References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Betz, R., Gerber, T., Hosten, E., Samshuddin, S., Narayana, B. & Yathirajan, H. S. (2011). Acta Cryst. E67, o3181-o3182.
- Bruker (2008). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2010). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256-262. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Modzelewska, A., Pettit, C., Achanta, G., Davidson, N. E., Huang, P. & Khan, S. R. (2006). Bioorg. Med. Chem. 14, 3491-3495.
- Ni, L., Meng, C. Q. & Sikorski, J. A. (2004). Expert Opin. Ther. Pat. 14, 1669-1691.

Nielsen, S. F., Boesen, T., Larsen, M., Schonning, K. & Kromann, H. (2004). Bioorg. Med. Chem. 12, 3047-3054.

- Nowakowska, Z. (2007). Eur. J. Med. Chem. 42, 125-137.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Yathirajan, H. S., Mayekar, A. N., Sarojini, B. K., Narayana, B. & Bolte, M. (2007). Acta Cryst. E63, 0426-0427.
- Yathirajan, H. S., Sarojini, B. K., Narayana, B., Bindya, S. & Bolte, M. (2006). Acta Cryst. E62, 03631-03632.

# supporting information

Acta Cryst. (2012). E68, o512 [doi:10.1107/S1600536812002589]

# (2*E*)-1-(2,6-Dichloro-3-fluorophenyl)-3-(4-fluorophenyl)prop-2-en-1-one Richard Betz, Thomas Gerber, Eric Hosten, Aletti S. Praveen, Hemmige S. Yathirajan and

### S1. Comment

Badiadka Narayana

Chalcones constitute an important group of natural products and some of them possess a wide range of biological activities, such as antibacterial (Nielsen *et al.*, 2004) and anticancer (Modzelewska *et al.*, 2006). A review of anti-inflation infective and anti-inflation chalcones (Nowakowska, 2007) and recent advances in therapeutic chalcones have been reported (Ni *et al.*, 2004). Related crystal structures of some chalcones, *e.g.* 1-(2,4-dichloro-5- fluorophenyl)-3-(3,4-di-methoxyphenyl)prop-2-en-1-one (Yathirajan *et al.*, 2006) and (2*E*)-1-(2,4-dichlorophenyl)-3-(2-hydroxyphenyl)prop-2-en-1-one (Yathirajan *et al.*, 2007) have been reported. As part of our ongoing studies on chalcones (Betz *et al.*, 2011), the title compound was synthesized and its crystal structure is reported here.

The C=C double bond of the Michael system is in the *E* configuration. The fluorine atom on the polyhalogenated phenyl ring, together with its attached carbon atom is disordered over two sites, as are the ring CH *meta* to it. The site occupancy factors refined to 0.573 (3) and 0.427 (3). The least-squares planes defined by the carbon atoms of the two rings make a dihedral angle of 82.37 (8)° (Fig. 1).

In the crystal structure, intermolecular C—H···O hydrogen bonds are observed (Table 1 and Fig. 2), forming a 6membered chelate ring. In terms of graph-set analysis (Etter *et al.*, 1990; Bernstein *et al.*, 1995), the descriptor for this pattern is  $C_1^1(5)C_1^1(7)$  on the unitary level. Molecules are connected into chains along the crystallographic *c* axis. A  $\pi$ – $\pi$ interaction of 3.628 (1) Å is also observed between two polyhalogenated phenyl rings. The packing of the title compound in the crystal structure is shown in Fig. 3.

### **S2.** Experimental

To a stirred solution of 1-(2,6-dichloro-3-fluorophenyl)ethanone (1 g, 4.8 mmol) and 4-fluorobenzaldehyde (0.59 g, 4.8 mmol) in ethanol (10 ml), powdered KOH (0.4 g 7.2 mmol) was added at 273 K. The reaction mixture was stirred at room temperature for 1 h. After completion of the reaction, the reaction mixture was poured into ice cold water and acidified with 1.5 N HCl (pH  $\sim$ 3). The resulting precipitate was filtered and dried to afford 1.3 g of the title compound as a pale yellow solid in 86% yield. Single crystals suitable for the diffraction study were grown from a mixture of toluene:acetone (*v*:*v* = 1:1) by slow evaporation at room temperature (m.p.: 421–424 K).

### **S3. Refinement**

H atoms were placed in calculated positions (C—H = 0.95 Å) and were included in the refinement in the riding model approximation, with  $U_{iso}(H) = 1.2U_{eq}(C)$ .



### Figure 1

The molecular structure of the title compound, with anisotropic displacement ellipsoids drawn at the 50% probability level. For clarity, only the major component of the disorder model is depicted.



### Figure 2

Intermolecular contacts, viewed along [-1 0 0]. For clarity, only the major component of the disorder model is depicted. Symmetry operators:  ${}^{i}x$ , -y + 1/2, z - 1/2;  ${}^{ii}x$ , -y + 1/2, z + 1/2. Dashed lines indicate hydrogen bonds.



### Figure 3

Molecular packing of the title compound, viewed along [0 1 0]. Anisotropic displacement ellipsoids are drawn at the 50% probability level. For clarity, only the major component of the disorder model is depicted.

### (2*E*)-1-(2,6-Dichloro-3-fluorophenyl)-3-(4-fluorophenyl)prop-2-en-1-one

| Crystal data                    |                                               |
|---------------------------------|-----------------------------------------------|
| $C_{15}H_8Cl_2F_2O$             | V = 1341.70 (6) Å <sup>3</sup>                |
| $M_r = 313.11$                  | Z = 4                                         |
| Monoclinic, $P2_1/c$            | F(000) = 632                                  |
| Hall symbol: -P 2ybc            | $D_{\rm x} = 1.550 {\rm ~Mg} {\rm ~m}^{-3}$   |
| a = 12.2311 (3)  Å              | Melting point = $421 - 424$ K                 |
| b = 10.3115 (2) Å               | Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å |
| c = 11.2468 (3) Å               | Cell parameters from 7019 reflections         |
| $\beta = 108.935 \ (1)^{\circ}$ | $\theta = 2.7 - 28.2^{\circ}$                 |
|                                 |                                               |

 $\mu = 0.50 \text{ mm}^{-1}$ T = 200 K

Data collection

| Bruker APEXII CCD<br>diffractometer               | 12634 measured reflections<br>3328 independent reflections                |
|---------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube          | 2724 reflections with $I > 2\sigma(I)$                                    |
| Graphite monochromator                            | $R_{\rm int} = 0.015$                                                     |
| $\varphi$ and $\omega$ scans                      | $\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.7^{\circ}$ |
| Absorption correction: multi-scan                 | $h = -16 \rightarrow 16$                                                  |
| (SADABS; Bruker, 2008)                            | $k = -12 \rightarrow 13$                                                  |
| $T_{\min} = 0.825, T_{\max} = 1.000$              | $l = -13 \rightarrow 14$                                                  |
| Refinement                                        |                                                                           |
| Refinement on $F^2$<br>Least-squares matrix: full | Secondary atom site location: difference Fo map                           |
| $R[F^2 > 2\sigma(F^2)] = 0.035$                   | Hydrogen site location: inferred from                                     |
| $wR(F^2) = 0.092$                                 | neighbouring sites                                                        |
| S = 1.06                                          | H-atom parameters constrained                                             |
| 3328 reflections                                  | $w = 1/[\sigma^2(F_o^2) + (0.0346P)^2 + 0.5003P]$                         |
| 191 parameters                                    | where $P = (F_o^2 + 2F_c^2)/3$                                            |
| 0 restraints                                      | $(\Delta/\sigma)_{\rm max} < 0.001$                                       |

Primary atom site location: structure-invariant direct methods

Block, colourless  $0.48 \times 0.34 \times 0.27 \text{ mm}$ 

ourier  $(\Delta/\sigma)_{\rm max} < 0.001$  $\Delta \rho_{\rm max} = 0.24 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\rm min} = -0.25 \text{ e} \text{ Å}^{-3}$ 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

|     | x             | У             | Ζ             | $U_{ m iso}$ */ $U_{ m eq}$ | Occ. (<1) |
|-----|---------------|---------------|---------------|-----------------------------|-----------|
| C11 | 0.55532 (4)   | 0.18042 (5)   | 0.01581 (4)   | 0.05973 (14)                |           |
| C12 | 0.18584 (5)   | 0.50107 (5)   | -0.10590 (5)  | 0.06391 (15)                |           |
| F1  | -0.02753 (11) | -0.32385 (11) | -0.03660 (13) | 0.0767 (4)                  |           |
| 01  | 0.33883 (11)  | 0.32276 (11)  | -0.25385 (9)  | 0.0498 (3)                  |           |
| C1  | 0.23362 (12)  | 0.10980 (13)  | -0.06621 (12) | 0.0366 (3)                  |           |
| H1  | 0.2685        | 0.1527        | 0.0117        | 0.044*                      |           |
| C2  | 0.25296 (12)  | 0.16144 (14)  | -0.16699 (12) | 0.0378 (3)                  |           |
| H2  | 0.2198        | 0.1204        | -0.2462       | 0.045*                      |           |
| C3  | 0.32232 (13)  | 0.27733 (14)  | -0.16076 (12) | 0.0380 (3)                  |           |
| C11 | 0.16497 (12)  | -0.00496 (13) | -0.06298 (13) | 0.0362 (3)                  |           |
| C12 | 0.16714 (14)  | -0.05235 (15) | 0.05394 (14)  | 0.0435 (3)                  |           |
| H12 | 0.2129        | -0.0095       | 0.1282        | 0.052*                      |           |
| C13 | 0.10377 (16)  | -0.16073 (16) | 0.06360 (16)  | 0.0522 (4)                  |           |
| H13 | 0.1068        | -0.1939       | 0.1434        | 0.063*                      |           |
| C14 | 0.03673 (15)  | -0.21884 (16) | -0.04488 (18) | 0.0522 (4)                  |           |
| C15 | 0.03053 (15)  | -0.17524 (16) | -0.16235 (17) | 0.0515 (4)                  |           |
| H15 | -0.0173       | -0.2177       | -0.2358       | 0.062*                      |           |
| C16 | 0.09524 (14)  | -0.06845 (15) | -0.17128 (14) | 0.0449 (3)                  |           |
| H16 | 0.0925        | -0.0375       | -0.2518       | 0.054*                      |           |
| C21 | 0.37356 (13)  | 0.34472 (13)  | -0.03476 (12) | 0.0388 (3)                  |           |
| C22 | 0.31594 (15)  | 0.44789 (15)  | -0.00230 (14) | 0.0448 (3)                  |           |
| C24 | 0.46503 (18)  | 0.47039 (18)  | 0.19724 (16)  | 0.0586 (5)                  |           |
| H24 | 0.4956        | 0.5126        | 0.2762        | 0.070*                      |           |
|     |               |               |               |                             |           |

| C26  | 0.47854 (14) | 0.30709 (15) | 0.05110 (13) | 0.0434 (3)  |           |
|------|--------------|--------------|--------------|-------------|-----------|
| C231 | 0.36195 (18) | 0.50942 (16) | 0.11341 (16) | 0.0545 (5)  | 0.573 (3) |
| F231 | 0.3031 (2)   | 0.60294 (18) | 0.14524 (19) | 0.0723 (7)  | 0.573 (3) |
| C251 | 0.52385 (16) | 0.36950 (18) | 0.16607 (15) | 0.0541 (5)  | 0.573 (3) |
| H251 | 0.5959       | 0.3423       | 0.2235       | 0.065*      | 0.573 (3) |
| C232 | 0.36195 (18) | 0.50942 (16) | 0.11341 (16) | 0.0545 (5)  | 0.427 (3) |
| H252 | 0.3212       | 0.5795       | 0.1344       | 0.065*      | 0.427 (3) |
| C252 | 0.52385 (16) | 0.36950 (18) | 0.16607 (15) | 0.0541 (5)  | 0.427 (3) |
| F232 | 0.6202 (2)   | 0.3318 (3)   | 0.2413 (2)   | 0.0763 (10) | 0.427 (3) |
|      |              |              |              |             |           |

Atomic displacement parameters  $(Å^2)$ 

|      | U <sup>11</sup> | U <sup>22</sup> | U <sup>33</sup> | U <sup>12</sup> | U <sup>13</sup> | U <sup>23</sup> |
|------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
| Cl1  | 0.0634 (3)      | 0.0683 (3)      | 0.0456 (2)      | 0.0139 (2)      | 0.01502 (18)    | 0.00247 (19)    |
| Cl2  | 0.0770 (3)      | 0.0586 (3)      | 0.0613 (3)      | 0.0189 (2)      | 0.0295 (2)      | 0.0032 (2)      |
| F1   | 0.0894 (8)      | 0.0584 (7)      | 0.0933 (9)      | -0.0277 (6)     | 0.0450 (7)      | -0.0037 (6)     |
| 01   | 0.0714 (7)      | 0.0513 (6)      | 0.0305 (5)      | -0.0051 (5)     | 0.0216 (5)      | 0.0038 (4)      |
| C1   | 0.0447 (7)      | 0.0352 (7)      | 0.0304 (6)      | 0.0025 (6)      | 0.0129 (5)      | -0.0027 (5)     |
| C2   | 0.0467 (7)      | 0.0392 (7)      | 0.0282 (6)      | 0.0018 (6)      | 0.0131 (5)      | -0.0042 (5)     |
| C3   | 0.0492 (8)      | 0.0386 (7)      | 0.0281 (6)      | 0.0042 (6)      | 0.0148 (5)      | 0.0012 (5)      |
| C11  | 0.0419 (7)      | 0.0353 (7)      | 0.0345 (6)      | 0.0049 (5)      | 0.0165 (6)      | -0.0011 (5)     |
| C12  | 0.0533 (8)      | 0.0427 (8)      | 0.0367 (7)      | 0.0006 (7)      | 0.0178 (6)      | -0.0004 (6)     |
| C13  | 0.0643 (10)     | 0.0490 (9)      | 0.0503 (9)      | -0.0021 (8)     | 0.0282 (8)      | 0.0066 (7)      |
| C14  | 0.0563 (9)      | 0.0412 (8)      | 0.0672 (10)     | -0.0065 (7)     | 0.0313 (8)      | -0.0042 (7)     |
| C15  | 0.0550 (9)      | 0.0502 (9)      | 0.0529 (9)      | -0.0085 (7)     | 0.0226 (7)      | -0.0146 (7)     |
| C16  | 0.0520 (8)      | 0.0474 (8)      | 0.0379 (7)      | -0.0026 (7)     | 0.0182 (6)      | -0.0062 (6)     |
| C21  | 0.0541 (8)      | 0.0370 (7)      | 0.0301 (6)      | -0.0070 (6)     | 0.0202 (6)      | 0.0002 (5)      |
| C22  | 0.0640 (9)      | 0.0382 (7)      | 0.0395 (7)      | -0.0061 (7)     | 0.0267 (7)      | -0.0007 (6)     |
| C24  | 0.0836 (13)     | 0.0601 (10)     | 0.0386 (8)      | -0.0307 (10)    | 0.0289 (9)      | -0.0147 (7)     |
| C26  | 0.0552 (9)      | 0.0471 (8)      | 0.0319 (7)      | -0.0070 (7)     | 0.0198 (6)      | 0.0007 (6)      |
| C231 | 0.0868 (13)     | 0.0428 (8)      | 0.0477 (9)      | -0.0151 (8)     | 0.0407 (9)      | -0.0105 (7)     |
| F231 | 0.1165 (18)     | 0.0509 (11)     | 0.0629 (12)     | 0.0040 (10)     | 0.0478 (12)     | -0.0140 (8)     |
| C251 | 0.0628 (10)     | 0.0656 (11)     | 0.0349 (8)      | -0.0214 (8)     | 0.0175 (7)      | -0.0026 (7)     |
| C232 | 0.0868 (13)     | 0.0428 (8)      | 0.0477 (9)      | -0.0151 (8)     | 0.0407 (9)      | -0.0105 (7)     |
| C252 | 0.0628 (10)     | 0.0656 (11)     | 0.0349 (8)      | -0.0214 (8)     | 0.0175 (7)      | -0.0026 (7)     |
| F232 | 0.0659 (17)     | 0.113 (2)       | 0.0383 (13)     | -0.0239 (16)    | 0.0011 (11)     | -0.0047 (13)    |

Geometric parameters (Å, °)

| Cl1—C26 | 1.7284 (16) | С13—Н13  | 0.9500    |  |
|---------|-------------|----------|-----------|--|
| Cl2—C22 | 1.7284 (18) | C14—C15  | 1.374 (2) |  |
| F1-C14  | 1.3588 (18) | C15—C16  | 1.379 (2) |  |
| O1—C3   | 1.2220 (16) | C15—H15  | 0.9500    |  |
| C1—C2   | 1.3410 (19) | C16—H16  | 0.9500    |  |
| C1-C11  | 1.4582 (19) | C21—C26  | 1.388 (2) |  |
| C1—H1   | 0.9500      | C21—C22  | 1.389 (2) |  |
| C2—C3   | 1.454 (2)   | C22—C231 | 1.392 (2) |  |
| С2—Н2   | 0.9500      | C24—C231 | 1.367 (3) |  |
|         |             |          |           |  |

| C3—C21               | 1.5190 (19)  | C24—C251                                | 1.373 (3)    |
|----------------------|--------------|-----------------------------------------|--------------|
| C11—C12              | 1.3950 (19)  | C24—H24                                 | 0.9500       |
| C11—C16              | 1.402 (2)    | C26—C251                                | 1.389 (2)    |
| C12—C13              | 1.384 (2)    | C231—F231                               | 1.321 (2)    |
| С12—Н12              | 0.9500       | С251—Н251                               | 0.9500       |
| C13—C14              | 1.368 (3)    |                                         |              |
|                      |              |                                         |              |
| C2-C1-C11            | 127.18 (13)  | C16—C15—H15                             | 120.7        |
| C2—C1—H1             | 116.4        | C15—C16—C11                             | 120.76 (14)  |
| C11—C1—H1            | 116.4        | C15—C16—H16                             | 119.6        |
| C1—C2—C3             | 123.09 (13)  | C11—C16—H16                             | 119.6        |
| C1—C2—H2             | 118.5        | C26—C21—C22                             | 117.71 (13)  |
| С3—С2—Н2             | 118.5        | C26—C21—C3                              | 121.98 (13)  |
| O1—C3—C2             | 121.99 (13)  | C22—C21—C3                              | 120.31 (14)  |
| O1—C3—C21            | 119.41 (13)  | C21—C22—C231                            | 120.61 (16)  |
| C2—C3—C21            | 118.59 (11)  | C21—C22—Cl2                             | 120.04 (12)  |
| C12—C11—C16          | 118.39 (13)  | C231—C22—Cl2                            | 119.35 (13)  |
| C12—C11—C1           | 118.21 (13)  | C231—C24—C251                           | 119.29 (15)  |
| C16—C11—C1           | 123.38 (13)  | C231—C24—H24                            | 120.4        |
| C13—C12—C11          | 121.12 (14)  | C251—C24—H24                            | 120.4        |
| C13—C12—H12          | 119.4        | C21—C26—C251                            | 121.18 (15)  |
| C11—C12—H12          | 119.4        | C21—C26—C11                             | 120.02 (11)  |
| C14—C13—C12          | 118.20 (15)  | C251—C26—C11                            | 118.79 (14)  |
| C14—C13—H13          | 120.9        | F231—C231—C24                           | 119.34 (17)  |
| C12—C13—H13          | 120.9        | F231—C231—C22                           | 119.7 (2)    |
| F1-C14-C13           | 118.73 (16)  | C24—C231—C22                            | 120.88 (16)  |
| F1—C14—C15           | 118.28 (16)  | C24—C251—C26                            | 120.32 (17)  |
| C13—C14—C15          | 122.98 (15)  | C24—C251—H251                           | 119.8        |
| C14—C15—C16          | 118.52 (15)  | C26—C251—H251                           | 119.8        |
| C14—C15—H15          | 120.7        |                                         |              |
| ~ ~ ~                |              | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |              |
| CII - CI - C2 - C3   | 179.51 (13)  | C2—C3—C21—C22                           | -94.75 (16)  |
| C1 - C2 - C3 - O1    | 180.00 (14)  | C26—C21—C22—C231                        | -0.9 (2)     |
| C1—C2—C3—C21         | -1.2 (2)     | C3—C21—C22—C231                         | 179.49 (13)  |
| C2-C1-C11-C12        | 172.16 (14)  | C26—C21—C22—Cl2                         | 179.08 (11)  |
| C2—C1—C11—C16        | -9.1 (2)     | C3—C21—C22—Cl2                          | -0.51 (18)   |
| C16—C11—C12—C13      | 1.1 (2)      | C22—C21—C26—C251                        | 0.7 (2)      |
| C1-C11-C12-C13       | 179.87 (14)  | C3—C21—C26—C251                         | -179.74 (13) |
| C11—C12—C13—C14      | -1.4 (2)     | C22—C21—C26—C11                         | -179.36 (11) |
| C12—C13—C14—F1       | -178.78 (15) | C3—C21—C26—Cl1                          | 0.22 (19)    |
| C12—C13—C14—C15      | 0.7 (3)      | C251—C24—C231—F231                      | 177.32 (16)  |
| F1—C14—C15—C16       | 179.77 (15)  | C251—C24—C231—C22                       | 0.3 (2)      |
| C13—C14—C15—C16      | 0.3 (3)      | C21—C22—C231—F231                       | -176.54 (16) |
| C14—C15—C16—C11      | -0.6 (2)     | C12—C22—C231—F231                       | 3.5 (2)      |
| C12—C11—C16—C15      | -0.1 (2)     | C21—C22—C231—C24                        | 0.4 (2)      |
| C1 - C11 - C16 - C15 | -178.78(14)  | C12—C22—C231—C24                        | -179.57 (13) |
| 01—C3—C21—C26        | -95.46 (17)  | C231—C24—C251—C26                       | -0.6 (2)     |
| C2—C3—C21—C26        | 85.68 (17)   | C21—C26—C251—C24                        | 0.1 (2)      |

# supporting information

| O1—C3—C21—C22                 | 84.11 (18) | Cl1—C26—C251— | C24         | -179.89 (12) |
|-------------------------------|------------|---------------|-------------|--------------|
| Hydrogen-bond geometry (Å, °) |            |               |             |              |
| Н…А                           | D—H        | H···A         | D···A       | D—H···A      |
| C1—H1…O1 <sup>i</sup>         | 0.95       | 2.51          | 3.3982 (16) | 156          |
| C12—H12…O1 <sup>i</sup>       | 0.95       | 2.55          | 3.4266 (19) | 153          |
|                               |            |               |             |              |

Symmetry code: (i) x, -y+1/2, z+1/2.