Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

catena-Poly[[[tetraaquaneodymium(III)]-di- μ-isonicotinato] chloride]

Jun-Hui Xue, ${ }^{\text {a }}$ Xiao-Hui Hua, ${ }^{\text {b }}$ Chun-Ping Li, ${ }^{\text {a }}$. Yi-Zhuang Xu^{b} and Jin-Guang Wu^{b}

${ }^{\text {a }}$ Chemical Engineering College, Inner Mongolia University of Technology, People's Republic of China, and ${ }^{\mathbf{b}}$ The State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, People's Republic of China
Correspondence e-mail: cp_li@yahoo.cn

Received 24 October 2011; accepted 25 December 2011

Key indicators: single-crystal X-ray study; $T=173 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$; R factor $=0.063 ; w R$ factor $=0.190$; data-to-parameter ratio $=16.9$.

In the title complex, $\left\{\left[\mathrm{Nd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl}\right\}_{n}$, the $\mathrm{Nd}^{\text {III }}$ cation is located on a twofold rotation axis and coordinated by four isonicotiniate anions and four water molecules in a distorted square-antiprismatic geometry. The carboxylate groups of the isonicotinate anions bridge the $\mathrm{Nd}^{\mathrm{II}}$ cations, forming polymeric chains running along the c axis. The Cl^{-} anion is located on a twofold rotation axis and is linked to the polymeric chains via $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding. Intermolecular $\mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds are also present in the crystal structure.

Related literature

For some crystal structures of related lanthanide-isonicotinic acid complexes, see: Chen \& Fukuzumi (2009); Ma et al. (1999); Han et al. (2010); Kay et al. (1972); Duan et al. (2010); Jia et al. (2008); Cheng et al. (2007); Liu et al. (2006); Chai et al. (2010).

Experimental

Crystal data

$\left[\mathrm{Nd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl}$	$V=1782.9(6) \AA^{3}$
$M_{r}=495.96$	$Z=4$
Orthorhombic, $P b c n$	Mo $K \alpha$ radiation
$a=8.9223(18) \AA$	$\mu=3.10 \mathrm{~mm}^{-1}$
$b=19.684(4) \AA$	$T=173 \mathrm{~K}$
$c=10.151(2) \AA$	$0.18 \times 0.17 \times 0.15 \mathrm{~mm}$
Data collection	
Rigaku Saturn724+ CCD	9085 measured reflections
\quad diffractometer	2056 independent reflections
Absorption correction: multi-scan	1764 reflections with $I>2 \sigma(I)$
\quad (CrystalClear; Rigaku, 2007)	$R_{\text {int }}=0.071$
$\quad T_{\text {min }}=0.49, T_{\text {max }}=0.63$	

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.190 \quad$ independent and constrained
$S=1.33$ refinement
2056 reflections
$\Delta \rho_{\max }=1.12 \mathrm{e}^{-3}$
122 parameters
$\Delta \rho_{\min }=-1.06 \mathrm{e}^{-3}$
nCl^{-}

9085 measured reflections 1764 reflections with $I>$ $R_{\text {int }}=0.071$

Table 1

Selected bond lengths (\AA).

$\mathrm{Nd} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.425(6)$	$\mathrm{Nd} 1-\mathrm{O} 3$	$2.544(6)$
$\mathrm{Nd} 1-\mathrm{O} 2$	$2.385(5)$	$\mathrm{Nd} 1-\mathrm{O} 4$	$2.480(6)$

Symmetry code: (i) $-x+1,-y+1,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{O} 3-\mathrm{H} 6 \cdots \mathrm{Cl} 2^{\text {ii }}$	0.95 (6)	2.29 (6)	3.211 (7)	163 (6)
$\mathrm{O} 3-\mathrm{H} 7 \cdots \mathrm{~N} 1^{\text {iii }}$	0.97 (4)	1.72 (4)	2.685 (10)	174 (9)
$\mathrm{O} 4-\mathrm{H} 8 \cdots \mathrm{Cl} 2^{\text {i }}$	0.96 (4)	2.15 (5)	3.041 (6)	155 (6)
$\mathrm{O} 4-\mathrm{H} 9 \cdots \mathrm{O}^{\text {iv }}$	0.95 (2)	1.93 (3)	2.841 (8)	160 (8)

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $-x,-y+1,-z+1$; (iii)
$x-\frac{1}{2}, y+\frac{1}{2},-z+\frac{1}{2} ;$ (iv) $-x+1,-y+1,-z$.

metal-organic compounds

Data collection: CrystalClear (Rigaku, 2007); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXTL; molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

The work was supported financially by the National Natural Science Foundation of China (grant Nos. 50973003 and 21001009), the National High-Tech R\&D Program of China (863 Program) and of MOST (No. 2010 A A03A406). Special thanks are due to Dr X. Hao, L. Wang and T.-L. Liang for their assistance in the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5361).

References

Chai, W.-X., Song, L., Shu, K.-Y., Shi, H.-S. \& Qin, L.-S. (2010). J. Chem. Crystallogr. 40, 448-452.
Chen, W.-T. \& Fukuzumi, S. (2009). Inorg. Chem. 48, 3800-3807.
Cheng, J.-W., Zheng, S.-T. \& Yang, G.-Y. (2007). Dalton Trans. pp. 4059-4066. Duan, L.-M., Lin, C.-K., Wang, H., Liu, X.-M. \& Lin, J. (2010). Inorg. Chim. Acta, 363, 1507-1512.
Han, L.-J., Sun, X.-C., Zhu, Y.-L., Zhou, W.-L., Chen, Q. \& Xu, Y. (2010). J. Chem. Crystallogr. 40, 579-582.
Jia, G.-H., Law, G. L., Wong, K. L., Tanner, P. A. \& Wong, W. T. (2008). Inorg. Chem. 47, 9431-9438.
Kay, J., Moore, J. W. \& Glick, M. D. (1972). Inorg. Chem. 11, 2818-2826.
Liu, J.-H., Wu, X.-Y., Zheng, Q.-Z., He, X., Yang, W.-B. \& Lu, C.-Z. (2006). Inorg. Chem. Commun. 9, 1187-1190.
Ma, L., Evans, O. R., Foxman, B. M. \& Lin, W.-B. (1999). Inorg. Chem. 38, 5837-5840.
Rigaku (2007). CrystalClear. Rigaku Corporation, Tokyo, Japan Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m170-m171 [doi:10.1107/S1600536811055619]

catena-Poly[[[tetraaquaneodymium(III)]-di- μ-isonicotinato] chloride]
 Jun-Hui Xue, Xiao-Hui Hua, Chun-Ping Li, Yi-Zhuang Xu and Jin-Guang Wu

S1. Comment

In the synthesis of prepare a lanthanide-isonicotinamide complex, the isonicotinamide changed to isonicotinic acid, resulting in the title complex.
Among aromatic carboxylic acids, isonicotinic acid has a conjugated structural motif and can be used to construct extended structures because it is unsymmetrical divergent ligand. Isonicotinic acid with metal ions may have various coordination modes (Chen et al., 2009). The molecular structure of the title compound is shown in Fig. 1. Nd(III) is 8coordinated to four oxygen atoms from four isonicotinic acid molecules and four water molecules. Each ligand is coordinated to two metal ions as bidentate ligands via two oxygen atoms of carboxyl group. One metal ion is connected to four ligands, thus an extensive network form. $\mathrm{Nd}($ III $)$ is located at the center of a slightly distorted square antiprism. Nd-O distances are from 2.385 to $2.544 \AA$. The mean Nd-O bond lengths, $2.4585 \AA$ is larger than the mean Sm-O bond lengths ($2.426 \AA$), which is consistent with the lanthanide contraction. The $\mathrm{O}-\mathrm{H} \cdots \mathrm{Cl}, \mathrm{O}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{O}-\mathrm{H} \cdots \mathrm{N}$ hydrogen bonds form a three-dimensional network.
For lanthanide-isonicotinate complexes, several structures have been observed. For example, Ln (III) ions can coordinate to six carboxylate oxygen atoms of bridging isonicotinate groups and to two water molecules (Ma et al., 1999); or may coordinate to four carboxylate oxygen atoms of bridging isonicotinate groups, two carboxylate oxygen atoms of the chelating isonicotinate group, and two water molecules (Ma et al., 1999; Han et al., 2010; Kay et al., 1972); or have structure similar to the NdCl -isonicotinic acid complex reported here (Chen et al., 2009). Because Cl^{-}or $\mathrm{NO}_{3}{ }^{-}$does not coordinate to lanthanide ions, so $\mathrm{Nd}(\mathrm{III})$ chloride or nitrate ion-isonicotinic acid complexes have the similar coordination sphere (Duan et al., 2010; Jia et al., 2008). When oxalate ligands, chromate ions or other ligands are involved, the coordination situations are a little different (Cheng et al., 2007; Liu et al., 2006; Chai et al., 2010) because oxalate ligand, chromate ions or other ligands also coordinate to metal ions.

S2. Experimental

$\mathrm{NdCl}_{3}(1 \mathrm{mmol})$ and isonicotinamide (3 mmol) were dissolved in 3 ml water and 6 ml ethanol. The solution was put on a water bath, temperature was raised to $80^{\circ} \mathrm{C}$. Small aliquots of EtOH were periodically added to the solution during the heating process to prolong the reaction time. The resulting mixtures were filtered and left for crystallization in room temperature, the suitable crystals for X-ray diffraction measuraments were obtained in two weeks.

S3. Refinement

The C-bound H-atoms were placed in calculated positions ($\mathrm{C}-\mathrm{H} 0.930 \AA$) and were included in the refinement in the riding model approximation, $\mathrm{U}_{\mathrm{iso}}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{C})$. The O -bound H atoms were located in a difference Fourier map and were refined with $\mathrm{U}_{\text {iso }}(\mathrm{H})=1.2 \mathrm{U}_{\mathrm{eq}}(\mathrm{O})$.

Figure 1
The molecular structure of the title compound, displacement ellipsoids drawn at 30% probability level. The Hydrogen atoms have been omitted for clarity.

catena-Poly[[[tetraaquaneodymium(III)]-di- μ-isonicotinato] chloride]

Crystal data

$\left[\mathrm{Nd}\left(\mathrm{C}_{6} \mathrm{H}_{4} \mathrm{NO}_{2}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\right] \mathrm{Cl}$
$M_{r}=495.96$
Orthorhombic, Pbcn
Hall symbol: -P 2n 2ab
$a=8.9223$ (18) \AA
$b=19.684$ (4) \AA
$c=10.151$ (2) \AA
$V=1782.9(6) \AA^{3}$
$Z=4$

Data collection

Rigaku Saturn724+ CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Detector resolution: 28.5714 pixels mm^{-1}
$F(000)=972$
$D_{\mathrm{x}}=1.848 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 4581 reflections
$\theta=2.0-27.5^{\circ}$
$\mu=3.10 \mathrm{~mm}^{-1}$
$T=173 \mathrm{~K}$
Block, blue
$0.18 \times 0.17 \times 0.15 \mathrm{~mm}$
ω scans at fixed $\chi=45^{\circ}$
Absorption correction: multi-scan
(CrystalClear; Rigaku, 2007)
$T_{\text {min }}=0.49, T_{\text {max }}=0.63$
9085 measured reflections

2056 independent reflections
1764 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.071$
$\theta_{\text {max }}=27.5^{\circ}, \theta_{\min }=2.1^{\circ}$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.063$
$w R\left(F^{2}\right)=0.190$
$S=1.33$
2056 reflections
122 parameters
6 restraints
Primary atom site location: structure-invariant direct methods

$$
\begin{aligned}
& h=-11 \rightarrow 6 \\
& k=-25 \rightarrow 23 \\
& l=-12 \rightarrow 13
\end{aligned}
$$

```
Secondary atom site location: difference Fourier
    map
Hydrogen site location: inferred from
    neighbouring sites
H atoms treated by a mixture of independent
    and constrained refinement
\(w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0763 P)^{2}+8.5206 P\right]\)
    where \(P=\left(F_{\mathrm{o}}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}=0.004\)
\(\Delta \rho_{\text {max }}=1.12 \mathrm{e}_{\AA^{-3}}\)
\(\Delta \rho_{\text {min }}=-1.06\) e \(\AA^{-3}\)
```

map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}^{2}\right)+(0.0763 P)^{2}+8.5206 P\right]$
where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.004$
$\Delta \rho_{\text {max }}=1.12 \mathrm{e}_{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-1.06$ e \AA^{-3}

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R -factor wR and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>2 \operatorname{sigma}\left(\mathrm{~F}^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F , and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Nd1	0.5000	$0.51140(3)$	0.2500	$0.0166(3)$
C12	0.0000	$0.55946(19)$	0.7500	$0.0334(8)$
O4	$0.6995(7)$	$0.4591(3)$	$0.1133(5)$	$0.0263(13)$
H8	$0.802(4)$	$0.448(5)$	$0.131(7)$	0.032^{*}
H9	$0.694(9)$	$0.459(5)$	$0.020(2)$	0.032^{*}
O1	$0.5450(7)$	$0.3957(3)$	$0.5981(6)$	$0.0250(13)$
O2	$0.6051(7)$	$0.4301(3)$	$0.3977(5)$	$0.0225(12)$
O3	$0.2471(7)$	$0.5501(3)$	$0.1620(6)$	$0.0242(13)$
H6	$0.163(6)$	$0.526(3)$	$0.195(10)$	0.029^{*}
H7	$0.211(8)$	$0.5964(15)$	$0.157(9)$	0.029^{*}
C6	$0.5817(8)$	$0.3855(4)$	$0.4827(8)$	$0.0164(15)$
C3	$0.6021(10)$	$0.3129(4)$	$0.4415(8)$	$0.0217(17)$
C2	$0.6744(10)$	$0.2956(4)$	$0.3247(8)$	$0.0261(19)$
H2	0.7100	0.3295	0.2691	0.031^{*}
C4	$0.5480(12)$	$0.2591(4)$	$0.5189(10)$	$0.030(2)$
H4	0.4971	0.2678	0.5970	0.035^{*}
N1	$0.6459(9)$	$0.1776(4)$	$0.3683(7)$	$0.0286(17)$
C5	$0.5713(12)$	$0.1933(4)$	$0.4775(9)$	$0.030(2)$
H5	0.5329	0.1581	0.5285	0.036^{*}
C1	$0.6936(11)$	$0.2279(4)$	$0.2911(10)$	$0.030(2)$

H1	0.7412	0.2173	0.2123	0.036^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Nd1	$0.0210(4)$	$0.0139(4)$	$0.0148(4)$	0.000	$-0.0010(2)$	0.000
C12	$0.0240(15)$	$0.0327(18)$	$0.043(2)$	0.000	$-0.0092(13)$	0.000
O4	$0.025(3)$	$0.040(4)$	$0.014(3)$	$0.008(3)$	$0.001(2)$	$-0.002(3)$
O1	$0.034(3)$	$0.019(3)$	$0.022(3)$	$-0.002(3)$	$0.007(3)$	$-0.005(2)$
O2	$0.025(3)$	$0.016(3)$	$0.026(3)$	$-0.001(2)$	$-0.006(3)$	$0.007(2)$
O3	$0.022(3)$	$0.015(3)$	$0.035(3)$	$0.005(2)$	$0.005(3)$	$0.005(2)$
C6	$0.006(4)$	$0.018(4)$	$0.025(4)$	$0.000(3)$	$-0.008(3)$	$0.000(3)$
C3	$0.023(4)$	$0.022(4)$	$0.021(4)$	$0.000(3)$	$0.002(3)$	$0.001(3)$
C2	$0.026(5)$	$0.026(4)$	$0.027(4)$	$-0.003(4)$	$0.006(4)$	$0.002(4)$
C4	$0.037(5)$	$0.020(4)$	$0.032(5)$	$-0.005(4)$	$0.003(4)$	$0.002(4)$
N1	$0.040(4)$	$0.021(4)$	$0.025(4)$	$0.002(3)$	$-0.009(3)$	$-0.009(3)$
C5	$0.040(6)$	$0.015(4)$	$0.035(5)$	$0.000(4)$	$0.006(4)$	$0.004(3)$
C1	$0.035(5)$	$0.023(5)$	$0.031(5)$	$0.005(4)$	$-0.003(4)$	$-0.008(4)$

Geometric parameters ($A,{ }^{\circ}$)

Nd1-O1 ${ }^{\text {i }}$	2.425 (6)	O3-H6	0.95 (2)
Nd1-O1 ${ }^{\text {ii }}$	2.425 (6)	O3-H7	0.97 (2)
$\mathrm{Nd} 1-\mathrm{O} 2{ }^{\text {iii }}$	2.385 (5)	C6-C3	1.501 (10)
$\mathrm{Nd} 1-\mathrm{O} 2$	2.385 (5)	C3-C2	1.392 (11)
$\mathrm{Nd} 1-\mathrm{O}^{\text {iii }}$	2.544 (6)	C3-C4	1.404 (12)
Nd1-O3	2.544 (6)	C2-C1	1.385 (12)
$\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {iii }}$	2.480 (6)	$\mathrm{C} 2-\mathrm{H} 2$	0.9300
Nd1-O4	2.480 (6)	C4-C5	1.377 (12)
O4-H8	0.96 (2)	C4-H4	0.9300
O4-H9	0.95 (2)	N1-C5	1.330 (12)
O1-C6	1.234 (9)	N1-C1	1.332 (12)
$\mathrm{O} 1-\mathrm{Nd} 1{ }^{\text {i }}$	2.425 (6)	C5-H5	0.9300
O2-C6	1.248 (9)	C1-H1	0.9300
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{O} 2$	95.7 (3)	Nd1-O4-H8	132 (5)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{Ol}^{\text {i }}$	147.2 (2)	Nd1-O4-H9	121 (5)
$\mathrm{O} 2-\mathrm{Ndl}-\mathrm{O} 1^{\text {i }}$	99.8 (2)	H8-O4-H9	104 (3)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{O} 1^{\text {ii }}$	99.8 (2)	C6-O1-Nd1 ${ }^{\text {i }}$	140.4 (5)
$\mathrm{O} 2-\mathrm{Nd} 1-\mathrm{O} 1^{\text {ii }}$	147.2 (2)	C6-O2-Nd1	147.2 (5)
$\mathrm{O} 1^{\text {i }}-\mathrm{Nd} 1-\mathrm{O} 1^{\text {ii }}$	82.1 (3)	Nd1-O3-H6	115 (5)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {iii }}$	78.0 (2)	Nd1-O3-H7	127 (5)
$\mathrm{O} 2-\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {iii }}$	69.63 (19)	H6-O3-H7	103 (3)
$\mathrm{O} 1^{\mathrm{i}}-\mathrm{Nd} 1-\mathrm{O} 4{ }^{\text {iii }}$	80.7 (2)	O1-C6-O2	125.9 (7)
$\mathrm{O} 1{ }^{\mathrm{ii}}-\mathrm{Nd} 1-\mathrm{O} 4^{\text {iii }}$	141.9 (2)	O1-C6-C3	116.9 (7)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{O} 4$	69.63 (19)	O2-C6-C3	117.2 (7)
$\mathrm{O} 2-\mathrm{Nd} 1-\mathrm{O} 4$	78.0 (2)	$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	116.8 (8)
$\mathrm{O} 1{ }^{\mathrm{i}}$ - $\mathrm{Nd} 1-\mathrm{O} 4$	141.9 (2)	C2-C3-C6	121.8 (7)

$\mathrm{O} 1^{\text {ii- }} \mathrm{Nd} 1-\mathrm{O} 4$	80.7 (2)
O4iii- ${ }^{\text {iii }}$ - $1-\mathrm{O} 4$	131.0 (3)
$\mathrm{O} 2{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{O} 3{ }^{\text {iii }}$	140.41 (19)
$\mathrm{O} 2-\mathrm{Nd} 1-\mathrm{O} 3{ }^{\text {iii }}$	68.36 (19)
$\mathrm{O} 1^{\text {i }}-\mathrm{Nd} 1-\mathrm{O} 3^{\text {iii }}$	72.4 (2)
$\mathrm{O} 1^{\text {ii }}-\mathrm{Nd} 1-3^{\text {iii }}$	81.4 (2)
$\mathrm{O} 4^{\text {iii] }}$ - $\mathrm{Nd} 1-\mathrm{O} 3^{\text {iii }}$	124.35 (18)
$\mathrm{O} 4-\mathrm{Nd} 1-\mathrm{O} 3^{\text {iii }}$	71.60 (19)
$\mathrm{O} 2{ }^{\text {iii }}$ - $\mathrm{Nd} 1-\mathrm{O} 3$	68.36 (19)
$\mathrm{O} 2-\mathrm{Nd} 1-\mathrm{O} 3$	140.41 (19)
$\mathrm{O} 1{ }^{\text {i }}-\mathrm{Nd} 1-\mathrm{O} 3$	81.4 (2)
$\mathrm{O} 1{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{O} 3$	72.4 (2)
$\mathrm{O} 4{ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{O} 3$	71.60 (19)
$\mathrm{O} 4-\mathrm{Nd} 1-\mathrm{O} 3$	124.35 (18)
O3 ${ }^{\text {iii }}-\mathrm{Nd} 1-\mathrm{O} 3$	145.1 (3)

$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 6$	$121.4(7)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	$120.2(8)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	119.9
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2$	119.9
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	$119.1(9)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{H} 4$	120.4
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{H} 4$	120.4
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 1$	$118.5(7)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 4$	$123.2(8)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{H} 5$	118.4
$\mathrm{C} 4-\mathrm{C} 5-\mathrm{H} 5$	118.4
$\mathrm{~N} 1-\mathrm{C} 1-\mathrm{C} 2$	$122.0(9)$
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{H} 1$	119.0
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1$	119.0

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (ii) $x,-y+1, z-1 / 2$; (iii) $-x+1, y,-z+1 / 2$.

Hydrogen-bond geometry ($\hat{A},{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O3-H6 $\cdots \mathrm{Cl} 2^{\text {iv }}$	0.95 (6)	2.29 (6)	3.211 (7)	163 (6)
$\mathrm{O} 3-\mathrm{H} 7 \cdots \mathrm{~N} 1^{\text {v }}$	0.97 (4)	1.72 (4)	2.685 (10)	174 (9)
$\mathrm{O} 4-\mathrm{H} 8 \cdots{ }^{-}{ }^{\text {2 }}$	0.96 (4)	2.15 (5)	3.041 (6)	155 (6)
$\mathrm{O} 4-\mathrm{H} 9 \cdots{ }^{\text {a }}{ }^{\text {vi }}$	0.95 (2)	1.93 (3)	2.841 (8)	160 (8)

Symmetry codes: (i) $-x+1,-y+1,-z+1$; (iv) $-x,-y+1,-z+1$; (v) $x-1 / 2, y+1 / 2,-z+1 / 2$; (vi) $-x+1,-y+1,-z$.

