

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-[(Cyclopropylmethoxy)methyl]-6-(3,4dimethoxybenzyl)-5-ethyl-1,2,3,4-tetrahydropyrimidine-2,4-dione ethanol hemisolvate

Nasser R. El-Brollosy,^a Ali A. El-Emam,^a Omar A. Al-Deeb^a and Seik Weng Ng^{b,c*}

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: seikweng@um.edu.my

Received 19 December 2011; accepted 26 December 2011

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.056; wR factor = 0.166; data-to-parameter ratio = 17.9.

The asymmetric unit of the compound, C₂₀H₂₆N₂O₅·0.5-0.5C₂H₅OH, consists of two tetrahydropyrimidine-2,4-dione molecules and an ethanol molecule. The pyrimidine rings are nearly planar (r.m.s. deviation = 0.006 Å in one molecule and 0.009 Å in the other); the C atom at the 5-position deviates by 0.083 (3) Å [0.064 (3) Å in the second molecule] from the mean plane and the C atom at the 6-position by 0.034 (3) Å [0.082 (3) Å in the second molecule]. In each molecule, the benzene ring is nearly perpendicular to the pyrimidine ring, the dihedral angle is 88.51 $(8)^{\circ}$ in one molecule and 84.70 $(8)^{\circ}$ in the other. The amino group of each tetrahydropyrimidine-2,4-dione molecule is a hydrogen-bond donor to the exocyclic O atom at the 2-position of an adjacent molecule, the hydrogen bond generating an inversion dimer in each case. The ethanol molecule forms a hydrogen bond to the methoxy O atom of one of two independent molecules.

Related literature

For the synthesis, see: El-Brollosy et al. (2008).

Experimental

Crystal data

 $\begin{array}{l} C_{20}H_{26}N_2O_5 \cdot 0.5C_2H_6O\\ M_r = 397.46\\ \text{Monoclinic, } P2_1/n\\ a = 14.0251 \ (5) \text{ Å}\\ b = 9.4285 \ (3) \text{ Å}\\ c = 30.8606 \ (12) \text{ Å}\\ \beta = 91.580 \ (3)^\circ \end{array}$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan (*CrysAlis PRO*; Agilent, 2010) $T_{\rm min} = 0.972, T_{\rm max} = 0.995$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.056$ $wR(F^2) = 0.166$ S = 1.039419 reflections 526 parameters 3 restraints $V = 4079.3 (3) Å^{3}$ Z = 8 Mo K\alpha radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 100 K 0.30 \times 0.20 \times 0.05 mm

41334 measured reflections 9419 independent reflections 6406 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.052$

H atoms treated by a mixture of
independent and constrained
refinement
$\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N1-H1\cdotsO1^{i}$ $N3-H3\cdotsO6^{ii}$ $O11-H11\cdotsO10$	0.88 (1) 0.88 (1) 0.85 (1)	1.96 (1) 1.92 (1) 2.08 (1)	2.839 (2) 2.799 (2) 2.927 (2)	177 (2) 175 (2) 178 (1)

Symmetry codes: (i) -x + 2, -y + 1, -z + 1; (ii) -x + 1, -y + 2, -z + 1.

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

We thank the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University, and the University of Malaya for supporting this study. Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: XU5424).

References

Agilent (2010). *CrysAlis PRO*. Agilent Technologies, Yarnton, England. Barbour, L. J. (2001). *J. Supramol. Chem.* **1**, 189–191. El-Brollosy, N. R. (2008). *Monatsh. Chem.* **139**, 1483–1490. Sheldrick, G. M. (2008). *Acta Cryst.* **A64**, 112–122. Westrip, S. P. (2010). *J. Appl. Cryst.* **43**, 920–925.

supporting information

Acta Cryst. (2012). E68, o349-o350 [doi:10.1107/S1600536811055693]

1-[(Cyclopropylmethoxy)methyl]-6-(3,4-dimethoxybenzyl)-5-ethyl-1,2,3,4-tetrahydropyrimidine-2,4-dione ethanol hemisolvate

Nasser R. El-Brollosy, Ali A. El-Emam, Omar A. Al-Deeb and Seik Weng Ng

S1. Comment

The compound was synthesized for an evaluation of its anti-viral activity against HIV-1 (El-Brollosy, 2008). The asymmetric unit of $C_{20}H_{26}N_2O_50.5(C_2H_5OH)$ (Scheme I) consists of two tetrahydropyrimidine-2,4-dione molecules and an ethanol molecule. The pyrimidine rings are planar; the C atom at the 5-position deviates by 0.083 (3) Å (0.064 Å in the second molecule) from the mean plane and the C atom at the 6-position by 0.034 (3) Å (0.082 (3) Å in the second molecule) (Fig. 1). The amino group is hydrogen-bond donor to the exocyclic O atom at the 2-position, the hydrogen bond generating a centrosymmetric dimer. The ethanol molecule forms a hydrogen bond to the methoxy O atom of one of two independent molecules (Table 1, Fig. 2).

S2. Experimental

The compound was synthesized by using a reported method (El-Brollosy, 2008), and was recrystallized from ethanol.

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions [C–H 0.95 to 0.98 Å, U_{iso} (H) 1.2 to 1.5 U_{eq} (C)] and were included in the refinement in the riding model approximation.

The amino and hydroxy H-atoms were located in a difference Fourier map, and were refined with distance restraints of N–H 0.88 ± 0.01 and O–H 0.84 ± 0.1 Å; their temperature factors were refined.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $C_{20}H_{26}N_2O_5 \cdot 0.5C_2H_5OH$ at the 70% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

Figure 2

Dimeric hydrogen-bonded structure.

1-[(Cyclopropylmethoxy)methyl]-6-(3,4-dimethoxybenzyl)-5-ethyl-1,2,3,4- tetrahydropyrimidine-2,4-dione ethanol hemisolvate

```
Crystal data
```

$C_{20}H_{26}N_2O_5{\cdot}0.5C_2H_6O$
$M_r = 397.46$
Monoclinic, $P2_1/n$
Hall symbol: -P 2yn
<i>a</i> = 14.0251 (5) Å
<i>b</i> = 9.4285 (3) Å
<i>c</i> = 30.8606 (12) Å
$\beta = 91.580 \ (3)^{\circ}$
V = 4079.3 (3) Å ³
Z = 8

Data collection

F(000) = 1704 $D_x = 1.294 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 8025 reflections $\theta = 2.4-27.5^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 100 KPrism, colorless $0.30 \times 0.20 \times 0.05 \text{ mm}$

 $T_{\min} = 0.972, T_{\max} = 0.995$ 41334 measured reflections
9419 independent reflections
6406 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.052$ $\theta_{\text{max}} = 27.6^{\circ}, \theta_{\text{min}} = 2.4^{\circ}$ $h = -18 \rightarrow 18$ $k = -12 \rightarrow 12$ $l = -39 \rightarrow 40$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.056$	Hydrogen site location: inferred from
$wR(F^2) = 0.166$	neighbouring sites
<i>S</i> = 1.03	H atoms treated by a mixture of independent
9419 reflections	and constrained refinement
526 parameters	$w = 1/[\sigma^2(F_o^2) + (0.074P)^2 + 1.8464P]$
3 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.61 \text{ e } \text{\AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.31 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.98988 (10)	0.46926 (14)	0.55571 (4)	0.0200 (3)	
O2	1.09507 (10)	0.16211 (15)	0.45487 (4)	0.0235 (3)	
03	1.30215 (10)	-0.02588 (16)	0.74125 (4)	0.0257 (3)	
O4	1.43731 (10)	0.12427 (16)	0.70964 (4)	0.0254 (3)	
05	0.93339 (9)	0.20943 (14)	0.63656 (4)	0.0213 (3)	
O6	0.48783 (9)	0.96225 (13)	0.55457 (4)	0.0191 (3)	
O7	0.59262 (10)	0.66818 (14)	0.45009 (4)	0.0231 (3)	
08	0.78053 (10)	0.54250 (16)	0.74248 (4)	0.0240 (3)	
09	0.91765 (10)	0.68595 (16)	0.71014 (5)	0.0259 (3)	
O10	0.43936 (9)	0.69818 (14)	0.63514 (4)	0.0200 (3)	
011	0.47459 (11)	0.57361 (17)	0.72096 (5)	0.0309 (4)	
H11	0.463 (2)	0.608 (3)	0.6959 (5)	0.074 (11)*	
N1	1.04366 (11)	0.31279 (16)	0.50634 (5)	0.0165 (3)	
H1	1.0329 (17)	0.378 (2)	0.4864 (6)	0.038 (7)*	
N2	1.04156 (11)	0.25128 (16)	0.57939 (5)	0.0154 (3)	
N3	0.54195 (11)	0.81224 (16)	0.50323 (5)	0.0154 (3)	
H3	0.5312 (17)	0.8795 (19)	0.4838 (6)	0.034 (7)*	
N4	0.54112 (11)	0.74223 (16)	0.57559 (5)	0.0141 (3)	
C1	1.02324 (12)	0.35184 (19)	0.54753 (6)	0.0154 (4)	
C2	1.08106 (13)	0.1838 (2)	0.49329 (6)	0.0173 (4)	
C3	1.10081 (12)	0.08265 (19)	0.52809 (6)	0.0163 (4)	
C4	1.08091 (12)	0.11816 (19)	0.56934 (6)	0.0152 (4)	
C5	1.14720 (13)	-0.0542 (2)	0.51478 (7)	0.0195 (4)	
H5A	1.1235	-0.0805	0.4854	0.023*	
H5B	1.1286	-0.1305	0.5349	0.023*	
C6	1.25569 (14)	-0.0433 (2)	0.51483 (7)	0.0263 (5)	
H6A	1.2826	-0.1334	0.5051	0.039*	
H6B	1.2798	-0.0223	0.5442	0.039*	

H6C	1.2744	0.0328	0.4952	0.039*
C7	1.10005 (13)	0.0217 (2)	0.60769 (6)	0.0168 (4)
H7A	1.1054	-0.0771	0.5971	0.020*
H7B	1.0449	0.0260	0.6270	0.020*
C8	1.19039 (13)	0.05911 (19)	0.63389 (6)	0.0158 (4)
С9	1.20206 (13)	0.0029 (2)	0.67599 (6)	0.0170 (4)
Н9	1.1522	-0.0518	0.6878	0.020*
C10	1.28463 (13)	0.0257(2)	0.70032 (6)	0.0172 (4)
C11	1.35853 (13)	0.1076(2)	0.68285 (6)	0.0175(4)
C12	1.34717 (13)	0.1648(2)	0.64198 (6)	0.0178 (4)
H12	1.3965	0.2210	0.6303	0.021*
C13	1 26320 (13)	0.14051(19)	0.61763 (6)	0.0171(4)
H13	1 2561	0.1805	0.5895	0.021*
C14	1 23215 (15)	-0.1186(2)	0.75862(7)	0.021 0.0255(5)
H14A	1 2532	-0.1499	0.7876	0.038*
H14R	1.2232	-0.2014	0.7397	0.038*
H14C	1.1713	-0.0682	0.7605	0.038*
C15	1.51657 (15)	0.1951 (3)	0.69177 (7)	0.0372 (6)
H15A	1.5682	0.2020	0.7137	0.0572 (0)
H15R	1.3082	0.2020	0.6825	0.056*
H15C	1.5389	0.1416	0.6668	0.056*
C16	1.01394 (14)	0.1410 0.2859(2)	0.62390 (6)	0.030 0.0188(4)
U10 H16A	1.0680	0.2639 (2)	0.02390(0)	0.023*
HIGA HIGB	1.0000	0.2040	0.6258	0.023
C17	0.84671(14)	0.3887 0.2553 (2)	0.0238 0.61450 (7)	0.023°
U17A	0.8526	0.2333 (2)	0.5228	0.0217 (4)
Ш17р	0.8320	0.2420	0.5828	0.026*
C_{18}	0.8558	0.3372 0.1707 (2)	0.0203	0.020°
U18	0.70400 (13)	0.1707(2)	0.02998 (7)	0.0222 (4)
П18 С10	0.7433 0.75122 (16)	0.1003	0.0003	0.027°
U19	0.75155 (10)	0.0224 (2)	0.01313(7)	0.0200 (3)
HI9A	0.7254	-0.0494	0.0331	0.032*
П19 Б	0.7987	-0.0145	0.3927	0.032°
C20	0.68546 (15)	0.1388 (2)	0.39745(7)	0.0203 (5)
H20A	0.6193	0.1385	0.60/8	0.032*
H20B	0.6925	0.1/36	0.56/4	0.032^{*}
C21	0.52168 (13)	0.84630 (19)	0.54485 (6)	0.0152 (4)
C22	0.57962 (13)	0.68532 (19)	0.488/5 (6)	0.0158 (4)
C23	0.60088 (12)	0.58061 (19)	0.52249 (6)	0.0150 (4)
C24	0.58203 (12)	0.61172 (19)	0.56415 (6)	0.0141 (4)
C25	0.64704 (13)	0.44552 (19)	0.50/35 (6)	0.0179 (4)
H25A	0.6224	0.4227	0.4778	0.021*
H25B	0.6291	0.3668	0.5267	0.021*
C26	0.75574 (14)	0.4565 (2)	0.50682 (7)	0.0260 (5)
H26A	0.7823	0.3667	0.4967	0.039*
H26B	0.7806	0.4767	0.5362	0.039*
H26C	0.7739	0.5332	0.4873	0.039*
C27	0.60529 (13)	0.51366 (19)	0.60141 (6)	0.0155 (4)
H27A	0.6180	0.4177	0.5899	0.019*

H27B	0.5492	0.5071	0.6201	0.019*
C28	0.69145 (13)	0.56243 (19)	0.62879 (6)	0.0152 (4)
C29	0.69588 (13)	0.52546 (19)	0.67285 (6)	0.0160 (4)
H29	0.6460	0.4709	0.6848	0.019*
C30	0.77194 (13)	0.5677 (2)	0.69894 (6)	0.0177 (4)
C31	0.84680 (13)	0.6468 (2)	0.68105 (6)	0.0179 (4)
C32	0.84309 (13)	0.6817 (2)	0.63778 (6)	0.0175 (4)
H32	0.8937	0.7339	0.6256	0.021*
C33	0.76497 (13)	0.64037 (19)	0.61165 (6)	0.0162 (4)
H33	0.7623	0.6660	0.5819	0.019*
C34	0.71250 (15)	0.4468 (2)	0.75976 (7)	0.0275 (5)
H34A	0.7254	0.4345	0.7909	0.041*
H34B	0.7172	0.3548	0.7452	0.041*
H34C	0.6481	0.4852	0.7551	0.041*
C35	0.98999 (16)	0.7776 (3)	0.69457 (8)	0.0404 (6)
H35A	1.0358	0.7992	0.7182	0.061*
H35B	0.9608	0.8658	0.6839	0.061*
H35C	1.0230	0.7308	0.6709	0.061*
C36	0.51807 (13)	0.7754 (2)	0.62070 (6)	0.0171 (4)
H36A	0.5742	0.7541	0.6397	0.021*
H36B	0.5044	0.8780	0.6231	0.021*
C37	0.34872 (13)	0.7456 (2)	0.61695 (7)	0.0207 (4)
H37A	0.3474	0.7335	0.5851	0.025*
H37B	0.3392	0.8473	0.6235	0.025*
C38	0.27141 (15)	0.6592 (2)	0.63636 (7)	0.0271 (5)
H38	0.2615	0.6731	0.6680	0.033*
C39	0.25401 (17)	0.5130 (2)	0.61916 (8)	0.0305 (5)
H39A	0.2353	0.4388	0.6400	0.037*
H39B	0.2945	0.4794	0.5955	0.037*
C40	0.18343 (15)	0.6284 (2)	0.60890 (8)	0.0301 (5)
H40A	0.1214	0.6254	0.6235	0.036*
H40B	0.1807	0.6662	0.5789	0.036*
C41	0.47636 (18)	0.6798 (3)	0.75372 (8)	0.0349 (6)
H41A	0.4939	0.6350	0.7818	0.042*
H41B	0.4114	0.7196	0.7561	0.042*
C42	0.5443 (2)	0.7984 (3)	0.74559 (9)	0.0462 (7)
H42A	0.5424	0.8666	0.7695	0.069*
H42B	0.5261	0.8460	0.7184	0.069*
H42C	0.6091	0.7604	0.7435	0.069*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0258 (7)	0.0163 (7)	0.0181 (7)	0.0056 (6)	0.0030 (6)	0.0036 (5)
O2	0.0315 (8)	0.0231 (7)	0.0162 (7)	0.0040 (6)	0.0058 (6)	0.0007 (6)
03	0.0240 (7)	0.0370 (9)	0.0161 (8)	-0.0072 (7)	-0.0018 (6)	0.0090 (6)
04	0.0208 (7)	0.0395 (9)	0.0158 (7)	-0.0102 (7)	-0.0029 (6)	0.0024 (6)
05	0.0218 (7)	0.0232 (7)	0.0190 (7)	0.0047 (6)	0.0040 (6)	0.0066 (6)

O6	0.0240 (7)	0.0152 (7)	0.0182 (7)	0.0048 (6)	0.0023 (6)	0.0021 (5)
O7	0.0328 (8)	0.0225 (7)	0.0142 (7)	0.0042 (6)	0.0051 (6)	0.0021 (6)
08	0.0258 (7)	0.0345 (8)	0.0117 (7)	-0.0098 (7)	-0.0018 (6)	0.0041 (6)
O9	0.0201 (7)	0.0390 (9)	0.0184 (8)	-0.0111 (7)	-0.0027 (6)	0.0011 (6)
O10	0.0223 (7)	0.0224 (7)	0.0153 (7)	0.0020 (6)	0.0017 (6)	0.0044 (6)
O11	0.0334 (9)	0.0315 (8)	0.0278 (9)	-0.0019 (7)	0.0007 (7)	0.0037 (7)
N1	0.0193 (8)	0.0158 (8)	0.0145 (8)	0.0024 (7)	0.0008 (6)	0.0045 (6)
N2	0.0164 (7)	0.0150 (8)	0.0148 (8)	0.0020 (6)	-0.0001 (6)	0.0030 (6)
N3	0.0194 (8)	0.0138 (8)	0.0130 (8)	0.0009 (7)	0.0007 (6)	0.0037 (6)
N4	0.0175 (7)	0.0130 (7)	0.0118 (8)	0.0013 (6)	0.0002 (6)	0.0011 (6)
C1	0.0126 (8)	0.0157 (9)	0.0179 (10)	-0.0012 (7)	-0.0001 (7)	0.0035 (7)
C2	0.0143 (9)	0.0170 (9)	0.0205 (10)	-0.0005 (8)	0.0011 (8)	0.0009 (8)
C3	0.0119 (8)	0.0148 (9)	0.0223 (10)	0.0007 (7)	0.0008 (7)	0.0033 (7)
C4	0.0117 (8)	0.0125 (8)	0.0213 (10)	-0.0017 (7)	-0.0020(7)	0.0039 (7)
C5	0.0210 (9)	0.0177 (9)	0.0197 (10)	0.0015 (8)	0.0009 (8)	0.0014 (8)
C6	0.0207 (10)	0.0272 (11)	0.0308 (12)	0.0071 (9)	-0.0015 (9)	-0.0090 (9)
C7	0.0174 (9)	0.0156 (9)	0.0172 (10)	-0.0016 (8)	-0.0018 (8)	0.0046 (7)
C8	0.0164 (9)	0.0126 (8)	0.0184 (10)	0.0027 (7)	0.0009 (7)	-0.0004 (7)
C9	0.0163 (9)	0.0153 (9)	0.0195 (10)	0.0002 (8)	0.0031 (8)	0.0016 (7)
C10	0.0197 (9)	0.0204 (9)	0.0116 (9)	0.0016 (8)	0.0036 (7)	0.0009 (7)
C11	0.0171 (9)	0.0209 (9)	0.0145 (10)	-0.0007 (8)	0.0004 (7)	-0.0026 (8)
C12	0.0191 (9)	0.0166 (9)	0.0178 (10)	-0.0030 (8)	0.0037 (8)	-0.0002 (7)
C13	0.0210 (9)	0.0151 (9)	0.0153 (10)	0.0012 (8)	-0.0008(8)	0.0016 (7)
C14	0.0265 (11)	0.0323 (11)	0.0178 (11)	-0.0043 (9)	0.0018 (8)	0.0073 (9)
C15	0.0244 (11)	0.0660 (17)	0.0210 (12)	-0.0180 (12)	-0.0012 (9)	0.0042 (11)
C16	0.0236 (10)	0.0167 (9)	0.0162 (10)	0.0007 (8)	0.0014 (8)	0.0023 (7)
C17	0.0228 (10)	0.0194 (9)	0.0229 (11)	0.0067 (8)	0.0048 (8)	0.0044 (8)
C18	0.0268 (10)	0.0213 (10)	0.0189 (11)	0.0027 (9)	0.0076 (8)	0.0001 (8)
C19	0.0357 (12)	0.0199 (10)	0.0244 (12)	0.0022 (9)	0.0040 (9)	0.0013 (9)
C20	0.0282 (11)	0.0248 (11)	0.0262 (12)	0.0044 (9)	0.0039 (9)	-0.0001 (9)
C21	0.0140 (8)	0.0157 (9)	0.0159 (10)	-0.0008 (7)	-0.0010 (7)	0.0022 (7)
C22	0.0141 (8)	0.0161 (9)	0.0172 (10)	-0.0014 (7)	0.0012 (7)	-0.0005 (7)
C23	0.0134 (9)	0.0134 (8)	0.0182 (10)	0.0001 (7)	-0.0008(7)	0.0003 (7)
C24	0.0129 (8)	0.0127 (8)	0.0166 (10)	-0.0009 (7)	-0.0019 (7)	0.0010(7)
C25	0.0199 (9)	0.0157 (9)	0.0181 (10)	0.0016 (8)	0.0003 (8)	-0.0015 (7)
C26	0.0200 (10)	0.0275 (11)	0.0306 (12)	0.0050 (9)	-0.0001 (9)	-0.0068 (9)
C27	0.0182 (9)	0.0142 (8)	0.0141 (10)	0.0010 (7)	-0.0020(7)	0.0022 (7)
C28	0.0154 (9)	0.0128 (8)	0.0171 (10)	0.0026 (7)	-0.0017 (7)	-0.0001 (7)
C29	0.0180 (9)	0.0157 (9)	0.0146 (10)	0.0009 (8)	0.0016 (7)	0.0008 (7)
C30	0.0193 (9)	0.0209 (9)	0.0128 (9)	0.0010 (8)	0.0006 (7)	0.0014 (7)
C31	0.0164 (9)	0.0214 (9)	0.0158 (10)	-0.0015 (8)	-0.0008 (7)	-0.0024 (8)
C32	0.0162 (9)	0.0162 (9)	0.0201 (10)	-0.0019 (8)	0.0035 (8)	0.0005 (7)
C33	0.0205 (9)	0.0150 (9)	0.0130 (9)	0.0022 (8)	0.0011 (7)	0.0015 (7)
C34	0.0292 (11)	0.0380 (12)	0.0154 (11)	-0.0099 (10)	0.0021 (9)	0.0078 (9)
C35	0.0280 (12)	0.0652 (17)	0.0282 (13)	-0.0248 (12)	0.0025 (10)	-0.0014 (12)
C36	0.0212 (9)	0.0167 (9)	0.0135 (10)	0.0019 (8)	0.0000 (8)	0.0000 (7)
C37	0.0199 (9)	0.0206 (10)	0.0218 (11)	0.0043 (8)	0.0023 (8)	0.0008 (8)
C38	0.0323 (12)	0.0257 (11)	0.0238 (12)	0.0009 (9)	0.0084 (9)	-0.0031 (9)

supporting information

C39	0.0375 (12)	0.0214 (10)	0.0330 (13)	0.0021 (10)	0.0073 (10)	-0.0011 (9)
C40	0.0248 (11)	0.0244 (11)	0.0412 (14)	0.0006 (9)	0.0059 (10)	-0.0044 (10)
C41	0.0371 (12)	0.0376 (13)	0.0304 (13)	-0.0013 (11)	0.0062 (10)	-0.0019 (10)
C42	0.0560 (17)	0.0367 (14)	0.0461 (17)	-0.0072 (13)	0.0057 (13)	-0.0022 (12)

Geometric parameters (Å, °)

01—C1	1.231 (2)	C16—H16B	0.9900
O2—C2	1.224 (2)	C17—C18	1.490 (3)
O3—C10	1.369 (2)	C17—H17A	0.9900
O3—C14	1.430 (2)	C17—H17B	0.9900
O4—C11	1.371 (2)	C18—C19	1.502 (3)
O4—C15	1.421 (3)	C18—C20	1.507 (3)
O5—C16	1.404 (2)	C18—H18	1.0000
O5—C17	1.443 (2)	C19—C20	1.506 (3)
O6—C21	1.232 (2)	C19—H19A	0.9900
O7—C22	1.223 (2)	C19—H19B	0.9900
O8—C30	1.366 (2)	C20—H20A	0.9900
O8—C34	1.427 (2)	C20—H20B	0.9900
O9—C31	1.371 (2)	C22—C23	1.460 (3)
O9—C35	1.426 (3)	C23—C24	1.352 (3)
O10—C36	1.405 (2)	C23—C25	1.509 (3)
O10—C37	1.446 (2)	C24—C27	1.504 (2)
O11—C41	1.422 (3)	C25—C26	1.529 (3)
011—H11	0.853 (10)	C25—H25A	0.9900
N1-C1	1.361 (2)	C25—H25B	0.9900
N1-C2	1.389 (2)	C26—H26A	0.9800
N1—H1	0.879 (10)	C26—H26B	0.9800
N2-C1	1.385 (2)	C26—H26C	0.9800
N2C4	1.409 (2)	C27—C28	1.526 (2)
N2-C16	1.474 (2)	C27—H27A	0.9900
N3—C21	1.361 (2)	C27—H27B	0.9900
N3—C22	1.387 (2)	C28—C33	1.383 (3)
N3—H3	0.884 (10)	C28—C29	1.403 (3)
N4—C21	1.387 (2)	C29—C30	1.377 (3)
N4—C24	1.407 (2)	C29—H29	0.9500
N4—C36	1.472 (2)	C30—C31	1.413 (3)
C2—C3	1.457 (3)	C31—C32	1.375 (3)
C3—C4	1.353 (3)	C32—C33	1.398 (3)
C3—C5	1.507 (3)	C32—H32	0.9500
C4—C7	1.511 (2)	С33—Н33	0.9500
C5—C6	1.525 (3)	C34—H34A	0.9800
С5—Н5А	0.9900	C34—H34B	0.9800
C5—H5B	0.9900	C34—H34C	0.9800
С6—Н6А	0.9800	С35—Н35А	0.9800
C6—H6B	0.9800	C35—H35B	0.9800
С6—Н6С	0.9800	C35—H35C	0.9800
С7—С8	1.525 (2)	C36—H36A	0.9900

С7—Н7А	0.9900	С36—Н36В	0.9900
С7—Н7В	0.9900	C37—C38	1.494 (3)
C8—C13	1.383 (3)	С37—Н37А	0.9900
C8—C9	1.409 (3)	С37—Н37В	0.9900
C9—C10	1.380 (3)	C38—C39	1.495 (3)
С9—Н9	0.9500	C38—C40	1.506 (3)
C10—C11	1.411 (3)	С38—Н38	1.0000
C11—C12	1.377 (3)	C39—C40	1.499 (3)
C12—C13	1.398 (3)	С39—Н39А	0.9900
C12—H12	0.9500	С39—Н39В	0.9900
С13—Н13	0.9500	C40—H40A	0.9900
C14—H14A	0.9800	C40—H40B	0.9900
C14—H14B	0.9800	C41—C42	1.495 (4)
C14—H14C	0.9800	C41—H41A	0.9900
C15—H15A	0.9800	C41—H41B	0.9900
С15—Н15В	0.9800	C42—H42A	0.9800
C15—H15C	0.9800	C42—H42B	0.9800
C16—H16A	0.9900	C42—H42C	0.9800
C10—O3—C14	117.09 (15)	C19—C20—H20B	117.8
C11—O4—C15	116.48 (16)	C18—C20—H20B	117.8
C16—O5—C17	112.87 (14)	H20A—C20—H20B	114.9
C30—O8—C34	115.82 (15)	O6—C21—N3	122.06 (17)
C31—O9—C35	116.85 (16)	O6—C21—N4	122.08 (17)
C36—O10—C37	114.01 (14)	N3—C21—N4	115.86 (16)
C41—O11—H11	112 (2)	O7—C22—N3	119.79 (17)
C1—N1—C2	126.77 (16)	O7—C22—C23	125.01 (17)
C1—N1—H1	115.4 (17)	N3—C22—C23	115.20 (17)
C2—N1—H1	117.8 (17)	C24—C23—C22	119.35 (17)
C1—N2—C4	121.31 (16)	C24—C23—C25	125.07 (17)
C1—N2—C16	117.50 (15)	C22—C23—C25	115.53 (17)
C4—N2—C16	121.12 (15)	C23—C24—N4	121.35 (16)
C21—N3—C22	126.78 (16)	C23—C24—C27	123.35 (17)
C21—N3—H3	115.9 (16)	N4—C24—C27	115.28 (16)
С22—N3—H3	117.3 (16)	C23—C25—C26	112.49 (16)
C21—N4—C24	121.41 (16)	C23—C25—H25A	109.1
C21—N4—C36	116.93 (15)	C26—C25—H25A	109.1
C24—N4—C36	121.66 (15)	C23—C25—H25B	109.1
01—C1—N1	121.72 (17)	C26—C25—H25B	109.1
O1—C1—N2	122.30 (18)	H25A—C25—H25B	107.8
N1—C1—N2	115.98 (16)	C25—C26—H26A	109.5
O2—C2—N1	119.93 (17)	C25—C26—H26B	109.5
O2—C2—C3	124.93 (18)	H26A—C26—H26B	109.5
N1—C2—C3	115.15 (17)	C25—C26—H26C	109.5
C4—C3—C2	119.46 (17)	H26A—C26—H26C	109.5
C4—C3—C5	124.76 (17)	H26B—C26—H26C	109.5
C2—C3—C5	115.73 (17)	C24—C27—C28	112.94 (15)
C3—C4—N2	121.32 (17)	С24—С27—Н27А	109.0

$C_{3}-C_{4}-C_{7}$	123 46 (17)	C28—C27—H27A	109.0
$N_2 - C_4 - C_7$	125.10(17) 115.21(16)	C_{24} C_{27} H_{27R}	109.0
C_{3} C_{5} C_{6}	112 34 (16)	$C_{24} = C_{27} = H_{27}B$	109.0
$C_3 = C_5 = U_5 \wedge C_5$	100.1	H_{27} H_{27} H_{27} H_{27} H_{27}	107.8
C_{5}	109.1	$\frac{112}{A} - \frac{12}{C2} - \frac{112}{B}$	107.0 110.28(17)
$C_0 = C_5 = H_5 D_1$	109.1	$C_{33} = C_{28} = C_{29}$	119.28(17)
C3—C5—H5B	109.1	$C_{33} = C_{28} = C_{27}$	122.37 (17)
C6—C5—H5B	109.1	$C_{29} = C_{28} = C_{27}$	118.35 (17)
H5A—C5—H5B	107.9	C30—C29—C28	120.49 (18)
С5—С6—Н6А	109.5	С30—С29—Н29	119.8
С5—С6—Н6В	109.5	С28—С29—Н29	119.8
Н6А—С6—Н6В	109.5	O8—C30—C29	124.77 (18)
С5—С6—Н6С	109.5	O8—C30—C31	115.46 (16)
Н6А—С6—Н6С	109.5	C29—C30—C31	119.74 (17)
H6B—C6—H6C	109.5	O9—C31—C32	125.38 (18)
C4—C7—C8	113.77 (15)	O9—C31—C30	114.77 (17)
C4—C7—H7A	108.8	C32—C31—C30	119.82 (17)
C8—C7—H7A	108.8	C31—C32—C33	120.12 (18)
С4—С7—Н7В	108.8	C31—C32—H32	119.9
С8—С7—Н7В	108.8	C33—C32—H32	119.9
H7A - C7 - H7B	107.7	$C_{28} = C_{33} = C_{32}^{22}$	120 53 (18)
13 - 13 - 19	118 39 (17)	$C_{28} = C_{33} = H_{33}$	119.7
$C_{13} = C_{8} = C_{7}$	123 16 (17)	C_{32} C_{33} H_{33}	119.7
$C_{13} = C_{3} = C_{7}$	123.10(17) 118.30(16)	$C_{32} = C_{33} = H_{34}$	100.5
$C_{9} = C_{0} = C_{1}$	110.39(10) 121.17(19)	08 C24 H24D	109.5
C10 - C9 - C8	121.17 (18)	U8-C34-H34B	109.5
C10-C9-H9	119.4	H34A—C34—H34B	109.5
C8—C9—H9	119.4	08—C34—H34C	109.5
O3—C10—C9	124.96 (17)	H34A—C34—H34C	109.5
O3—C10—C11	115.58 (16)	H34B—C34—H34C	109.5
C9—C10—C11	119.46 (17)	O9—C35—H35A	109.5
O4—C11—C12	125.36 (17)	O9—C35—H35B	109.5
O4—C11—C10	114.87 (17)	H35A—C35—H35B	109.5
C12—C11—C10	119.77 (17)	О9—С35—Н35С	109.5
C11—C12—C13	120.17 (18)	H35A—C35—H35C	109.5
C11—C12—H12	119.9	H35B—C35—H35C	109.5
C13—C12—H12	119.9	O10-C36-N4	112.66 (15)
C8—C13—C12	121.02 (18)	O10—C36—H36A	109.1
C8—C13—H13	119.5	N4—C36—H36A	109.1
C12—C13—H13	119.5	010—C36—H36B	109.1
O_3 — C_14 — H_14A	109.5	N4-C36-H36B	109.1
$O_3 C_{14} H_{14}B$	109.5	H36A C36 H36B	107.8
	109.5	010 027 028	107.8
$n_1 + A - C_1 + - n_1 + B$	109.5	010 - 037 - 038	108.41 (10)
	109.5	010 - 037 - H3/A	110.0
H14A - U14 - H14U	109.5	C_{30} C_{37} H_{37} H_{27}	110.0
H14B—C14—H14C	109.5	010—C37—H37/B	110.0
O4—C15—H15A	109.5	С38—С37—Н37В	110.0
O4—C15—H15B	109.5	Н37А—С37—Н37В	108.4
H15A—C15—H15B	109.5	C39—C38—C37	118.25 (19)
O4—C15—H15C	109.5	C39—C38—C40	59.95 (14)

H15A—C15—H15C	109.5	C37—C38—C40	118.15 (19)
H15B—C15—H15C	109.5	С39—С38—Н38	116.2
O5—C16—N2	112.32 (15)	С37—С38—Н38	116.2
O5—C16—H16A	109.1	C40—C38—H38	116.2
N2—C16—H16A	109.1	C38—C39—C40	60.39 (14)
O5—C16—H16B	109.1	С38—С39—Н39А	117.7
N2—C16—H16B	109.1	С40—С39—Н39А	117.7
H16A—C16—H16B	107.9	С38—С39—Н39В	117.7
O5—C17—C18	109.67 (16)	С40—С39—Н39В	117.7
O5—C17—H17A	109.7	H39A—C39—H39B	114.9
С18—С17—Н17А	109.7	C39—C40—C38	59.66 (14)
O5—C17—H17B	109.7	С39—С40—Н40А	117.8
C18—C17—H17B	109.7	C38—C40—H40A	117.8
H17A—C17—H17B	108.2	C39—C40—H40B	117.8
C17—C18—C19	118.52 (18)	C38—C40—H40B	117.8
C17—C18—C20	117.06 (18)	H40A—C40—H40B	114.9
C19—C18—C20	60.09 (14)	O11—C41—C42	113.9 (2)
C17—C18—H18	116.4	O11—C41—H41A	108.8
C19—C18—H18	116.4	C42—C41—H41A	108.8
C20—C18—H18	116.4	O11—C41—H41B	108.8
C18—C19—C20	60.12 (13)	C42—C41—H41B	108.8
C18—C19—H19A	117.8	H41A—C41—H41B	107.7
C20—C19—H19A	117.8	C41—C42—H42A	109.5
C18—C19—H19B	117.8	C41—C42—H42B	109.5
C20—C19—H19B	117.8	H42A—C42—H42B	109.5
H19A—C19—H19B	114.9	C41—C42—H42C	109.5
C19—C20—C18	59.79 (13)	H42A—C42—H42C	109.5
C19—C20—H20A	117.8	H42B—C42—H42C	109.5
C18—C20—H20A	117.8		
C2-N1-C1-01	-179.83 (17)	C22—N3—C21—O6	-179.73 (17)
C2—N1—C1—N2	-0.3 (3)	C22—N3—C21—N4	0.0 (3)
C4—N2—C1—O1	-179.19 (16)	C24—N4—C21—O6	-178.35 (16)
C16—N2—C1—O1	3.8 (3)	C36—N4—C21—O6	0.9 (3)
C4—N2—C1—N1	1.3 (2)	C24—N4—C21—N3	1.9 (2)
C16—N2—C1—N1	-175.71 (15)	C36—N4—C21—N3	-178.83 (15)
C1—N1—C2—O2	179.22 (17)	C21—N3—C22—O7	178.62 (17)
C1—N1—C2—C3	-0.8 (3)	C21—N3—C22—C23	-1.4 (3)
O2—C2—C3—C4	-179.02 (18)	O7—C22—C23—C24	-179.12 (18)
N1—C2—C3—C4	1.0 (2)	N3—C22—C23—C24	0.9 (2)
O2—C2—C3—C5	3.7 (3)	O7—C22—C23—C25	3.3 (3)
N1—C2—C3—C5	-176.27 (15)	N3—C22—C23—C25	-176.67 (15)
C2-C3-C4-N2	-0.1 (3)	C22—C23—C24—N4	0.9 (3)
C5—C3—C4—N2	176.91 (16)	C25—C23—C24—N4	178.20 (16)
C2—C3—C4—C7	-179.10 (16)	C22—C23—C24—C27	-177.24 (16)
C5—C3—C4—C7	-2.1 (3)	C25—C23—C24—C27	0.1 (3)
C1—N2—C4—C3	-1.1 (3)	C21—N4—C24—C23	-2.4 (3)
C16—N2—C4—C3	175.80 (16)	C36—N4—C24—C23	178.37 (16)

C1—N2—C4—C7	177.94 (15)	C21—N4—C24—C27	175.87 (15)
C16—N2—C4—C7	-5.1 (2)	C36—N4—C24—C27	-3.4 (2)
C4—C3—C5—C6	-89.8 (2)	C24—C23—C25—C26	-89.8 (2)
C2—C3—C5—C6	87.3 (2)	C22—C23—C25—C26	87.6 (2)
C3—C4—C7—C8	100.9 (2)	C23—C24—C27—C28	105.5 (2)
N2—C4—C7—C8	-78.2 (2)	N4—C24—C27—C28	-72.8 (2)
C4—C7—C8—C13	-19.6 (3)	C24—C27—C28—C33	-29.1 (2)
C4—C7—C8—C9	163.29 (17)	C24—C27—C28—C29	151.34 (17)
C13—C8—C9—C10	-1.2 (3)	C33—C28—C29—C30	0.8 (3)
C7—C8—C9—C10	176.06 (17)	C27—C28—C29—C30	-179.64 (17)
C14—O3—C10—C9	4.7 (3)	C34—O8—C30—C29	10.2 (3)
C14—O3—C10—C11	-175.13 (17)	C34—O8—C30—C31	-171.77 (17)
C8—C9—C10—O3	-179.42 (18)	C28—C29—C30—O8	176.90 (17)
C8—C9—C10—C11	0.4 (3)	C28—C29—C30—C31	-1.0 (3)
C15—O4—C11—C12	-6.3 (3)	C35—O9—C31—C32	4.1 (3)
C15—O4—C11—C10	174.49 (19)	C35—O9—C31—C30	-174.06 (19)
O3—C10—C11—O4	-0.3 (3)	O8—C30—C31—O9	0.4 (3)
C9—C10—C11—O4	179.84 (17)	C29—C30—C31—O9	178.56 (17)
O3—C10—C11—C12	-179.57 (17)	O8—C30—C31—C32	-177.86 (17)
C9—C10—C11—C12	0.6 (3)	C29—C30—C31—C32	0.3 (3)
O4—C11—C12—C13	-179.94 (18)	O9—C31—C32—C33	-177.37 (18)
C10-C11-C12-C13	-0.8 (3)	C30—C31—C32—C33	0.7 (3)
C9—C8—C13—C12	1.0 (3)	C29—C28—C33—C32	0.2 (3)
C7—C8—C13—C12	-176.10 (17)	C27—C28—C33—C32	-179.34 (17)
C11—C12—C13—C8	-0.1 (3)	C31—C32—C33—C28	-1.0 (3)
C17—O5—C16—N2	-70.73 (19)	C37—O10—C36—N4	-73.12 (19)
C1—N2—C16—O5	106.91 (18)	C21—N4—C36—O10	108.98 (17)
C4—N2—C16—O5	-70.1 (2)	C24—N4—C36—O10	-71.7 (2)
C16—O5—C17—C18	-179.34 (16)	C36—O10—C37—C38	-177.59 (16)
O5—C17—C18—C19	-77.3 (2)	O10-C37-C38-C39	-78.7 (2)
O5-C17-C18-C20	-146.26 (17)	O10-C37-C38-C40	-147.80 (18)
C17—C18—C19—C20	-106.5 (2)	C37—C38—C39—C40	-107.9 (2)
C17—C18—C20—C19	109.0 (2)	C37—C38—C40—C39	108.1 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D···A	D—H··· A
N1—H1···O1 ⁱ	0.88(1)	1.96(1)	2.839 (2)	177 (2)
N3—H3…O6 ⁱⁱ	0.88(1)	1.92 (1)	2.799 (2)	175 (2)
O11—H11…O10	0.85 (1)	2.08 (1)	2.927 (2)	178 (1)

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) -x+1, -y+2, -z+1.