organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

O,O'-Diisopropyl *S*-[2-(benzenesulfonamido)ethyl]phosphorodithioate

Hai-Feng Wu,* Xin-Yi Liu, Fan-Hua Zhang and Yun-Xiao He

Sinochem Ningbo (Group) Co. Ltd, Ningbo, Zhejiang 315000, People's Republic of China

Correspondence e-mail: wuhaifeng@sinochem.com

Received 7 December 2011; accepted 23 December 2011

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.041; wR factor = 0.127; data-to-parameter ratio = 22.1.

The molecular conformation of the title compound, $C_{14}H_{24}NO_4PS_3$, the selective herbicide bensulide, is stabilized by a weak intramolecular $C-H\cdots S$ interaction. In the crystal, chains are formed through intermolecular $N-H\cdots S$ hydrogen bonds.

Related literature

For applications of N-(β -diorganodithiophosphorylethyl) aryl and alkyl sulfonamides in the field of agrochemicals, see: Llewellyn & Chester (1963). Bensulide is a selective organophosphate herbicide which is mainly used on vegetable crops such as carrots, cucumbers, peppers and melons, see: Meister (1992). For the synthesis, see: Llewellyn & Jeffrey (1978).

b = 24.465 (5) Å

c = 9.875 (2) Å

 $\beta = 104.99 (3)^{\circ}$

V = 2017.1 (8) Å³

Experimental

Crystal data
$C_{14}H_{24}NO_4PS_3$
$M_r = 397.49$
Monoclinic, $P2_1/n$
a = 8.6431 (17) Å

Z = 4Mo $K\alpha$ radiation $\mu = 0.46 \text{ mm}^{-1}$

Data collection

Rigaku R-AXIS RAPID CCD
diffractometer
Absorption correction: multi-scan
(ABSCOR; Higashi, 1995)
$T_{\min} = 0.843, \ T_{\max} = 0.883$

Refinement

D

N C

 $R[F^2 > 2\sigma(F^2)] = 0.041$ 208 parameters $wR(F^2) = 0.127$ H-atom parameters constrainedS = 1.11 $\Delta \rho_{max} = 0.35$ e Å $^{-3}$ 4605 reflections $\Delta \rho_{min} = -0.40$ e Å $^{-3}$

Table 1

Hydrogen-bond geometry (Å, $^{\circ}$).

$-H0A\cdots S1^{i}$ 0.862.863.496 (2)132 $7-H7B\cdots S1$ 0.972.833.447 (3)122	$-H \cdot \cdot \cdot A$	$D-{\rm H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
	$-\mathrm{H0}A\cdots\mathrm{S1^{i}}$	0.86	2.86	3.496 (2)	132
	7-H7 $B\cdots\mathrm{S1}$	0.97	2.83	3.447 (3)	122

T = 293 K

 $R_{\rm int} = 0.029$

 $0.37 \times 0.35 \times 0.27 \text{ mm}$

19632 measured reflections 4605 independent reflections

3083 reflections with $I > 2\sigma(I)$

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z + \frac{1}{2}$.

Data collection: *RAPID-AUTO* (Rigaku, 1998); cell refinement: *RAPID-AUTO*; data reduction: *CrystalStructure* (Rigaku/MSC, 2004); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEPII* (Johnson, 1976); software used to prepare material for publication: *SHELXL97*.

We thank Professor Yueqing Zheng (Ningbo University, Ningbo, China) for helpful discussions and Wenxiang Huang for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: ZS2173).

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.

- Johnson, C. K. (1976). ORTEPH. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Llewellyn, W. & Chester, L. (1963). US Patent No. 3 205 253.
- Llewellyn, W. & Jeffrey, D. (1978). US Patent No. 4 117 043.
- Meister, R. T. (1992). Farm Chemicals Handbook. Willoghby, OH: Meister Publishing Company.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC Inc., The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o282 [doi:10.1107/S160053681105536X]

O,O'-Diisopropyl S-[2-(benzenesulfonamido)ethyl]phosphorodithioate

Hai-Feng Wu, Xin-Yi Liu, Fan-Hua Zhang and Yun-Xiao He

S1. Comment

N-(β -Diorganodithiophosphorylethyl) aryl and alkyl sulfonamides are known for their applications in the field of agrochemicals because of their significant biological properties (Llewellyn *et al.*, 1963). The title compound $C_{14}H_{24}NO_4PS_3$ (I), with the common name bensulide, is a selective organophosphate herbicide which is mainly used on vegetable crops such as carrots, cucumbers, peppers and melons (Meister, 1992). This typical organic phosphorus compound is one of our plant products that can be synthesized by combining the sodium salt of 2-(phenylsulfonamido)ethyl sulfate (II) and *O*,*O*'-diisopropyl phosphorodithioate (III) (Llewellyn *et al.*, 1978) (Fig. 3).

In the title compound (Fig. 1), bond distances and angles are as expected. The P atom is coordinated by two S atoms and two O atoms. The O1—P—S1, S1—P—S2 and O2—P—S1 bond angles [117.91 (7), 114.48 (5), 111.46 (7)°, respectively] are larger than those for angles O2—P—S2, O1—P—O2 and O1—P—S2 [108.85 (8), 102.35 (9), 100.58 (7)°, respectively], indicating a distorted tetrahedral configuration. The molecular conformation is stabilized by weak intramolecular C—H…S and C—H…O interactions and one-dimensional chains are formed through intermolecular N—H…S hydrogen bonds (Table 1, Fig. 2).

S2. Experimental

A 30% aqueous solution of sodium 2-(phenylsulfonamido)ethyl sulfate [(II), 0.5mol] was added to a 30% aqueous solution of sodium *O*,*O*'-diisopropyl phosphorodithioate [(III), 0.5 mol]. Addition of 50% aqueous sodium hydroxide brought the pH to 10.5. The mixture was then heated to 85 °C for 4 h with vigorous stirring after which the reaction flask was cooled to 25 °C. The pH was lowered from 12 to approximately 8 by the addition of concentrated sulfuric acid. The product was extracted with toluene (400 ml), washed with 2% sodium bicarbonate solution followed by a saturated sodium chloride solution, then dried and evaporated. Recrystallization from toluene gave colourless blocks of (I).

S3. Refinement

Hydrogen atoms were placed in geometrically calculated positions with C—H = 0.93–0.97 Å and were treated using a riding model approximation with $U_{iso}(H) = 1.2U_{eq}(aromatic C \text{ or } N)$ or $1.5U_{eq}(methyl C)$.

Figure 1 An *ORTEP* view of the title compound with displacement ellipsoids drawn at the 35% probability level.

Figure 2

Part of the crystal packing of (I). Weak intermolecular interactions are shown as dashed lines.

F(000) = 840

 $\theta = 3.3 - 27.5^{\circ}$ $\mu = 0.46 \text{ mm}^{-1}$

Block, colorless

 $0.37 \times 0.35 \times 0.27 \text{ mm}$

T = 293 K

 $D_{\rm x} = 1.309 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 19632 reflections

Figure 3

Reaction scheme for the synthesis of (I).

O,O'-Diisopropyl S-[2-(benzenesulfonamido)ethyl]dithiophosphate

Crystal data

C₁₄H₂₄NO₄PS₃ $M_r = 397.49$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 8.6431 (17) Å b = 24.465 (5) Å c = 9.875 (2) Å $\beta = 104.99$ (3)° V = 2017.1 (8) Å³ Z = 4

Data collection

Rigaku R-AXIS RAPID CCD	19632 measured reflections
Dediction sources fine feeus seeled tube	4003 independent reflections 2082 reflections with $L > 2 - (1)$
Complete managementer	5085 reflections with $I \ge 2\sigma(I)$
Graphile monochromator	$R_{\rm int} = 0.029$
ωscans	$\theta_{\text{max}} = 27.5^\circ, \ \theta_{\text{min}} = 3.3^\circ$
Absorption correction: multi-scan	$h = -11 \rightarrow 10$
(ABSCOR; Higashi, 1995)	$k = -31 \rightarrow 31$
$T_{\min} = 0.843, \ T_{\max} = 0.883$	$l = -12 \rightarrow 12$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0534P)^2 + 0.6749P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} = 0.001$
$\Delta \rho_{\rm max} = 0.35 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\min} = -0.40 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	r	12	7	<i>[]</i> :*/ <i>[</i>]	
	0 25030 (7)	<i>y</i> 0.64011 (3)	0.36000 (6)		
Г С1	0.23939(7) 0.26714(8)	0.04011(3)	0.30909(0)	0.04/80(17)	
51	0.30714(8) 0.40172(0)	0.03940(4)	0.22203(8)	0.0740 (2)	
52 52	0.40173(9)	0.00439 (3)	0.30352(7)	0.0634 (2)	
53 N	0.47902 (8)	0.85949 (3)	0.34382(7)	0.05828 (19)	
N	0.5557 (2)	0.81061 (8)	0.4499 (2)	0.0591 (5)	
H0A	0.6574	0.8085	0.4858	0.071*	
01	0.19173 (18)	0.58432 (6)	0.40940 (18)	0.0543 (4)	
02	0.10605 (17)	0.67690 (7)	0.33022 (17)	0.0520 (4)	
03	0.6077 (2)	0.89486 (8)	0.3366 (2)	0.0812 (6)	
04	0.3819 (3)	0.83522 (9)	0.2196 (2)	0.0808 (6)	
C1	0.2942 (3)	0.53593 (10)	0.4530 (3)	0.0570 (6)	
H1A	0.4064	0.5460	0.4633	0.068*	
C2	0.2453 (5)	0.49360 (13)	0.3407 (4)	0.0934 (11)	
H2A	0.2640	0.5072	0.2551	0.140*	
H2B	0.1336	0.4855	0.3263	0.140*	
H2C	0.3070	0.4610	0.3686	0.140*	
C3	0.2729 (5)	0.51819 (14)	0.5913 (4)	0.0915 (10)	
H3A	0.3072	0.5469	0.6587	0.137*	
H3B	0.3358	0.4860	0.6219	0.137*	
H3C	0.1620	0.5102	0.5825	0.137*	
C4	-0.0043 (3)	0.68091 (10)	0.4232 (3)	0.0551 (6)	
H4A	0.0481	0.6651	0.5148	0.066*	
C5	-0.1513 (3)	0.64868 (14)	0.3583 (4)	0.0869 (10)	
H5A	-0.1231	0.6110	0.3520	0.130*	
H5B	-0.1995	0.6625	0.2661	0.130*	
H5C	-0.2258	0.6518	0.4150	0.130*	
C6	-0.0328 (4)	0.74050 (12)	0.4411 (4)	0.0874 (10)	
H6A	0.0667	0.7580	0.4862	0.131*	
H6B	-0.1070	0.7449	0.4978	0.131*	
H6C	-0.0763	0.7569	0.3510	0.131*	
C7	0.5288 (3)	0.71656 (11)	0.5167 (3)	0.0647 (7)	
H7A	0.6232	0.7214	0.5941	0.078*	
H7B	0.5640	0.7041	0.4363	0.078*	
C8	0.4462 (3)	0.76989 (10)	0.4830 (3)	0.0601 (6)	
H8A	0.3538	0.7657	0.4035	0.072*	
H8B	0.4088	0.7823	0.5623	0.072*	
C9	0.3490(3)	0.89472 (9)	0.4243(2)	0.0505(5)	
C10	0.4098(4)	0.09172(9)	0.1218(2) 0.5218(3)	0.0628 (7)	
H10A	0 5180	0 9441	0.5437	0.075*	
C11	0.3071(4)	0.96202(12)	0.5857(3)	0.0766 (8)	
H11A	0.3463	0.9896	0.6502	0.092*	
C12	0.1486 (4)	0.94845(13)	0.5552 (3)	0.072	
H124	0.0810	0.9666	0.5006	0.092*	
C13	0.0884(A)	0.9000	0.5550	0.072	
H13A	-0.0196	0.8988	0.4388	0.091*	
111,577	0.0170	0.0700	0.7,000	0.071	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

C14	0.1885 (3)	0.88125 (11)	0.3926 (3)	0.0623 (7)
H14A	0.1481	0.8542	0.3267	0.075*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U ¹²	<i>U</i> ¹³	U ²³
Р	0.0387 (3)	0.0591 (4)	0.0454 (3)	0.0051 (3)	0.0104 (2)	0.0005 (3)
S1	0.0534 (4)	0.1117 (6)	0.0642 (5)	0.0140 (4)	0.0283 (3)	0.0037 (4)
S2	0.0685 (4)	0.0623 (4)	0.0540 (4)	-0.0086 (3)	-0.0046 (3)	0.0056 (3)
S3	0.0680 (4)	0.0611 (4)	0.0495 (4)	-0.0070 (3)	0.0221 (3)	-0.0053 (3)
Ν	0.0486 (11)	0.0557 (12)	0.0750 (15)	-0.0015 (10)	0.0195 (10)	-0.0034 (10)
01	0.0462 (8)	0.0532 (9)	0.0630 (11)	0.0029 (7)	0.0130 (8)	-0.0035 (8)
O2	0.0439 (8)	0.0652 (10)	0.0501 (10)	0.0141 (7)	0.0181 (7)	0.0079 (7)
O3	0.0895 (14)	0.0746 (12)	0.0930 (16)	-0.0182 (11)	0.0482 (12)	0.0031 (11)
O4	0.0968 (15)	0.0956 (15)	0.0493 (11)	-0.0054 (12)	0.0176 (10)	-0.0195 (10)
C1	0.0523 (13)	0.0521 (13)	0.0626 (16)	0.0069 (11)	0.0076 (11)	-0.0040 (11)
C2	0.101 (2)	0.0698 (19)	0.095 (3)	0.0190 (18)	-0.001 (2)	-0.0266 (17)
C3	0.121 (3)	0.078 (2)	0.080 (2)	0.010 (2)	0.035 (2)	0.0165 (17)
C4	0.0505 (13)	0.0622 (14)	0.0597 (15)	0.0066 (12)	0.0268 (11)	-0.0014 (12)
C5	0.0572 (16)	0.097 (2)	0.116 (3)	-0.0085 (16)	0.0391 (18)	-0.025 (2)
C6	0.089 (2)	0.0681 (18)	0.123 (3)	0.0079 (17)	0.061 (2)	-0.0056 (18)
C7	0.0460 (13)	0.0616 (15)	0.0792 (19)	0.0012 (12)	0.0031 (12)	0.0021 (13)
C8	0.0564 (14)	0.0547 (14)	0.0730 (18)	-0.0022 (12)	0.0237 (13)	-0.0054 (12)
C9	0.0616 (14)	0.0488 (12)	0.0403 (12)	-0.0011 (11)	0.0118 (10)	0.0044 (9)
C10	0.0729 (17)	0.0571 (14)	0.0581 (16)	-0.0088 (13)	0.0165 (13)	-0.0068 (12)
C11	0.103 (2)	0.0637 (17)	0.0653 (19)	0.0023 (17)	0.0264 (17)	-0.0104 (14)
C12	0.090 (2)	0.0785 (19)	0.0666 (19)	0.0278 (18)	0.0287 (17)	0.0078 (15)
C13	0.0605 (16)	0.096 (2)	0.069 (2)	0.0095 (16)	0.0140 (14)	0.0131 (17)
C14	0.0616 (15)	0.0693 (16)	0.0513 (15)	-0.0022 (13)	0.0059 (12)	-0.0012 (12)

Geometric parameters (Å, °)

P02	1.5654 (16)	C4—H4A	0.9800
P—O1	1.5761 (18)	C5—H5A	0.9600
P—S1	1.9171 (10)	С5—Н5В	0.9600
P—S2	2.0811 (11)	С5—Н5С	0.9600
S2—C7	1.820 (3)	С6—Н6А	0.9600
S3—O4	1.425 (2)	С6—Н6В	0.9600
S3—O3	1.4254 (19)	С6—Н6С	0.9600
S3—N	1.615 (2)	С7—С8	1.484 (4)
S3—C9	1.761 (3)	C7—H7A	0.9700
N—C8	1.468 (3)	С7—Н7В	0.9700
N—H0A	0.8600	C8—H8A	0.9700
O1—C1	1.474 (3)	C8—H8B	0.9700
O2—C4	1.489 (3)	C9—C14	1.381 (3)
C1—C3	1.489 (4)	C9—C10	1.386 (3)
C1—C2	1.496 (4)	C10—C11	1.381 (4)
C1—H1A	0.9800	C10—H10A	0.9300

C2—H2A	0.9600	C11—C12	1.365 (4)
C2—H2B	0.9600	C11—H11A	0.9300
C2—H2C	0.9600	C12—C13	1.377 (4)
С3—НЗА	0.9600	C12—H12A	0.9300
С3—Н3В	0.9600	C13—C14	1.378 (4)
C3—H3C	0.9600	C13—H13A	0.9300
C4—C5	1.492 (4)	C14—H14A	0.9300
C4—C6	1 497 (4)		0.5000
O2—P—O1	102.35 (9)	С4—С5—Н5А	109.5
O2—P—S1	111.46 (7)	C4—C5—H5B	109.5
01—P—S1	117.91 (7)	H5A—C5—H5B	109.5
O2—P—S2	108.85 (8)	C4—C5—H5C	109.5
01—P—S2	100.58 (7)	H5A—C5—H5C	109.5
S1—P—S2	114.48 (5)	H5B—C5—H5C	109.5
C7—S2—P	102.56 (10)	C4—C6—H6A	109.5
04 - 83 - 03	120.22 (14)	C4—C6—H6B	109.5
04—S3—N	107.55 (13)	H6A—C6—H6B	109.5
03—S3—N	106.68 (13)	C4—C6—H6C	109.5
04—\$3—\$29	106.87 (12)	H6A—C6—H6C	109.5
03-83-09	108.84 (12)	H6B—C6—H6C	109.5
N—S3—C9	105.83 (11)	C8—C7—S2	112.74 (18)
C8—N—S3	117.80 (17)	C8—C7—H7A	109.0
C8—N—H0A	121.1	S2—C7—H7A	109.0
S3—N—H0A	121.1	C8—C7—H7B	109.0
C1—O1—P	122.36 (15)	S2—C7—H7B	109.0
C4—O2—P	121.58 (15)	H7A—C7—H7B	107.8
O1—C1—C3	107.1 (2)	N—C8—C7	110.2 (2)
O1—C1—C2	107.8 (2)	N—C8—H8A	109.6
C3—C1—C2	113.6 (3)	С7—С8—Н8А	109.6
O1—C1—H1A	109.4	N—C8—H8B	109.6
C3—C1—H1A	109.4	C7—C8—H8B	109.6
C2—C1—H1A	109.4	H8A—C8—H8B	108.1
C1—C2—H2A	109.5	C14—C9—C10	120.4 (2)
C1—C2—H2B	109.5	C14—C9—S3	120.14 (19)
H2A—C2—H2B	109.5	C10—C9—S3	119.4 (2)
C1—C2—H2C	109.5	C11—C10—C9	118.9 (3)
H2A—C2—H2C	109.5	C11—C10—H10A	120.5
H2B—C2—H2C	109.5	C9—C10—H10A	120.5
С1—С3—НЗА	109.5	C12—C11—C10	120.7 (3)
С1—С3—Н3В	109.5	C12—C11—H11A	119.7
НЗА—СЗ—НЗВ	109.5	C10-C11-H11A	119.7
C1—C3—H3C	109.5	C11—C12—C13	120.4 (3)
НЗА—СЗ—НЗС	109.5	C11—C12—H12A	119.8
НЗВ—СЗ—НЗС	109.5	C13—C12—H12A	119.8
O2—C4—C5	108.1 (2)	C12—C13—C14	119.8 (3)
O2—C4—C6	106.8 (2)	C12—C13—H13A	120.1
C5—C4—C6	114.7 (2)	C14—C13—H13A	120.1

supporting information

O2—C4—H4A	109.0	C13—C14—C9	119.7 (3)
C5—C4—H4A	109.0	C13—C14—H14A	120.1
C6—C4—H4A	109.0	C9—C14—H14A	120.1

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	<i>D</i> —H··· <i>A</i>
N—H0A···S1 ⁱ	0.86	2.86	3.496 (2)	132
C7—H7 <i>B</i> ···S1	0.97	2.83	3.447 (3)	122
C8—H8A····O4	0.97	2.55	2.980 (3)	107
C14—H14A…O4	0.93	2.55	2.908 (4)	103

Symmetry code: (i) x+1/2, -y+3/2, z+1/2.