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The group 5 mixed-metal telluride, Hf0.78Ti0.22Te5 (hafnium

titanium pentatelluride), is isostructural with the binary

phases HfTe5 and ZrTe5 and forms a layered structure

extending parallel to (010). The layers are made up from

chains of bicapped metal-centered trigonal prisms and zigzag

Te chains. The metal site (site symmetry m2m) is occupied by

statistically disordered Hf [78.1 (5)%] and Ti [21.9 (5)%]. In

addition to the regular Te—Te pair [2.7448 (13) Å] forming

the short base of the equilateral triangle of the trigonal prism,

an intermediate Te� � �Te separation [2.9129 (9) Å] is also

found. The classical charge balance of the compound can be

described as [M4+][Te2�][Te2
2�][Te2

0] (M = Hf, Ti). The

individual metal content can vary in different crystals,

apparently forming a random substitutional solid solution

(Hf1-xTix)Te5, with 0.15 � x � 0.22.

Related literature

For the synthesis and structure of HfTe5 and ZrTe5, see:

Brattås & Kjekshus (1971); Furuseth et al. (1973, 1975). For

properties of HfTe5 and ZrTe5, see: DiSalvo et al. (1981). For

extensive Te� � �Te interactions in metal tellurides, see: Pell &

Ibers (1996); Mar & Ibers (1993).

Experimental

Crystal data

Hf0.78Ti0.22Te5

Mr = 787.76
Orthorhombic, Cmcm

a = 3.9595 (3) Å
b = 14.4350 (13) Å
c = 13.7062 (9) Å

V = 783.39 (10) Å3

Z = 4
Mo K� radiation

� = 28.76 mm�1

T = 290 K
0.30 � 0.04 � 0.02 mm

Data collection

Rigaku R-AXIS RAPID
diffractometer

Absorption correction: multi-scan
(NUMABS; Higashi, 2000)
Tmin = 0.263, Tmax = 1.000

3405 measured reflections
533 independent reflections
516 reflections with I > 2�(I)
Rint = 0.059

Refinement

R[F 2 > 2�(F 2)] = 0.029
wR(F 2) = 0.068
S = 1.16
533 reflections

23 parameters
��max = 2.38 e Å�3

��min = �2.07 e Å�3

Table 1
Selected geometric parameters (Å, �).

M = Hf or Ti

M—Te2i 2.9251 (6)
M—Te1ii 2.9446 (8)

M—Te3 2.9498 (7)

Te3ii—Te3—Te3iii 85.63 (3)

Symmetry codes: (i) x þ 1
2; yþ 1

2; z; (ii) �xþ 3
2;�yþ 1

2;�z; (iii) �xþ 5
2;�yþ 1

2;�z.

Data collection: RAPID-AUTO (Rigaku, 2006); cell refinement:

RAPID-AUTO; data reduction: RAPID-AUTO; program(s) used to

solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to

refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics:

DIAMOND3 (Brandenburg, 1999); software used to prepare mate-

rial for publication: WinGX (Farrugia, 1999).
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Ti insertion in the MTe5 (M = Zr, Hf) structure type: Hf0.78Ti0.22Te5

Jaemin Yu and Hoseop Yun

S1. Comment 

The existence of the binary pentatellurides, MTe5 (M = Zr, Hf) was established in 1971 by Brattås & Kjekshus. These 

compounds have been the most chalcogen-rich stoichiometric transition metal binary chalcogenides since then. These 

phases are important not only because of their unusually high chalcogen contents but because of the anomalies in their 

transport properties (DiSalvo et al., 1981). The Ti analogue of this phase is desired to study the relationship between 

structure and properties. However, efforts to find TiTe5 have not been successful despite numerous attempts (Furuseth et 

al., 1973). Indeed, no Ti analogue of the MTe8 polyhedra found in MTe5 (Furuseth et al., 1975) has been observed up to 

now. During attempts to synthesize new metal tellurides, we found the new Ti-containing mixed-metallic phase 

Hf0.78Ti0.22Te5.

The title compound is isostructural with HfTe5 and ZrTe5. Detailed descriptions of this structural type have been 

reported previously (Furuseth et al., 1973). A view of the structure down the a axis is given in Fig. 1, which shows the 

layered nature parallel to (010). The structure is composed of chains made up from bicapped trigonal prismatic MTe8 

units. The metal (M) site occupied by statistically disordered Hf (78.1 (5) %) and Ti (21.9 (5) %) is surrounded by eight 

Te atoms. Three crystallographically independent Te sites are found in the title compound. Both Te1 (site symmetry m2m) 

and Te2 (site symmetry m..) are at the corners of a triangular prism and they are bridging the M atoms to form a chain. 

Two Te3 (site symmetry m..) atoms outside the rectangular faces of the prism are connected to the neighboring Te3 to 

form the infinite zigzag Te chain. Finally, the MTe5 layer is formed by the alternate linking of these chains (Fig. 2).

The structure shows a wide range of Te···Te interactions. In the prism, the Te2—Te2 pair (2.7448 (13) Å) forming the 

short base of the equilateral triangle exhibits a regular Te—Te bond, Te2
2- (e.g. discussed by Pell & Ibers, 1996). In 

addition, an intermediate Te3···Te3 separation (2.9129 (9) Å) is indicative of a weak single bond (Mar & Ibers, 1993) but 

we assign an oxidation state of 0 for Te3 (1
∞[Te0]). The classical charge balance of the compound can be described as 

[M4+][Te2-][Te2
2-][Te2

0] (M=Hf, Ti).

Structury analysis of three different crystals from the same reaction tube showed that the metal content can vary, 

apparently forming a random substitutional solid solution (Hf1-xTix)Te5, 0.15 ≤ x ≤ 0.22.

S2. Experimental 

The title compound, Hf0.78Ti0.22Te5, was prepared by the reaction of the elements with the use of the reactive halide-flux 

technique. Hf powder (CERAC 99.8%), Ti powder (CERAC 99.5%), and Te powder (CERAC 99.95%) were mixed in a 

fused silica tube in a molar ratio of Hf: Ti: Te = 1: 1: 10 and then CsCl (CERAC 99.9%) was added in a weight ratio of 

HfTiTe10: CsCl = 1: 2. The tube was evacuated to 0.133 Pa, sealed and heated gradually (50 K/h) to 650 K, where it was 

kept for 72 h. The tube was then cooled to room temperature at the rate of 3 K/h. The excess halide was removed with 

distilled water and dark block-shaped crystals were obtained. The crystals are stable in air and water. A qualitative X-ray 

fluorescence analysis of the crystals indicated the presence of Hf, Ti, and Te. A quantitative XRF analysis indicated that 
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the Hf: Ti ratio is 80: 20. The composition of the compound was determined by single-crystal X-ray diffraction.

S3. Refinement 

The statistically disordered nature of the M site in the title compound was checked by refining the anisotropic 

displacement parameters (ADPs). When the model was refined assuming HfTe5 or TiTe5, the displacement parameters of 

the metal site were very large and small, respectively. In both cases the reliability indices were rather high (wR2 > 0.127). 

In the refined mixed-metal model, the ADPs of the metal atoms are comparable with those of the other atoms and the 

residuals were reduced significantly (wR2 = 0.068). The remaining highest and lowest electron densities are found 0.81 

and 0.77 Å from atom Te1.

Figure 1

A perspective view of Hf0.78Ti0.22Te5 down the a axis showing the stacking of the layers. Filled and open circles represent 

metals and S atoms, respectively. The displacement ellipsoids are drawn at the 90% probability level. 
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Figure 2

A view of the layer of Hf0.78Ti0.22Te5. Anisotropic displacement ellipsoids are drawn at the 90% probability level. Atoms 

are as marked as in Fig. 1. [Symmetry code: (i) 1/2 + x, 1/2 - y, 1 - z]. 

Hafnium titanium pentatelluride 

Crystal data 

Hf0.78Ti0.22Te5

Mr = 787.76
Orthorhombic, Cmcm
Hall symbol: -C 2c 2
a = 3.9595 (3) Å
b = 14.4350 (13) Å
c = 13.7062 (9) Å
V = 783.39 (10) Å3

Z = 4

F(000) = 1284
Dx = 6.679 Mg m−3

Mo Kα radiation, λ = 0.71073 Å
Cell parameters from 3264 reflections
θ = 3.2–27.5°
µ = 28.76 mm−1

T = 290 K
Needle, black
0.30 × 0.04 × 0.02 mm

Data collection 

Rigaku R-AXIS RAPID 
diffractometer

Radiation source: fine-focus sealed tube
Graphite monochromator
ω scans
Absorption correction: multi-scan 

(NUMABS; Higashi, 2000)
Tmin = 0.263, Tmax = 1.000

3405 measured reflections
533 independent reflections
516 reflections with I > 2σ(I)
Rint = 0.059
θmax = 27.5°, θmin = 2.8°
h = −4→5
k = −18→18
l = −17→17
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Refinement 

Refinement on F2

Least-squares matrix: full
R[F2 > 2σ(F2)] = 0.029
wR(F2) = 0.068
S = 1.16
533 reflections
23 parameters
0 restraints
Primary atom site location: structure-invariant 

direct methods

Secondary atom site location: difference Fourier 
map

w = 1/[σ2(Fo
2) + (0.0304P)2 + 7.5394P] 

where P = (Fo
2 + 2Fc

2)/3
(Δ/σ)max < 0.001
Δρmax = 2.38 e Å−3

Δρmin = −2.07 e Å−3

Extinction correction: SHELXL97 (Sheldrick, 
2008)

Extinction coefficient: 0.00109 (14)

Special details 

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance 
matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; 
correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate 
(isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.
Refinement. Refinement of F2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F2, 
conventional R-factors R are based on F, with F set to zero for negative F2. The threshold expression of F2 > 2σ(F2) is 
used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based 
on F2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2) 

x y z Uiso*/Ueq Occ. (<1)

Hf 1 0.31435 (5) 0.25 0.0109 (3) 0.781 (5)
Ti 1 0.31435 (5) 0.25 0.0109 (3) 0.219 (5)
Te1 1 0.33665 (6) −0.25 0.0128 (3)
Te2 1 −0.07070 (5) 0.14987 (5) 0.0169 (3)
Te3 1 0.20952 (5) 0.06526 (4) 0.0154 (2)

Atomic displacement parameters (Å2) 

U11 U22 U33 U12 U13 U23

Hf 0.0103 (4) 0.0122 (4) 0.0102 (4) 0 0 0
Ti 0.0103 (4) 0.0122 (4) 0.0102 (4) 0 0 0
Te1 0.0129 (4) 0.0121 (5) 0.0134 (4) 0 0 0
Te2 0.0164 (4) 0.0164 (4) 0.0178 (4) 0 0 0.0051 (2)
Te3 0.0155 (4) 0.0190 (4) 0.0116 (3) 0 0 −0.0010 (2)

Geometric parameters (Å, º) 

M—Te2i 2.9251 (6) Te1—Mv 2.9446 (8)
M—Te2ii 2.9251 (6) Te1—Mvi 2.9446 (8)
M—Te2iii 2.9251 (6) Te1—Mvi 2.9446 (8)
M—Te2iv 2.9251 (6) Te2—Te2vii 2.7448 (13)
M—Te1v 2.9446 (8) Te2—Mviii 2.9251 (6)
M—Te1vi 2.9446 (8) Te2—Mviii 2.9251 (6)
M—Te3 2.9498 (7) Te2—Mix 2.9251 (6)
M—Te3vii 2.9498 (7) Te2—Mix 2.9251 (6)
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Te1—Mv 2.9446 (8) Te3—Te3v 2.9129 (9)

Te2i—M—Te2ii 55.96 (3) Te2iv—M—Te3vii 83.583 (16)
Te2i—M—Te2iii 110.88 (3) Te1v—M—Te3vii 67.683 (15)
Te2ii—M—Te2iii 85.19 (2) Te1vi—M—Te3vii 67.683 (15)
Te2i—M—Te2iv 85.19 (2) Te3—M—Te3vii 118.27 (3)
Te2ii—M—Te2iv 110.88 (3) Mv—Te1—Mv 0.000 (18)
Te2iii—M—Te2iv 55.96 (3) Mv—Te1—Mvi 84.50 (3)
Te2i—M—Te1v 151.040 (16) Mv—Te1—Mvi 84.50 (3)
Te2ii—M—Te1v 151.040 (16) Mv—Te1—Mvi 84.50 (3)
Te2iii—M—Te1v 87.986 (16) Mv—Te1—Mvi 84.50 (3)
Te2iv—M—Te1v 87.986 (16) Mvi—Te1—Mvi 0
Te2i—M—Te1vi 87.986 (16) Te2vii—Te2—Mviii 62.019 (13)
Te2ii—M—Te1vi 87.986 (16) Te2vii—Te2—Mviii 62.019 (13)
Te2iii—M—Te1vi 151.040 (16) Mviii—Te2—Mviii 0.00 (2)
Te2iv—M—Te1vi 151.040 (16) Te2vii—Te2—Mix 62.019 (13)
Te1v—M—Te1vi 84.49 (3) Mviii—Te2—Mix 85.19 (2)
Te2i—M—Te3 133.927 (10) Mviii—Te2—Mix 85.19 (2)
Te2ii—M—Te3 83.584 (16) Te2vii—Te2—Mix 62.019 (13)
Te2iii—M—Te3 83.583 (16) Mviii—Te2—Mix 85.19 (2)
Te2iv—M—Te3 133.927 (10) Mviii—Te2—Mix 85.19 (2)
Te1v—M—Te3 67.683 (15) Mix—Te2—Mix 0.00 (2)
Te1vi—M—Te3 67.683 (15) Te3v—Te3—Te3vi 85.63 (3)
Te2i—M—Te3vii 83.583 (16) Te3v—Te3—M 108.74 (3)
Te2ii—M—Te3vii 133.927 (10) Te3vi—Te3—M 108.74 (3)
Te2iii—M—Te3vii 133.927 (10)

Symmetry codes: (i) x+1/2, y+1/2, −z+1/2; (ii) x+1/2, y+1/2, z; (iii) x−1/2, y+1/2, z; (iv) x−1/2, y+1/2, −z+1/2; (v) −x+3/2, −y+1/2, −z; (vi) −x+5/2, −y+1/2, 
−z; (vii) x, y, −z+1/2; (viii) x−1/2, y−1/2, z; (ix) x+1/2, y−1/2, z.


