45486 measured reflections

 $R_{\rm int} = 0.043$

8576 independent reflections

7385 reflections with $I > 2\sigma(I)$

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3',6'-Bis(diethylamino)-2-[(E)-2-(4hydroxy-3-methoxybenzylideneamino)ethyl]spiro[isoindoline-1,9'-xanthen]-3one ethanol monosolvate

Zhen Wei,* Jinlong Guo, Xujun Zheng, Shunwei Chen and Qun Wan

Department of Basic Science, Tianjin Agriculturial University, Tianjin Jinjing Road No. 22, Tianjin 300384, People's Republic of China Correspondence e-mail: weizhen-tjau@qq.com

Received 5 January 2012; accepted 17 April 2012

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.049; wR factor = 0.119; data-to-parameter ratio = 19.1.

In the title compound, C₃₈H₄₂N₄O₄·C₂H₆O, prepared via a spirolactam ring-formation reaction in a rhodamine dye, the xanthene ring system is approximately planar (r.m.s. deviation = 0.0014Å) and subtends dihedral angles of 88.10(3) and 86.92 (4)° with the spirolactam (r.m.s. deviations = 0.0012 Å) and benzene rings, respectively. The crystal structure consists of chains parallel to [101], formed via $O-H \cdots O$ interactions.

Related literature

For related structures and background to rhodamine-based dyes, see: Xu et al.(2010a,b); Zhang et al. (2008); Tian & Peng (2008); Kwon et al. (2005); Wu et al. (2007).

Experimental

Crystal data

$C_{38}H_{42}N_4O_4 \cdot C_2H_6O$	$V = 3624.5 (15) \text{ Å}^3$
$M_r = 664.82$	Z = 4
Monoclinic, $P2_1/n$	Mo $K\alpha$ radiation
a = 16.674 (4) Å	$\mu = 0.08 \text{ mm}^{-1}$
b = 12.197 (3) Å	T = 113 K
c = 17.936 (4) Å	$0.20 \times 0.12 \times 0.10 \text{ mm}$
$\beta = 96.445 \ (4)^{\circ}$	

Data collection

Rigaku Saturn724+ diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku, 2008) $T_{\min} = 0.984, T_{\max} = 0.992$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.049$	450 parameters
$wR(F^2) = 0.119$	H-atom parameters constrained
S = 1.10	$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
8576 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3\cdots O5^{i}$	0.84	1.96	2.7052 (15)	148
$O5-H5A\cdots O2$	0.84	1.93	2.7552 (14)	166
C	. 1 . 3	1		

Symmetry code: (i) $x + \frac{1}{2}, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: CrystalClear (Rigaku, 2008); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku, 2008).

The authors thank the Science Development Committee of Tianjin Agricultural University (research grant No. 2009 N02).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2444).

References

- Kwon, J. K., Jang, Y. J., Lee, Y. J., Kim, K. M., Seo, M. S., Nam, W. & Yoon, I. (2005). J. Am. Chem. Soc. 127, 10107-10111.
- Rigaku (2008). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122
- Tian, M.-Z. & Peng, X.-J. (2008). Acta Cryst. E64, o1645.
- Wu, D., Huang, W., Duan, C. Y., Lin, Z. H. & Meng, Q. J. (2007). Inorg. Chem. 46, 1538-1540.
- Xu, Z., Guo, W., Su, B., Shen, X.-K. & Yang, F. (2010a). Acta Cryst. E66, 01500. Xu, Z.-H., Zhang, Y.-L., Zhao, Y.-R. & Yang, F.-L. (2010b). Acta Cryst. E66,
- 01504.
- Zhang, L.-Z., Peng, X.-J., Gao, S. & Fan, J.-L. (2008). Acta Cryst. E64, 0403.

supporting information

Acta Cryst. (2012). E68, o1479 [doi:10.1107/S1600536812016741]

3',6'-Bis(diethylamino)-2-[(*E*)-2-(4-hydroxy-3-methoxybenzylideneamino)ethyl]spiro[isoindoline-1,9'-xanthen]-3-one ethanol monosolvate

Zhen Wei, Jinlong Guo, Xujun Zheng, Shunwei Chen and Qun Wan

S1. Comment

Rhodamine-based dyes have been widely used for conjugation with biomolecules, owing to their excellent spectroscopic properties such as large molar extinction coefficient and high fluorescence quantum yields. Moreover, it is well known that many derivatives of Rhodamine undergo equilibrium between spirolactam and an open ring amide, and both conformations behave with different spectroscopic properties, for what Rhodamine-based dyes have been widely used as sensing materials (Kwon *et al.*, 2005). Detailed information on their molecular and crystal structures is necessary to understand their photophysical and photochemical properties. In the title compound [($C_{38}H_{42}N_4O_4$)], the xanthene and the spirolactam rings are almost planar (r.m.s. deviations from the mean plane, 0.0014Å and 0.0012 Å, respectively), with the former ring forming dihedral angles of 88.10 (3)° to the spirolactam ring and 86.92 (4)°. to the benzene ring. The crystal structure consists of one-dimensional chains parallel to [101], formed *via* O3—H3···O5, O5—H5A···O2 interactions (Table 1).

S2. Experimental

N-(rhodamine-6 G)lactam-ethylenediamine (5m mol) was dissolved in 50 ml of ethanol, followed by addition of 3-methoxy-4-hydroxybenzaldehyde(5m mol). The solution was stirred and refluxed for 10 h. The white precipitate was filtrated and disolved in ethanol. Single crystals suitable for X-ray measurements were obtained at room temperature by slow evaporation of this solution.

S3. Refinement

All H atoms were seen in the final diffreence map, but further replaced at their expected positions and treated as riding on their parent atoms, with C—H = 0.93 Å for the aromatic, 0.96 Å for the methyl and C—H= 0.97 Å for methylene H atoms, and O—H: 0.84Å. In al cases $U_{iso}(H) = x \times U_{eq}(Host)$ with x = 1.2 except for methyl groups in which x = 1.5.

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

The one dimentional structure formed by the inter-molecular hydrogen bonds drawn in dashed lines

3',6'-Bis(diethylamino)-2-[(*E*)-2-(4-hydroxy-3- methoxybenzylideneamino)ethyl]spiro[isoindoline-1,9'- xanthen]-3-one ethanol monosolvate

Crystal data

C₃₈H₄₂N₄O₄·C₂H₆O $M_r = 664.82$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 16.674 (4) Å b = 12.197 (3) Å c = 17.936 (4) Å $\beta = 96.445$ (4)° V = 3624.5 (15) Å³ Z = 4

Data collection

Rigaku Saturn724+ diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 28.5714 pixels mm⁻¹ profile data from ω -scans Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2008) $T_{\min} = 0.984, T_{\max} = 0.992$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.049$ $wR(F^2) = 0.119$ S = 1.108576 reflections 450 parameters F(000) = 1424 $D_x = 1.218 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 10662 reflections $\theta = 1.7-27.9^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 113 KPrism, colourless $0.20 \times 0.12 \times 0.10 \text{ mm}$

45486 measured reflections 8576 independent reflections 7385 reflections with $I > 2\sigma(I)$ $R_{int} = 0.043$ $\theta_{max} = 27.8^{\circ}, \theta_{min} = 1.6^{\circ}$ $h = -21 \rightarrow 20$ $k = -16 \rightarrow 15$ $l = -23 \rightarrow 22$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites

H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} < 0.001$
$w = 1/[\sigma^2(F_o^2) + (0.0532P)^2 + 0.5173P]$	$\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^{-3}$
where $P = (F_o^2 + 2F_c^2)/3$	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates	and isotropic	or equivalent isotro	pic displacement	parameters	$(Å^2)$	i
-------------------------------	---------------	----------------------	------------------	------------	---------	---

	x	v	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$	
01	0.70816(5)	0.41422 (7)	0.34461 (6)	0.0243 (2)	
02	0.45673 (6)	0.76065 (8)	0.19829 (5)	0.0257(2)	
03	0.72460 (6)	0.76249 (8)	-0.25561(5)	0.0281(2)	
H3	0.7427	0.7031	-0.2705	0.042*	
04	0.70162 (6)	0.56284 (8)	-0.19741 (5)	0.0284 (2)	
N1	0.91108 (7)	0.68357 (10)	0.39924 (7)	0.0279 (3)	
N2	0.53054 (7)	0.10821 (9)	0.31672 (7)	0.0238 (3)	
N3	0.54525 (6)	0.62774 (9)	0.24766 (6)	0.0171 (2)	
N4	0.66575 (7)	0.64858 (11)	0.08517 (7)	0.0296 (3)	
C1	0.72358 (8)	0.52500 (10)	0.35283 (7)	0.0185 (3)	
C2	0.80483 (8)	0.55002 (11)	0.37132 (7)	0.0210 (3)	
H2	0.8432	0.4923	0.3787	0.025*	
C3	0.83095 (8)	0.65951 (11)	0.37922 (7)	0.0217 (3)	
C4	0.77103 (8)	0.74200 (11)	0.36664 (8)	0.0239 (3)	
H4A	0.7862	0.8171	0.3700	0.029*	
C5	0.69080 (8)	0.71404 (11)	0.34955 (7)	0.0215 (3)	
Н5	0.6519	0.7711	0.3423	0.026*	
C6	0.66416 (7)	0.60495 (10)	0.34241 (7)	0.0171 (3)	
C7	0.57572 (7)	0.57688 (10)	0.32152 (7)	0.0168 (3)	
C8	0.56436 (7)	0.45356 (10)	0.31992 (7)	0.0172 (3)	
C9	0.48720 (8)	0.40554 (11)	0.30829 (7)	0.0197 (3)	
H9	0.4414	0.4522	0.3007	0.024*	
C10	0.47538 (8)	0.29366 (11)	0.30742 (7)	0.0209 (3)	
H10	0.4220	0.2653	0.2997	0.025*	
C11	0.54168 (8)	0.22038 (10)	0.31793 (7)	0.0193 (3)	
C12	0.61892 (8)	0.26706 (10)	0.32955 (7)	0.0200 (3)	
H12	0.6650	0.2209	0.3368	0.024*	
C13	0.62862 (7)	0.38069 (10)	0.33055 (7)	0.0181 (3)	
C14	0.96754 (8)	0.59920 (12)	0.42960 (8)	0.0268 (3)	
H14A	0.9384	0.5463	0.4586	0.032*	
H14B	1.0101	0.6340	0.4648	0.032*	
C15	1.00743 (9)	0.53699 (15)	0.37037 (9)	0.0380 (4)	

H15A	0.9662	0.4977	0.3374	0.057*
H15B	1.0462	0.4843	0.3948	0.057*
H15C	1.0356	0.5888	0.3406	0.057*
C16	0.94234 (9)	0.79470 (13)	0.39605 (9)	0.0361 (4)
H16A	0.9114	0.8341	0.3540	0.043*
H16B	0.9993	0.7913	0.3855	0.043*
C17	0.93788 (13)	0.85921 (15)	0.46778 (11)	0.0575 (6)
H17A	0.8812	0.8693	0.4760	0.086*
H17B	0.9634	0.9310	0.4635	0.086*
H17C	0.9661	0.8190	0.5102	0.086*
C18	0.59972 (9)	0.03336 (11)	0.32402 (8)	0.0277 (3)
H18A	0.6422	0.0644	0.2959	0.033*
H18B	0.5826	-0.0373	0.3002	0.033*
C19	0.63582 (10)	0.01127 (14)	0.40393 (9)	0.0370 (4)
H19A	0.6489	0.0810	0.4296	0.055*
H19B	0.6851	-0.0324	0.4035	0.055*
H19C	0 5968	-0.0291	0 4304	0.055*
C20	0.45004 (9)	0.06076(11)	0.31775 (8)	0.0270(3)
H20A	0.4513	-0.0164	0 3007	0.032*
H20B	0.4117	0 1010	0.2815	0.032*
C21	0.41881(10)	0.06364 (13)	0.39453(9)	0.032 0.0366 (4)
H21A	0.4540	0.0192	0.4300	0.055*
H21B	0 3638	0.0340	0 3904	0.055*
H21C	0.4185	0.1395	0.4125	0.055*
C22	0.52088 (7)	0.63452(10)	0.37207 (7)	0.0169(3)
C23	0.52606(7) 0.51696(8)	0.62006(11)	0.37207(7) 0.44828(7)	0.0216(3)
H23	0.5518	0.5701	0.4767	0.026*
C24	0 46017 (9)	0.68132(12)	0 48185 (8)	0.0261(3)
H24	0.4563	0.6729	0.5340	0.031*
C25	0.40883 (8)	0.75484(12)	0.44026 (8)	0.0263(3)
H25	0.3702	0.7950	0 4643	0.032*
C26	0.41351 (8)	0.76991 (11)	0 36424 (8)	0.022 0.0228(3)
H26	0 3791	0.8204	0.3358	0.0228 (3)
C27	0.3791 0.47024 (7)	0.70856 (10)	0.33102 (7)	0.027 0.0181 (3)
C28	0.17021(7) 0.48748(7)	0.70542(10)	0.35102(7) 0.25194(7)	0.0101(3)
C29	0.57599 (8)	0.70912(10) 0.59905(11)	0.25191(7) 0.17751(7)	0.0216(3)
H29A	0.5332	0.6123	0.1356	0.026*
H29R	0.5889	0.5198	0.1781	0.026*
C30	0.65106 (9)	0.66352 (14)	0.16326 (8)	0.020 0.0326(4)
H30A	0.6431	0.7423	0.1735	0.0328 (1)
H30B	0.6982	0.6372	0.1971	0.039*
C31	0.67072 (8)	0.0372 0.73611 (13)	0.1971 0.04736 (8)	0.0269(3)
H31	0.6655	0.8039	0.0724	0.0209 (3)
C32	0.68390 (8)	0.73984(12)	-0.03207(8)	0.022 0.0237(3)
C33	0.69533 (9)	0.84087(12)	-0.06541(8)	0.0267(3)
H33	0.6938	0.9060	-0.0366	0.0200 (5)
C34	0.70888 (8)	0.84776(12)	-0.14018(8)	0.032
H34	0.7161	0.9172	-0 1624	0.0200 (0)
	V., IVI	V./ I/ 4	0.1041	0.001

C35	0.71177 (8)	0.75289 (12)	-0.18223 (8)	0.0228 (3)	
C36	0.69883 (8)	0.65032 (11)	-0.14962 (8)	0.0222 (3)	
C37	0.68563 (8)	0.64348 (12)	-0.07481 (8)	0.0234 (3)	
H37	0.6778	0.5741	-0.0526	0.028*	
C38	0.67573 (10)	0.45925 (12)	-0.17106 (9)	0.0336 (4)	
H38A	0.7124	0.4361	-0.1274	0.050*	
H38B	0.6761	0.4045	-0.2110	0.050*	
H38C	0.6209	0.4663	-0.1568	0.050*	
05	0.31286 (6)	0.87055 (9)	0.16462 (5)	0.0278 (2)	
H5A	0.3581	0.8447	0.1812	0.042*	
C39	0.29463 (9)	0.84136 (13)	0.08727 (8)	0.0290 (3)	
H39A	0.3038	0.7619	0.0808	0.035*	
H39B	0.3306	0.8819	0.0566	0.035*	
C40	0.20807 (9)	0.86893 (15)	0.06150 (9)	0.0371 (4)	
H40A	0.1727	0.8273	0.0912	0.056*	
H40B	0.1959	0.8499	0.0084	0.056*	
H40C	0.1993	0.9476	0.0682	0.056*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
01	0.0147 (5)	0.0144 (5)	0.0434 (6)	-0.0003 (4)	0.0010 (4)	0.0004 (4)
O2	0.0234 (5)	0.0265 (5)	0.0263 (5)	0.0051 (4)	-0.0012 (4)	0.0095 (4)
O3	0.0307 (6)	0.0294 (6)	0.0247 (5)	0.0006 (4)	0.0055 (4)	0.0024 (4)
O4	0.0348 (6)	0.0240 (5)	0.0277 (5)	-0.0042 (4)	0.0088 (4)	-0.0042 (4)
N1	0.0187 (6)	0.0229 (6)	0.0401 (7)	-0.0045 (5)	-0.0060(5)	0.0068 (5)
N2	0.0228 (6)	0.0165 (6)	0.0320 (7)	-0.0016 (5)	0.0029 (5)	-0.0009(5)
N3	0.0175 (5)	0.0176 (5)	0.0158 (5)	0.0012 (4)	0.0009 (4)	0.0010 (4)
N4	0.0242 (6)	0.0417 (8)	0.0238 (6)	-0.0021 (5)	0.0067 (5)	-0.0018 (5)
C1	0.0188 (6)	0.0152 (6)	0.0214 (7)	-0.0003 (5)	0.0021 (5)	0.0024 (5)
C2	0.0175 (6)	0.0188 (6)	0.0263 (7)	0.0017 (5)	0.0005 (5)	0.0029 (5)
C3	0.0192 (7)	0.0223 (7)	0.0226 (7)	-0.0023 (5)	-0.0018 (5)	0.0033 (5)
C4	0.0241 (7)	0.0163 (6)	0.0297 (8)	-0.0033(5)	-0.0039 (6)	0.0017 (5)
C5	0.0212 (7)	0.0174 (6)	0.0249 (7)	0.0023 (5)	-0.0019 (5)	0.0010 (5)
C6	0.0165 (6)	0.0177 (6)	0.0168 (6)	0.0002 (5)	0.0008 (5)	0.0010 (5)
C7	0.0162 (6)	0.0176 (6)	0.0162 (6)	0.0015 (5)	-0.0005 (5)	0.0023 (5)
C8	0.0182 (6)	0.0173 (6)	0.0160 (6)	0.0001 (5)	0.0016 (5)	0.0009 (5)
C9	0.0171 (6)	0.0202 (6)	0.0213 (7)	0.0019 (5)	-0.0004(5)	0.0017 (5)
C10	0.0174 (6)	0.0211 (7)	0.0235 (7)	-0.0029 (5)	-0.0003 (5)	0.0000 (5)
C11	0.0236 (7)	0.0160 (6)	0.0186 (7)	-0.0016 (5)	0.0033 (5)	-0.0001 (5)
C12	0.0173 (6)	0.0167 (6)	0.0264 (7)	0.0025 (5)	0.0037 (5)	0.0004 (5)
C13	0.0151 (6)	0.0187 (6)	0.0205 (7)	-0.0008(5)	0.0019 (5)	0.0004 (5)
C14	0.0183 (7)	0.0326 (8)	0.0282 (8)	-0.0019 (6)	-0.0029 (6)	0.0057 (6)
C15	0.0228 (8)	0.0558 (11)	0.0354 (9)	0.0019 (7)	0.0030 (7)	0.0001 (8)
C16	0.0276 (8)	0.0291 (8)	0.0482 (10)	-0.0131 (6)	-0.0102 (7)	0.0110 (7)
C17	0.0718 (14)	0.0336 (10)	0.0585 (12)	-0.0136 (9)	-0.0296 (10)	-0.0004 (9)
C18	0.0293 (8)	0.0163 (7)	0.0375 (8)	0.0002 (6)	0.0038 (6)	-0.0029 (6)
C19	0.0392 (9)	0.0311 (8)	0.0402 (9)	0.0072 (7)	0.0026 (7)	-0.0003 (7)

C20	0.0267 (7)	0.0185 (7)	0.0357 (8)	-0.0064 (6)	0.0037 (6)	-0.0004 (6)
C21	0.0364 (9)	0.0316 (9)	0.0440 (10)	-0.0022 (7)	0.0142 (7)	0.0034 (7)
C22	0.0150 (6)	0.0153 (6)	0.0202 (7)	-0.0015 (5)	0.0009 (5)	-0.0009 (5)
C23	0.0220 (7)	0.0223 (7)	0.0201 (7)	-0.0021 (5)	0.0005 (5)	0.0007 (5)
C24	0.0282 (8)	0.0307 (8)	0.0202 (7)	-0.0042 (6)	0.0068 (6)	-0.0033 (6)
C25	0.0225 (7)	0.0252 (7)	0.0324 (8)	0.0001 (6)	0.0084 (6)	-0.0069 (6)
C26	0.0172 (6)	0.0189 (7)	0.0323 (8)	0.0001 (5)	0.0026 (6)	-0.0005 (5)
C27	0.0153 (6)	0.0168 (6)	0.0220 (7)	-0.0020(5)	0.0014 (5)	0.0004 (5)
C28	0.0143 (6)	0.0169 (6)	0.0244 (7)	-0.0020 (5)	-0.0004 (5)	0.0021 (5)
C29	0.0249 (7)	0.0219 (7)	0.0181 (7)	0.0006 (5)	0.0029 (5)	-0.0012 (5)
C30	0.0277 (8)	0.0497 (10)	0.0211 (7)	-0.0089 (7)	0.0060 (6)	-0.0027 (7)
C31	0.0218 (7)	0.0338 (8)	0.0254 (8)	-0.0055 (6)	0.0041 (6)	-0.0063 (6)
C32	0.0187 (7)	0.0281 (7)	0.0243 (7)	-0.0015 (5)	0.0025 (5)	-0.0015 (6)
C33	0.0268 (7)	0.0245 (7)	0.0290 (8)	0.0002 (6)	0.0049 (6)	-0.0054 (6)
C34	0.0242 (7)	0.0219 (7)	0.0304 (8)	0.0005 (6)	0.0031 (6)	0.0023 (6)
C35	0.0159 (6)	0.0293 (7)	0.0230 (7)	0.0008 (5)	0.0013 (5)	-0.0013 (6)
C36	0.0177 (6)	0.0246 (7)	0.0243 (7)	-0.0006 (5)	0.0023 (5)	-0.0034(5)
C37	0.0201 (7)	0.0235 (7)	0.0269 (8)	-0.0023 (5)	0.0037 (6)	0.0010 (5)
C38	0.0377 (9)	0.0229 (7)	0.0413 (9)	-0.0045 (6)	0.0099 (7)	-0.0035 (6)
05	0.0232 (5)	0.0368 (6)	0.0229 (5)	0.0051 (4)	-0.0004 (4)	0.0013 (4)
C39	0.0315 (8)	0.0323 (8)	0.0229 (7)	0.0023 (6)	0.0019 (6)	0.0018 (6)
C40	0.0296 (8)	0.0501 (10)	0.0300 (8)	-0.0048 (7)	-0.0039 (7)	0.0052 (7)
		· · ·				

Geometric parameters (Å, °)

01—C1	1.3802 (15)	C18—C19	1.515 (2)
O1—C13	1.3836 (15)	C18—H18A	0.9900
O2—C28	1.2376 (15)	C18—H18B	0.9900
O3—C35	1.3619 (17)	C19—H19A	0.9800
O3—H3	0.8400	C19—H19B	0.9800
O4—C36	1.3726 (16)	C19—H19C	0.9800
O4—C38	1.4324 (17)	C20—C21	1.527 (2)
N1—C3	1.3756 (17)	C20—H20A	0.9900
N1—C16	1.4556 (18)	C20—H20B	0.9900
N1-C14	1.4583 (18)	C21—H21A	0.9800
N2—C11	1.3805 (17)	C21—H21B	0.9800
N2—C20	1.4636 (18)	C21—H21C	0.9800
N2—C18	1.4653 (18)	C22—C23	1.3871 (18)
N3—C28	1.3593 (16)	C22—C27	1.3895 (18)
N3—C29	1.4537 (16)	C23—C24	1.3949 (19)
N3—C7	1.4989 (16)	С23—Н23	0.9500
N4—C31	1.2724 (19)	C24—C25	1.396 (2)
N4—C30	1.4603 (18)	C24—H24	0.9500
C1—C6	1.3877 (18)	C25—C26	1.387 (2)
C1—C2	1.3919 (18)	С25—Н25	0.9500
C2—C3	1.4068 (18)	C26—C27	1.3916 (18)
C2—H2	0.9500	C26—H26	0.9500
C3—C4	1.4180 (19)	C27—C28	1.4790 (18)

C4-C5	1 3812 (19)	C29—C30	1 524 (2)
C4—H4A	0.9500	C29_H29A	0.9900
C5-C6	1 4041 (18)	C29_H29B	0.9900
C5H5	0.9500	C_{30} H30A	0.9900
C6 C7	1.5103(17)	C30 H30R	0.9900
$C_0 = C_1$	1.5195(17) 1.5150(19)	C31 C22	1.466(2)
C^{7}	1.5139(10) 1.5202(17)	$C_{21} = U_{21}$	1.400(2)
$C_{1} = C_{22}$	1.3292(17)	C31—H31	0.9300
	1.3887 (18)	C32—C33	1.392 (2)
	1.40//(18)	C_{32}	1.4052 (19)
C9—C10	1.3786 (18)	C33—C34	1.387 (2)
С9—Н9	0.9500	С33—Н33	0.9500
C10—C11	1.4176 (19)	C34—C35	1.3851 (19)
C10—H10	0.9500	C34—H34	0.9500
C11—C12	1.4021 (18)	C35—C36	1.4078 (19)
C12—C13	1.3952 (18)	C36—C37	1.3865 (19)
C12—H12	0.9500	С37—Н37	0.9500
C14—C15	1.518 (2)	C38—H38A	0.9800
C14—H14A	0.9900	C38—H38B	0.9800
C14—H14B	0.9900	C38—H38C	0.9800
C15—H15A	0.9800	O5—C39	1.4317 (17)
C15—H15B	0.9800	O5—H5A	0.8400
C15—H15C	0.9800	C39—C40	1.503 (2)
C16—C17	1.517 (3)	С39—Н39А	0.9900
C16—H16A	0 9900	C39—H39B	0 9900
C16—H16B	0.9900	C40—H40A	0.9800
C17—H17A	0.9800	C40—H40B	0.9800
C17—H17B	0.9800	C40 - H40C	0.9800
	0.9800		0.9000
en/—m/e	0.9800		
C1 O1 C13	118 17 (10)	C18 C10 H10C	109.5
$C_{1}^{2} = C_{1}^{2} = C_{1}^{2}$	100.5		109.5
$C_{35} = 05 = 115$	109.5	H10R C10 H10C	109.5
$C_{2} = 04 - C_{3}$	110.30(11) 122.01(12)	N2 C20 C21	109.5
$C_3 = N_1 = C_{14}$	122.01(12)	$N_2 = C_2 = C_2 I$	114.11 (12)
$C_3 = N_1 = C_1 A$	120.95 (12)	$N_2 = C_2 = H_2 OA$	108.7
C16-N1-C14	116.92 (11)	C21—C20—H20A	108.7
C11 - N2 - C20	120.91 (11)	N2—C20—H20B	108.7
C11—N2—C18	120.85 (11)	C21—C20—H20B	108.7
C20—N2—C18	117.79 (11)	H20A—C20—H20B	107.6
C28—N3—C29	122.51 (11)	C20—C21—H21A	109.5
C28—N3—C7	114.25 (10)	C20—C21—H21B	109.5
C29—N3—C7	123.22 (10)	H21A—C21—H21B	109.5
C31—N4—C30	115.75 (13)	C20—C21—H21C	109.5
O1—C1—C6	123.49 (11)	H21A—C21—H21C	109.5
O1—C1—C2	113.88 (11)	H21B—C21—H21C	109.5
C6—C1—C2	122.62 (12)	C23—C22—C27	120.78 (12)
C1—C2—C3	120.94 (12)	C23—C22—C7	128.55 (11)
C1—C2—H2	119.5	C27—C22—C7	110.66 (11)
С3—С2—Н2	119.5	C22—C23—C24	117.82 (13)

N1 - C3 - C2	120.63 (12)	C22_C23_H23	121.1
N1 - C3 - C4	120.03(12) 122.44(12)	C_{24} C_{23} H_{23}	121.1
$C_2 - C_3 - C_4$	122.44(12) 116.92(12)	C_{23} C_{23} C_{23} C_{25} C_{25}	121.1
$C_{2} = C_{3} = C_{4}$	120.51(12)	C_{23} C_{24} C_{25} C_{23} C_{24} H_{24}	119.4
$C_{5} = C_{4} = C_{5}$	110.7	$C_{25} = C_{24} = H_{24}$	119.4
$C_3 = C_4 = H_4 \Lambda$	119.7	$C_{25} = C_{24} = 1124$	119.4
$C_3 = C_4 = n_4 A$	119.7	$C_{20} = C_{23} = C_{24}$	120.78 (13)
C4 = C5 = U5	122.00 (12)	$C_{20} = C_{23} = H_{23}$	119.0
C4—C5—H5	118.0	C24—C25—H25	119.0
C6	118.0	$C_{25} = C_{26} = C_{27}$	117.76(12)
$C_1 = C_0 = C_3$	116.09 (12)	C25—C26—H26	121.1
C1C6C7	122.24 (11)	C27—C26—H26	121.1
C5—C6—C7	121.63 (11)	C22—C27—C26	121.63 (12)
N3—C7—C8	111.39 (10)	C22—C27—C28	108.63 (11)
N3—C7—C6	110.37 (10)	C26—C27—C28	129.73 (12)
C8—C7—C6	110.12 (10)	O2—C28—N3	124.74 (12)
N3—C7—C22	99.66 (10)	O2—C28—C27	128.57 (12)
C8—C7—C22	112.68 (10)	N3—C28—C27	106.70 (11)
C6—C7—C22	112.25 (10)	N3—C29—C30	113.39 (11)
C13—C8—C9	115.62 (12)	N3—C29—H29A	108.9
C13—C8—C7	122.65 (11)	С30—С29—Н29А	108.9
C9—C8—C7	121.73 (11)	N3—C29—H29B	108.9
С10—С9—С8	122.73 (12)	С30—С29—Н29В	108.9
С10—С9—Н9	118.6	H29A—C29—H29B	107.7
С8—С9—Н9	118.6	N4—C30—C29	109.02 (12)
C9—C10—C11	120.95 (12)	N4—C30—H30A	109.9
С9—С10—Н10	119.5	С29—С30—Н30А	109.9
C11—C10—H10	119.5	N4—C30—H30B	109.9
N2—C11—C12	121.63 (12)	С29—С30—Н30В	109.9
N2-C11-C10	121.41 (12)	H30A—C30—H30B	108.3
C12—C11—C10	116.95 (12)	N4—C31—C32	124.72 (14)
C13—C12—C11	120.57 (12)	N4—C31—H31	117.6
C13—C12—H12	119.7	C32—C31—H31	117.6
C11—C12—H12	119.7	$C_{33} = C_{32} = C_{37}$	119 59 (13)
01-C13-C8	123.02 (11)	$C_{33} = C_{32} = C_{31}$	119.03(10) 119.17(13)
$01 - C_{13} - C_{12}$	113.79(11)	$C_{37} - C_{32} - C_{31}$	121.24(13)
C8-C13-C12	123 18 (12)	C_{34} C_{33} C_{32}	121.24(13) 120.92(13)
N1 - C14 - C15	123.10(12) 113.99(12)	$C_{34} = C_{33} = H_{33}$	119.5
N1 = C14 = H14A	108.8	C_{32} C_{33} H_{23}	119.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	108.8	$C_{32} = C_{33} = 1133$	119.5
C13 - C14 - H14A	108.8	$C_{33} = C_{34} = C_{33}$	119.09 (13)
NI = C14 = II14D	100.0	$C_{33} = C_{34} = H_{34}$	120.2
С15—С14—Н14В	108.8	C35—C34—H34	120.2
H14A - C14 - H14B	107.6	03 - 03 - 035 - 034	118.25 (13)
CI4—CI5—HI5A	109.5	03 - 03 - 036	121.73 (12)
UI4—UI5—HI5B	109.5	$U_{34} - U_{35} - U_{36}$	119.98 (13)
HISA—CIS—HISB	109.5	U4 - U36 - U37	125.29 (13)
C14—C15—H15C	109.5	U4—C36—C35	114.45 (12)
H15A—C15—H15C	109.5	C37/—C36—C35	120.26 (12)
H15B—C15—H15C	109.5	C36—C37—C32	119.53 (13)

N1-C16-C17	113.44 (14)	С36—С37—Н37	120.2
N1—C16—H16A	108.9	С32—С37—Н37	120.2
C17—C16—H16A	108.9	O4—C38—H38A	109.5
N1—C16—H16B	108.9	O4—C38—H38B	109.5
C17—C16—H16B	108.9	H38A—C38—H38B	109.5
H16A—C16—H16B	107.7	O4—C38—H38C	109.5
С16—С17—Н17А	109.5	H38A—C38—H38C	109.5
C16—C17—H17B	109.5	H38B—C38—H38C	109.5
H17A—C17—H17B	109.5	С39—О5—Н5А	109.5
C16—C17—H17C	109.5	O5—C39—C40	109.53 (12)
H17A—C17—H17C	109.5	O5—C39—H39A	109.8
H17B—C17—H17C	109.5	С40—С39—Н39А	109.8
N2—C18—C19	114.87 (12)	O5—C39—H39B	109.8
N2—C18—H18A	108.6	С40—С39—Н39В	109.8
C19—C18—H18A	108.6	H39A—C39—H39B	108.2
N2—C18—H18B	108.6	C39—C40—H40A	109.5
C19—C18—H18B	108.6	C39—C40—H40B	109.5
H18A—C18—H18B	107.5	H40A—C40—H40B	109.5
С18—С19—Н19А	109.5	С39—С40—Н40С	109.5
C18—C19—H19B	109.5	H40A—C40—H40C	109.5
H19A—C19—H19B	109.5	H40B—C40—H40C	109.5
C13—O1—C1—C6	-4.83 (18)	C3—N1—C14—C15	89.30 (16)
C13—O1—C1—C2	176.30 (11)	C16—N1—C14—C15	-94.71 (16)
O1—C1—C2—C3	177.85 (11)	C3—N1—C16—C17	88.72 (18)
C6—C1—C2—C3	-1.0 (2)	C14—N1—C16—C17	-87.22 (17)
C16—N1—C3—C2	169.76 (13)	C11—N2—C18—C19	83.16 (16)
C14—N1—C3—C2	-14.5 (2)	C20—N2—C18—C19	-89.23 (16)
C16—N1—C3—C4	-11.1 (2)	C11—N2—C20—C21	-76.12 (16)
C14—N1—C3—C4	164.66 (13)	C18—N2—C20—C21	96.26 (15)
C1—C2—C3—N1	178.44 (12)	N3—C7—C22—C23	177.55 (12)
C1—C2—C3—C4	-0.7 (2)	C8—C7—C22—C23	59.38 (17)
N1—C3—C4—C5	-177.39 (13)	C6—C7—C22—C23	-65.64 (17)
C2—C3—C4—C5	1.8 (2)	N3—C7—C22—C27	-1.82 (13)
C3—C4—C5—C6	-1.1 (2)	C8—C7—C22—C27	-119.99 (12)
O1—C1—C6—C5	-177.09 (12)	C6—C7—C22—C27	114.99 (12)
C2—C1—C6—C5	1.68 (19)	C27—C22—C23—C24	0.62 (19)
O1—C1—C6—C7	0.63 (19)	C7—C22—C23—C24	-178.69 (12)
C2-C1-C6-C7	179.41 (12)	C22—C23—C24—C25	0.0 (2)
C4—C5—C6—C1	-0.6 (2)	C23—C24—C25—C26	-0.7 (2)
C4—C5—C6—C7	-178.35 (12)	C24—C25—C26—C27	0.7 (2)
C28—N3—C7—C8	122.41 (12)	C23—C22—C27—C26	-0.62 (19)
C29—N3—C7—C8	-59.14 (15)	C7—C22—C27—C26	178.81 (11)
C28—N3—C7—C6	-114.94 (12)	C23—C22—C27—C28	-179.42 (11)
C29—N3—C7—C6	63.51 (15)	C7—C22—C27—C28	0.01 (14)
C28—N3—C7—C22	3.28 (13)	C25—C26—C27—C22	-0.06 (19)
C29—N3—C7—C22	-178.27 (11)	C25—C26—C27—C28	178.47 (13)
C1—C6—C7—N3	-119.49 (13)	C29—N3—C28—O2	-1.7 (2)

C5—C6—C7—N3	58.12 (15)	C7—N3—C28—O2	176.80 (12)
C1—C6—C7—C8	3.90 (16)	C29—N3—C28—C27	178.09 (11)
C5—C6—C7—C8	-178.50 (11)	C7—N3—C28—C27	-3.45 (14)
C1—C6—C7—C22	130.32 (13)	C22—C27—C28—O2	-178.20 (13)
C5—C6—C7—C22	-52.08 (16)	C26—C27—C28—O2	3.1 (2)
N3—C7—C8—C13	118.10 (13)	C22—C27—C28—N3	2.06 (14)
C6—C7—C8—C13	-4.69 (16)	C26—C27—C28—N3	-176.62 (13)
C22—C7—C8—C13	-130.87 (12)	C28—N3—C29—C30	92.73 (15)
N3—C7—C8—C9	-62.64 (15)	C7—N3—C29—C30	-85.59 (15)
C6—C7—C8—C9	174.57 (11)	C31—N4—C30—C29	124.69 (14)
C22—C7—C8—C9	48.40 (16)	N3-C29-C30-N4	-166.68 (12)
C13—C8—C9—C10	0.04 (19)	C30—N4—C31—C32	-178.98 (12)
C7—C8—C9—C10	-179.27 (12)	N4-C31-C32-C33	-174.37 (14)
C8—C9—C10—C11	-0.4 (2)	N4—C31—C32—C37	5.3 (2)
C20—N2—C11—C12	169.20 (12)	C37—C32—C33—C34	-0.4 (2)
C18—N2—C11—C12	-3.0 (2)	C31—C32—C33—C34	179.27 (12)
C20-N2-C11-C10	-10.84 (19)	C32—C33—C34—C35	-0.5 (2)
C18—N2—C11—C10	177.01 (12)	C33—C34—C35—O3	179.54 (12)
C9—C10—C11—N2	-179.60 (12)	C33—C34—C35—C36	1.7 (2)
C9—C10—C11—C12	0.36 (19)	C38—O4—C36—C37	10.84 (19)
N2-C11-C12-C13	-179.99 (12)	C38—O4—C36—C35	-169.93 (12)
C10-C11-C12-C13	0.04 (19)	O3—C35—C36—O4	0.98 (18)
C1—O1—C13—C8	3.99 (18)	C34—C35—C36—O4	178.74 (12)
C1-01-C13-C12	-174.79 (11)	O3—C35—C36—C37	-179.74 (12)
C9—C8—C13—O1	-178.28 (12)	C34—C35—C36—C37	-2.0 (2)
C7—C8—C13—O1	1.02 (19)	O4—C36—C37—C32	-179.74 (12)
C9—C8—C13—C12	0.38 (19)	C35—C36—C37—C32	1.1 (2)
C7—C8—C13—C12	179.69 (12)	C33—C32—C37—C36	0.1 (2)
C11—C12—C13—O1	178.35 (11)	C31—C32—C37—C36	-179.54 (12)
C11—C12—C13—C8	-0.4 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
O3—H3…O5 ⁱ	0.84	1.96	2.7052 (15)	148
O5—H5 <i>A</i> …O2	0.84	1.93	2.7552 (14)	166

Symmetry code: (i) *x*+1/2, -*y*+3/2, *z*-1/2.