Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Poly[bis(1-carbamoylguanidinium) [tri- μ -chlorido-dichloridobismuthate(III)]]

Hel Ferjani, Habib Boughzala* and Ahmed Driss
Laboratoire de Cristallochimie et des Materiaux, Faculté des Sciences de Tunis, Tunisia
Correspondence e-mail: habib.boughzala@ipein.rnu.tn

Received 13 March 2012; accepted 10 April 2012

Key indicators: single-crystal X-ray study; $T=298 \mathrm{~K}$; mean $\sigma(\mathrm{O}-\mathrm{C})=0.009 \AA$; R factor $=0.029 ; w R$ factor $=0.080 ;$ data-to-parameter ratio $=19.2$.

The structure of the title organic-inorganic hybrid compound, $\left\{\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right)_{2}\left[\mathrm{BiCl}_{5}\right]\right\}_{n}$, consists of corrugated chains parallel to [100] of corner-joined $\left[\mathrm{BiCl}_{6}\right]$ octahedra, separated by layers of organic 1-carbamoylguanidinum cations. The crystal cohesion is achieved by $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds, which link the organic and inorganic parts of the structure.

Related literature

For bismuth(III) halide organic-inorganic hybrid compounds, see: Masmoudi et al. (2011); Fisher \& Norman (1994); Samet et al. (2010); Papavassiliou et al. (1995); Mousdis et al. (1998); Rhandour et al. (2011). For structures with similar guanidunium cations, see: Bremner \& Harrison (2002, 2003); Ritchie \& Harrison (2003).

Experimental

Crystal data
$\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right)_{2}\left[\mathrm{BiCl}_{5}\right]$
$V=1685.1(5) \AA^{3}$
$M_{r}=592.46$
Orthorhombic, Pnma
$Z=4$
Mo $K \alpha$ radiation
$a=7.3795$ (8) A
$\mu=11.27 \mathrm{~mm}^{-1}$
$b=20.706$ (4) A
$T=298 \mathrm{~K}$
$0.53 \times 0.25 \times 0.17 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4 diffractometer
Absorption correction: ψ scan (North et al., 1968)
$T_{\text {min }}=0.048, T_{\text {max }}=0.094$
2612 measured reflections

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.080$
$S=1.10$
1880 reflections

1880 independent reflections 1596 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
2 standard reflections every 120 min intensity decay: 5\%

Table 1
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{Cl1} 1^{\mathrm{i}}$	0.86	2.61	$3.271(8)$	135
$\mathrm{~N} 1-\mathrm{H} 1 B \cdots \mathrm{Cl} 2^{\mathrm{ii}}$	0.86	2.50	$3.329(7)$	162
$\mathrm{~N} 2-\mathrm{H} 2 \cdots \mathrm{Cl} 4^{\text {ii }}$	0.86	2.70	$3.524(7)$	160
$\mathrm{~N} 3-\mathrm{H} 3 A \cdots \mathrm{O}$	0.86	2.21	$3.053(8)$	167
$\mathrm{~N} 3-\mathrm{H} 3 B \cdots \mathrm{O}$	0.86	2.08	$2.734(8)$	132
$\mathrm{~N} 4-\mathrm{H} 4 A \cdots \mathrm{Cl} 1^{\mathrm{iv}}$	0.86	2.53	$3.347(7)$	160
$\mathrm{~N} 4-\mathrm{H} 4 B \cdots \mathrm{Cl} 4^{\mathrm{ii}}$	0.86	2.59	$3.421(7)$	162

Symmetry codes: (i) $x-\frac{1}{2}, y,-z+\frac{3}{2}$; (ii) $x-1, y, z$; (iii) $-x+\frac{1}{2},-y+1, z-\frac{1}{2}$; (iv)
$x-\frac{1}{2}, y,-z+\frac{1}{2}$.

Data collection: CAD-4 EXPRESS (Duisenberg, 1992); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2008); software used to prepare material for publication: publCIF (Westrip, 2010).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2453).

References

Brandenburg, K. (2008). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bremner, C. A. \& Harrison, W. T. A. (2002). Acta Cryst. E58, m254-m256.
Bremner, C. A. \& Harrison, W. T. A. (2003). Acta Cryst. E59, m596-m598.
Duisenberg, A. J. M. (1992). J. Appl. Cryst. 25, 92-96.
Fisher, G. A. \& Norman, N. C. (1994). Adv. Inorg. Chem. 41, 233-271.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Masmoudi, W., Kamoun, S. \& Ayedi, H. F. (2011). J. Chem. Crystallogr. 41, 693-696.
Mousdis, G. A., Papavassiliou, G. C., Terzis, A. \& Rapatopoulou, C. P. (1998). Z. Naturforsch. Teil B, 53, 927-931.

North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Papavassiliou, G. C., Koutselas, I. B., Terzis, A. \& Rapatopoulou, C. P. (1995). Z. Naturforsch. Teil B, 50, 1566-1969.

Rhandour, R., Quasri, A., Roussel, P. \& Mazzah, A. (2011). J. Mol. Struct. 990, 95-101.
Ritchie, L. K. \& Harrison, W. T. A. (2003). Acta Cryst. E59, o1296-o1298.
Samet, A., Boughzala, H., Khemakhem, H. \& Abid, Y. (2010). J. Mol. Struct. 984, 23-29.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2012). E68, m615 [doi:10.1107/S1600536812015668]

Poly[bis(1-carbamoylguanidinium) [tri- μ-chlorido-dichloridobismuthate(III)]]
 Hel Ferjani, Habib Boughzala and Ahmed Driss

S1. Comment

Recently there has been considerable interest in bismuth (III) halide organic-inorganic hybrid compounds due to their diverse electrical and optical proprieties, as well as their excellent film process ability (Masmoudi et al., 2011; Fisher \& Norman, 1994; Samet et al., 2010; Papavassiliou et al., 1995; Mousdis et al., 1998; Rhandour et al., 2011). In particular, the family of bismuth chlorine-based crystals are self-organized low-dimensional nanostructures to form one-,two- or three dimensional networks where BiCl_{6} octahedra can be joined by corners, edges or faces.
We report in this work the synthesis and the structural investigations of the organic-inorganic one-dimensional hybrid compound; Bis(1-carbamoylguanidinum)pentachlorobismuthate(III): $\left[\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right]_{2}\left[\mathrm{BiCl}_{5}\right]$. We note that this material was prepared by slow evaporation at room temperature of an aqueous solution containing Bismuth(III) chloride, cyanoguanidine and chlorhydric acid. The abscence of cyanoguanidine in the synthesis result is probably due to their protonation by the chlorhydric acid, giving the 1-carbamoylguanidine cation (protonated guanidineurea or guanylurea).

As shown in Figure 1, the inorganic backbone is stacked as zigzag chains of BiCl_{6} octahedra joined by corner sharing and running along the a axis. Organic cations $\left(\left[\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right]_{2}\right)^{2+}$ are located around the inorganic ribbons. Within the BiCl_{6} octahedra the bond lengths around Bi range from 2.546 (3) to 2.880 (3) \AA which indicate the dominant ionic character of the $\mathrm{Bi}-\mathrm{Cl}$ bonds in the inorganic framework. In spite of the notable deviation of the bond angles $\mathrm{Cl}-\mathrm{Bi}-\mathrm{Cl}$ from ideal values of 90° and 180°, the octahedral coordination of bismuth reveals the unstereochemical activity of $\operatorname{Bi}($ III $) 6 s^{2}$ lone pair electrons.
The 1-carbamoylguanidinium cations $\left(\left[\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right]_{2}\right)^{2+}$ are approximately parallel to each other (distanced by 3.574 (3) \AA), located around the inorganic chains and form stacks oriented along the a axis. These planar cations (r.m.s. deviation = 0.0178) have a typical geometrical parameters $\left[\mathrm{d}_{\mathrm{av}}(\mathrm{N}-\mathrm{C})=1.322 \AA\right]$ as shown in Fig 2, this situation was previously observed in homologous materials involving guanidunium $\left[\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right]$ cations (Bremner \& Harrison, 2002; Bremner \& Harrison, 2003; Ritchie \& Harrison, 2003). Strong N—H $\cdots \mathrm{Cl}$ hydrogen bonds link the organic part to the inorganic moiety assuming the crystal cohesion.

S2. Experimental

Bismuth chloride BiCl_{3} and Cyanoguanidine $\left(\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{~N}_{4}\right)$ (molar ratio 1:2) was dissolved in 20 ml of absolute ethanol with excess of HCl (to improve solubility). The mixture was stirred then kept at room temperature. Three months later, colorless single crystals were obtained and isolated from the reaction. A suitable single-crystal was selected for the structural determination. Supplementary data for this paper are available from the IUCR electronic archives (CCDC number: 866174).

S3. Refinement

The H atoms on carbon and on nitrogen were placed geometrically and treated as riding on their parent atoms with $\mathrm{C}-\mathrm{H}$ $=0.96 \AA, \mathrm{~N}-\mathrm{H}=0.86 \AA\left(\mathrm{NH}_{2}\right.$ and NH$)$ with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{N})$.

Figure 1
The layred structure of $\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right)_{2} \mathrm{BiCl}_{5}$ build up from organic layers, separated by the inorganic 1-D corner-sharing $\left(\mathrm{BiCl}_{5}\right)^{2-}$ octahedra and showing the $\mathrm{N}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonding (dashed lines).

Figure 2

View of the $\left[\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right]_{2}\left[\mathrm{BiCl}_{5}\right]$ with the atom-labelling scheme. Displacement ellipsoids are drawn at the 50% probability level. N-H..O bonds have been omitted for clarity. Symmetry codes: (i): x, $0.5-\mathrm{y}$, z; (ii): $-0.5+\mathrm{x}, 0.5-\mathrm{y}, 1.5-\mathrm{z}$; (iii): $0.5+\mathrm{x}$, $0.5-\mathrm{y}, 1.5-\mathrm{z}$;(iv): $0.5+\mathrm{x}, \mathrm{y}, 1.5-\mathrm{z}$; (v): $0.5+\mathrm{x}, 0.5-\mathrm{y}, 0.5-\mathrm{z}$; (vi):0.5+x, y, $0.5-\mathrm{z}$;(vii): x, y, $-1+\mathrm{z}$.

Poly[bis(1-carbamoylguanidinium) [tri- μ-chlorido-dichloridobismuthate(III)]]

Crystal data

$\left(\mathrm{C}_{2} \mathrm{H}_{7} \mathrm{~N}_{4} \mathrm{O}\right)_{2}\left[\mathrm{BiCl}_{5}\right]$
$M_{r}=592.46$
Orthorhombic, Pnma
Hall symbol: -P 2ac 2n
$a=7.3795$ (8) Å
$b=20.706$ (4) \AA
$c=11.028$ (2) \AA
$V=1685.1(5) \AA^{3}$
$Z=4$

Data collection

Enraf-Nonius CAD-4
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
Non-profiled $\omega / 2 \theta$ scans
Absorption correction: ψ scan
(North et al., 1968)
$T_{\min }=0.048, T_{\text {max }}=0.094$
2612 measured reflections

$$
\begin{aligned}
& F(000)=1112 \\
& D_{\mathrm{x}}=2.335 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 25 \text { reflections } \\
& \theta=11-15^{\circ} \\
& \mu=11.27 \mathrm{~mm}^{-1} \\
& T=298 \mathrm{~K} \\
& \text { Prism, colourless } \\
& 0.53 \times 0.25 \times 0.17 \mathrm{~mm}
\end{aligned}
$$

1880 independent reflections
1596 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.018$
$\theta_{\text {max }}=27.0^{\circ}, \theta_{\text {min }}=2.1^{\circ}$
$h=-1 \rightarrow 9$
$k=-2 \rightarrow 26$
$l=-1 \rightarrow 14$
2 standard reflections every 120 min intensity decay: 5\%

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.029$
$w R\left(F^{2}\right)=0.080$
$S=1.10$
1880 reflections
98 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
Secondary atom site location: difference Fourier map

```
Hydrogen site location: inferred from
    neighbouring sites
H -atom parameters not refined
\(w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0464 P)^{2}+4.6267 P\right]\)
    where \(P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3\)
\((\Delta / \sigma)_{\text {max }}=0.001\)
\(\Delta \rho_{\text {max }}=3.03\) e \(\AA^{-3}\)
\(\Delta \rho_{\text {min }}=-1.73\) e \(\AA^{-3}\)
Extinction correction: SHELXL97 (Sheldrick,
    2008), \(\mathrm{Fc}^{*}=\mathrm{kFc}\left[1+0.001 \mathrm{xFc}^{2} \lambda^{3} / \sin (2 \theta)\right]^{-1 / 4}\)
Extinction coefficient: 0.0022 (2)
```


Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^{2})

	x	y	z	$U_{\text {iso }}{ }^{*} / U_{\text {eq }}$
Bi	$0.62878(4)$	0.2500	$0.56736(2)$	$0.02190(13)$
C 11	$0.6373(2)$	$0.38017(8)$	$0.56635(13)$	$0.0404(4)$
C 2	$0.9594(3)$	0.2500	$0.7064(2)$	$0.0449(5)$
$\mathrm{Cl3}$	$0.3456(3)$	0.2500	$0.4355(2)$	$0.0405(5)$
C 4	$0.8594(3)$	0.2500	$0.3856(2)$	$0.0388(5)$
C 1	$0.1598(8)$	$0.4240(3)$	$0.5363(6)$	$0.0334(13)$
C 2	$0.1179(8)$	$0.4174(3)$	$0.3141(6)$	$0.0338(13)$
O	$0.2300(8)$	$0.4830(3)$	$0.5350(5)$	$0.0581(14)$
N 1	$0.1374(9)$	$0.3932(3)$	$0.6381(6)$	$0.0543(17)$
H 1 A	0.1681	0.4111	0.7054	0.065^{*}
H1B	0.0918	0.3550	0.6381	0.065^{*}
N2	$0.1010(8)$	$0.3947(3)$	$0.4317(4)$	$0.0376(13)$
H2	0.0473	0.3581	0.4402	0.045^{*}
N3	$0.1813(7)$	$0.4699(2)$	$0.2905(5)$	$0.0326(11)$
H3A	0.1882	0.4825	0.2163	0.039^{*}
H3B	0.2194	0.4946	0.3479	0.039^{*}
N4	$0.0551(9)$	$0.3755(3)$	$0.2320(5)$	$0.0490(15)$
H4A	0.0580	0.3851	0.1562	0.059^{*}
H4B	0.0118	0.3389	0.2550	0.059^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	$U^{\beta 3}$	U^{12}	U^{13}	U^{23}
Bi	$0.02407(18)$	$0.02518(17)$	$0.01645(17)$	0.000	$0.00075(11)$	0.000

C11	$0.0613(11)$	$0.0279(7)$	$0.0319(8)$	$-0.0047(7)$	$-0.0009(7)$	$0.0008(5)$
C12	$0.0457(13)$	$0.0501(12)$	$0.0388(12)$	0.000	$-0.0197(11)$	0.000
C13	$0.0327(11)$	$0.0473(13)$	$0.0416(13)$	0.000	$-0.0128(9)$	0.000
C14	$0.0432(12)$	$0.0433(11)$	$0.0300(11)$	0.000	$0.0137(9)$	0.000
C1	$0.034(3)$	$0.036(3)$	$0.030(3)$	$0.000(2)$	$0.004(3)$	$0.002(3)$
C2	$0.035(3)$	$0.035(3)$	$0.031(3)$	$0.002(2)$	$0.007(2)$	$-0.003(2)$
O	$0.065(4)$	$0.049(3)$	$0.060(3)$	$-0.005(3)$	$-0.003(3)$	$0.002(3)$
N1	$0.071(4)$	$0.058(4)$	$0.033(3)$	$-0.015(3)$	$-0.005(3)$	$0.010(3)$
N2	$0.052(3)$	$0.028(3)$	$0.033(3)$	$-0.008(2)$	$0.003(2)$	$0.0019(19)$
N3	$0.049(3)$	$0.027(2)$	$0.022(2)$	$-0.010(2)$	$0.003(2)$	$0.007(2)$
N 4	$0.071(4)$	$0.047(3)$	$0.029(3)$	$-0.017(3)$	$0.008(3)$	$-0.007(2)$

Geometric parameters ($A,{ }^{\circ}$)

$\mathrm{Bi}-\mathrm{Cl} 3$	2.546 (3)	C2-N3	1.213 (8)
$\mathrm{Bi}-\mathrm{Cl} 4$	2.630 (2)	C2-N4	1.337 (8)
$\mathrm{Bi}-\mathrm{Cl1}^{\text {i }}$	2.6961 (17)	$\mathrm{C} 2-\mathrm{N} 2$	1.384 (8)
$\mathrm{Bi}-\mathrm{Cl} 1$	2.6962 (17)	N1-H1A	0.8600
$\mathrm{Bi}-\mathrm{Cl2} 2^{\text {ii }}$	2.791 (2)	N1-H1B	0.8600
$\mathrm{Bi}-\mathrm{Cl} 2$	2.881 (3)	N2-H2	0.8600
$\mathrm{Cl} 2-\mathrm{Biii}$	2.791 (2)	N3-H3A	0.8600
$\mathrm{C} 1-\mathrm{N} 1$	1.302 (9)	N3-H3B	0.8600
C1-O	1.327 (8)	N4-H4A	0.8600
C1-N2	1.373 (8)	N4-H4B	0.8600
$\mathrm{Cl} 3-\mathrm{Bi}-\mathrm{Cl} 4$	95.50 (10)	$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	117.9 (6)
$\mathrm{Cl} 3-\mathrm{Bi}-\mathrm{Cl1}^{\text {i}}$	90.96 (4)	$\mathrm{O}-\mathrm{C} 1-\mathrm{N} 2$	121.4 (6)
$\mathrm{Cl} 4-\mathrm{Bi}-\mathrm{Cl1}^{\text {i}}$	88.95 (3)	N3-C2-N4	124.7 (6)
$\mathrm{Cl} 3-\mathrm{Bi}-\mathrm{Cl} 1$	90.96 (4)	N3-C2-N2	122.7 (6)
$\mathrm{Cl} 4-\mathrm{Bi}-\mathrm{Cl} 1$	88.95 (4)	N4-C2-N2	112.6 (5)
$\mathrm{Cl1}^{\text {i }}-\mathrm{Bi}-\mathrm{Cl} 1$	177.28 (8)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~A}$	120.0
$\mathrm{Cl} 3-\mathrm{Bi}-\mathrm{Cl}^{\text {ii }}$	98.22 (9)	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	120.0
$\mathrm{Cl} 4-\mathrm{Bi}-\mathrm{Cl2}{ }^{\text {ii }}$	166.28 (8)	$\mathrm{H} 1 \mathrm{~A}-\mathrm{N} 1-\mathrm{H} 1 \mathrm{~B}$	120.0
$\mathrm{Cl} 1^{\text {i }}-\mathrm{Bi}-\mathrm{Cl}^{2 i}$	90.81 (3)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 2$	127.5 (6)
$\mathrm{Cl} 1-\mathrm{Bi}-\mathrm{Cl}^{\text {ii }}$	90.81 (3)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 2$	116.3
$\mathrm{Cl} 3-\mathrm{Bi}-\mathrm{Cl} 2$	177.32 (7)	$\mathrm{C} 2-\mathrm{N} 2-\mathrm{H} 2$	116.3
$\mathrm{Cl} 4-\mathrm{Bi}-\mathrm{Cl} 2$	81.82 (10)	$\mathrm{C} 2-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~A}$	120.0
$\mathrm{Cl} 1{ }^{\mathrm{i}}-\mathrm{Bi}-\mathrm{Cl} 2$	88.99 (4)	$\mathrm{C} 2-\mathrm{N} 3-\mathrm{H} 3 \mathrm{~B}$	120.0
$\mathrm{Cl} 1-\mathrm{Bi}-\mathrm{Cl} 2$	88.99 (4)	H3A-N3-H3B	120.0
$\mathrm{Cl2}^{2 i}-\mathrm{Bi}-\mathrm{Cl} 2$	84.47 (6)	$\mathrm{C} 2-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~A}$	120.0
$\mathrm{Bi}^{\mathrm{iii}}-\mathrm{Cl2}-\mathrm{Bi}$	148.77 (10)	$\mathrm{C} 2-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B}$	120.0
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{O}$	120.6 (7)	H4A $-\mathrm{N} 4-\mathrm{H} 4 \mathrm{~B}$	120.0

Symmetry codes: (i) $x,-y+1 / 2, z$; (ii) $x-1 / 2, y,-z+3 / 2$; (iii) $x+1 / 2, y,-z+3 / 2$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1 — \mathrm{H} 1 A \cdots \mathrm{Cl1}{ }^{\mathrm{ii}}$	0.86	2.61	$3.271(8)$	135

supporting information

$\mathrm{N} 1 — \mathrm{H} 1 B \cdots \mathrm{Cl} 2^{\text {iv }}$	0.86	2.50	$3.329(7)$	162
$\mathrm{~N} 2 — \mathrm{H} 2 \cdots \mathrm{Cl} 4^{\text {iv }}$	0.86	2.70	$3.524(7)$	160
$\mathrm{~N} 3 — \mathrm{H} 3 A \cdots \mathrm{O}^{\mathrm{v}}$	0.86	2.21	$3.053(8)$	167
$\mathrm{~N} 3 — \mathrm{H} 3 B \cdots \mathrm{O}$	0.86	2.08	$2.734(8)$	132
$\mathrm{~N} 4 — \mathrm{H} 4 A \cdots \mathrm{Cl} 1^{\text {vi }}$	0.86	2.53	$3.347(7)$	160
$\mathrm{~N} 4 — \mathrm{H} 4 B \cdots \mathrm{Cl} 4^{\text {iv }}$	0.86	2.59	$3.421(7)$	162

Symmetry codes: (ii) $x-1 / 2, y,-z+3 / 2$; (iv) $x-1, y, z$; (v) $-x+1 / 2,-y+1, z-1 / 2$; (vi) $x-1 / 2, y,-z+1 / 2$.

