Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di-µ-bromido-bis{[N,N-dimethyl-N'-(thiophen-2-ylmethylidene)ethane-1,2diamine]copper(I)]}

Christopher Goh,^a Zachary D. Remillard,^a Andre P. Martinez,^a Amanda C. Keeley^b and Jerry P. Jasinski^b*

^aDepartment of Chemistry, Williams College, Williamstown, MA 01267, USA, and ^bDepartment of Chemistry, Keene State College, 229 Main Street, Keene, NH 03435-2001, USA

Correspondence e-mail: jjasinski@keene.edu

Received 3 April 2012; accepted 22 April 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.004 Å; disorder in main residue; *R* factor = 0.036; *wR* factor = 0.078; data-to-parameter ratio = 26.9.

In the crystal structure of the title compound, $[Cu_2Br_2-(C_9H_{14}N_2S)_2]$, the molecule resides about a crystallographic inversion center. The coordination sphere around each copper ion has a distorted tetrahedral geometry, with ligation by two bridging bromide ions, an amine N atom and an imine N atom. The thiophene ring is disordered over two sites, with occupancies of 0.719 (3) and 0.281 (3). Weak $C-H\cdots\pi$ interactions feature in the crystal packing.

Related literature

For catalysts for polymerizations and organic transformations, see: Perrier *et al.* (2002), Cristau *et al.* (2005). For model complexes of copper proteins, see: Lee *et al.* (2010). For metalmediated atom-transfer radical polymerizations, see: Matyjaszewski & Tsarevsky (2009). For related structures with a Cu_2Br_2 core, see Ball *et al.* (2001), Skelton *et al.* (1991), Churchill *et al.* (1984). For software for searching the Cambridge Structural Database, see: Bruno *et al.* (2002). For standard bond lengths, see Allen *et al.* (1987).

Experimental

Crystal data

 $\begin{bmatrix} Cu_2Br_2(C_9H_{14}N_2S)_2 \end{bmatrix}$ $M_r = 651.48$ Monoclinic, $P2_1/c$ a = 10.2029 (3) Å b = 15.4175 (3) Å c = 8.04875 (19) Å $\beta = 108.628$ (3)°

Data collection

Oxford Diffraction Xcalibur Eos Gemini diffractometer Absorption correction: multi-scan (*CrysAlis PRO*; Oxford Diffraction, 2010) $T_{min} = 0.406, T_{max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.078$ S = 1.053928 reflections 146 parameters $V = 1199.76 (5) Å^{3}$ Z = 2 Mo K\alpha radiation \mu = 5.29 mm⁻¹ T = 173 K 0.15 \times 0.07 \times 0.05 mm

13662 measured reflections 3928 independent reflections 3021 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.046$

 $\begin{array}{l} 10 \mbox{ restraints} \\ H\mbox{-atom parameters constrained} \\ \Delta \rho_{max} = 0.50 \mbox{ e } \mbox{A}^{-3} \\ \Delta \rho_{min} = -0.51 \mbox{ e } \mbox{A}^{-3} \end{array}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg1, Cg3 and Cg4 are the centroids of the Br1/Cu1/Br1A/Cu1A, S1A/C1A/C2A/C3A/C4A and S1B/C1B/C2B/C3B/C4B rings, respectively.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C2A - H2AA \cdots Cg3^{i}$	0.93	2.87	3.721 (8)	153
$C2A - H2AA \cdots Cg4^{i}$	0.93	2.70	3.573 (12)	157
$C2B - H2BA \cdots Cg1$	0.93	2.55	3.45 (2)	162
$C2B - H2BA \cdots Cg1^{ii}$	0.93	2.55	3.45 (2)	162

Symmetry codes: (i) $x, -y + \frac{1}{2}, z - \frac{3}{2}$; (ii) -x + 1, -y + 1, -z + 1.

Data collection: *CrysAlis PRO* (Oxford Diffraction, 2010); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis RED* (Oxford Diffraction, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

CG acknowledges financial support from the Research Corporation for Science Advancement through RCSA Award 10776 and from a Hellman Fellowship from Williams College. JPJ acknowledges the NSF–MRI program (grant No. CHE1039027) for funds to purchase the X-ray diffractometer.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2540).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Ball, R. J., Genge, A. R. J., Radford, A. L., Skelton, B. W., Tolhurst, V. A. & White, A. H. (2001). J. Chem. Soc. Dalton Trans. pp. 2807–2812.
- Bruno, I. J., Cole, J. C., Edgington, P. R., Kessler, M., Macrae, C. F., McCabe, P., Pearson, J. & Taylor, R. (2002). Acta Cryst. B58, 389–397.
- Churchill, M. R., Davies, G., Elsayed, M. A., Fournier, J. A., Hutchinson, J. P. & Zubieta, J. A. (1984). *Inorg. Chem.* 23, 783–787.

Cristau, H.-J., Ouali, A., Spindler, J.-F. & Taillefer, M. (2005). Chem. Eur. J. 11, 2483–2492.

Lee, Y., Lee, D.-H., Park, G. Y., Lucas, H. R., Narducci Sarjeant, A. A., Kieber-Emmons, M. T., Vance, M. A., Milligan, A. E., Solomon, E. I. & Karlin, K. D. (2010). *Inorg. Chem.* 49, 8873–8885.

Matyjaszewski, K. & Tsarevsky, N. V. (2009). Nat. Chem. 1, 276-288.

- Oxford Diffraction (2010). CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England.
- Perrier, S., Berthier, D., Willoughby, I., Batt-Coutrot, D. & Haddleton, D. M. (2002). *Macromolecules*, **35**, 2941–2948.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Skelton, B. W., Waters, A. F. & White, A. H. (1991). Aust. J. Chem. 44, 1207– 1215.

supporting information

Acta Cryst. (2012). E68, m691-m692 [doi:10.1107/S1600536812017989]

Di-µ-bromido-bis{[N,N-dimethyl-N'-(thiophen-2-ylmethylidene)ethane-1,2-diamine]copper(I)]}

Christopher Goh, Zachary D. Remillard, Andre P. Martinez, Amanda C. Keeley and Jerry P. Jasinski

S1. Comment

Copper complexes of ligands containing hetero-aromatic and amine donor moieties have found multiple applications in metal catalyzed processes. Examples include catalysts for polymerizations and organic transformations (Perrier *et al.*, 2002; Cristau *et al.*, 2005), and model complexes in the biomimetic study of copper proteins (Lee *et al.*, 2010). Our group has been interested in the use of neutral tridentate hetero-aromatic-amine ligands in metal-mediated atom transfer radical polymerizations (ATRP) (Matyjaszewski & Tsarevsky, 2009).

Here we report the synthesis and structure of a doubly bromide bridged dinuclear copper(I) complex with the ligand *N.N*-dimethyl-*N*'-(thiophen-2-ylmethylene)ethane-1,2-diamine, [{(C₄H₃S)CHNCH₂CH₂N(CH₃)₂}CuBr]₂ (Fig. 1). A crystallographic inversion center generates the complete molecule from the asymmetric unit. The coordination sphere around each copper ion is arranged in a distorted tetrahedral geometry, with ligation by two bridging bromide ions, an amine nitrogen and an imine nitrogen. The thiophene ring is disordered (occupancy 0.719:0.281). The distances for the metal-amine bond (2.008 (2) Å) and the metal-imine bond (2.240 (2) Å) are within expected ranges (Allen et al., 1987). As a result of the chelate ring formation the N(am)—Cu—N(im) angle of 85.27 (8)° is significantly smaller than the tetrahedral angle leading to appreciable distortion of the tetrahedral geometry and a large N(im)-Cu-Br angle of 132.01 (6)°. The N1/C7/C6/N2 torsion angle is 58.7 (3)°. The thiophene ring and imine group are near planar, with the sulfur oriented towards the copper atoms. However, Cu-S distances of 3.20 (6) Å make interactions unlikely. The Cu₂Br₂ bridging unit forms a planar rhomboid arrangement, with an inversion center in the center. Related structures with a Cu₂Br₂ core are published (Ball et al., 2001; Skelton et al., 1991; Churchill, et al., 1984). Cu1 possesses one short (2.4241 (4) Å) and one long (2.4805 (4) Å) Cu-Br bond, and a Cu-Cu distance of 2.980 (0) Å, outside the sum of the van der Waals radii of copper. The arrangement of the bromide bridging unit is asymmetrical: the Cu-Br-Cu bridging angle is $74.829 (13)^\circ$, close to the mean value of $74.(9)^\circ$ found in structural units of this kind in the Cambridge Structural Database (Bruno et al., 2002). Weak C—H···Cg π -ring intermolecular interactions contribute to molecular packing in the crystal (Table 1, Fig. 2).

S2. Experimental

The title compound was synthesized under a dinitrogen atmosphere by reacting a light green suspension of 233 mg of CuBr (1.6 mmol) in 8 mL of dry acetonitrile with 332 mg of the ligand *N*,*N*-dimethyl-*N*'-(thiophen-2-ylmethyl-ene)ethane-1,2-diamine (*L*, 4.8 mmol) added dropwise with a pipet. Addition of ligand resulted in an immediate color change of the solution to red-orange and dissolution of CuBr. The reaction mixture was allowed to stir overnight and filtered. The filtrate was layered with diethyl ether and stored at -25 °C for 4 days. After this time, the product was

isolated as orange crystals suitable for X-ray analysis. A second crop was obtained by further addition of diethyl ether and storage at -25°C for 4 days to yield a combined crop of 440 mg of crystalline product (84% yield).

S3. Refinement

All of the H atoms were placed in their calculated positions and then refined using the riding model with C—H lengths of 0.93 Å (CH), 0.97 Å (CH₂) or 0.96 Å (CH₃). The isotropic displacement parameters for these atoms were set from 1.19 to 1.22 (CH, CH₂), or 1.49 10 to 1.53 (CH₃) times U_{eq} of the parent atom.

Figure 1

Molecular structure of the title compound (I) showing the atom labeling scheme of the asymmetric unit and 30% probability displacement ellipsoids. A crystallographic inversion center generates the complete molecule. Only the major component (S1A/C1A/C2A/C3A/C4A) of the disordered thiophene ring (occupancy: 0.719) is displayed.

Figure 2

Packing diagram of the title compound viewed along the b axis. Only the major component (S1A/C1A/C2A/C3A/C4A) of the disordered thiophene ring (occupancy: 0.719) is displayed. The hydrogen atoms have been removed for clarity.

Di-µ-bromido-bis{[N,N-dimethyl-N'-(thiophen-2- ylmethylidene)ethane-1,2-diamine]copper(I)]}

Crystal data	
$[Cu_2Br_2(C_9H_{14}N_2S)_2]$	V = 1199.76 (5) Å ³
$M_r = 651.48$	Z = 2
Monoclinic, $P2_1/c$	F(000) = 648
Hall symbol: -P 2ybc	$D_{\rm x} = 1.803 {\rm ~Mg} {\rm ~m}^{-3}$
a = 10.2029 (3) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 15.4175 (3) Å	Cell parameters from 4548 reflections
c = 8.04875 (19) Å	$\theta = 3.1 - 32.2^{\circ}$
$\beta = 108.628 \ (3)^{\circ}$	$\mu = 5.29 \text{ mm}^{-1}$

T = 173 KRod, red

Data collection

Oxford Diffraction Xcalibur Eos Gemini
diffractometer
Radiation source: Enhance (Mo) X-ray Source
Graphite monochromator
Detector resolution: 16.1500 pixels mm ⁻¹
ω scans
Absorption correction: multi-scan
(CrysAlis PRO; Oxford Diffraction, 2010)
$T_{\min} = 0.406, T_{\max} = 1.000$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
	neighbournig sites
$R[F^2 > 2\sigma(F^2)] = 0.036$	H-atom parameters constrained
$wR(F^2) = 0.078$	$w = 1/[\sigma^2(F_o^2) + (0.0303P)^2]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
3928 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
146 parameters	$\Delta ho_{ m max} = 0.50 \ { m e} \ { m \AA}^{-3}$
10 restraints	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0021 (6)
map	

Special details

Experimental. ¹H-NMR (CD₃CN, 298 K): δ 8.57 (s, 1H, N=CH), 7.64 (m, 2H, thiophene H3, H5), 7.13 (t, J = 4.4 Hz, 1H, thiophene H4), 3.77 (t, J = 5.1 Hz, 2H, NCH₂), 2.28 (t, J = 5.5 Hz, 2H, NCH₂), 2.39 (s, 6H, NCH₃) p.p.m.. ¹³C-NMR (CD₃CN, 298 K): δ 158.11 (C=N), 141.40 (thiophene C2), 135.94 (thiophene C1 or C3), 132.90 (thiophene C1 or C3), 129.16 (thiophene C4), 61.17 (NCH₂), 59.33 (NCH₂), 47.69 (NCH₃) p.p.m.. FTIR (cm⁻¹): 3200 (w), 3073 (*m*), 2989 (*versus*), 2855 (*versus*), 2822 (*versus*), 2779 (*versus*), 1810 (w), 1611 (*versus*), 1452 (*versus*), 1430 (*versus*), 1262 (*s*), 1249 (*s*), 1046 (*s*), 1027 (*s*), 885 (*s*), 713 (*versus*). ESI-MS: m/z 427 ([(L)₂Cu]+), m/z 245 ([(L)Cu]+).

 $0.15 \times 0.07 \times 0.05 \text{ mm}$

 $R_{\rm int} = 0.046$

 $h = -15 \rightarrow 14$ $k = -17 \rightarrow 22$ $l = -11 \rightarrow 11$

13662 measured reflections 3928 independent reflections 3021 reflections with $I > 2\sigma(I)$

 $\theta_{\rm max} = 32.2^{\circ}, \ \theta_{\rm min} = 3.1^{\circ}$

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	х	v	Ζ	$U_{iso}*/U_{eq}$	Occ. (<1)
Br1	0.43830 (3)	0 598179 (15)	0.60809(3)	0.03225 (9)	
Cul	0.48455 (3)	0.550941 (19)	0.33751 (4)	0.03010 (10)	
N1	0.2808 (2)	0.54727 (13)	0.1227 (3)	0.0291 (4)	
N2	0.5330 (2)	0.64590 (12)	0.1965 (3)	0.0272 (4)	
S1A	0.8104 (2)	0.58936 (10)	0.4729 (3)	0.0405 (4)	0.719 (3)
C1A	0.7761 (7)	0.6723 (9)	0.3259 (10)	0.0267 (13)	0.719 (3)
C2A	0.8929 (7)	0.7219 (5)	0.3231 (9)	0.0410 (15)	0.719 (3)

H2AA	0.8950	0.7688	0.2511	0.049*	0.719 (3)
C3A	1.0107 (7)	0.6822 (3)	0.4607 (8)	0.0465 (13)	0.719 (3)
H3AA	1.0999	0.7042	0.4885	0.056*	0.719 (3)
C4A	0.9811 (5)	0.6116 (4)	0.5442 (7)	0.0396 (13)	0.719 (3)
H4AA	1.0466	0.5798	0.6295	0.048*	0.719 (3)
S1B	0.9238 (5)	0.7208 (4)	0.3547 (7)	0.0405 (4)	0.281 (3)
C1B	0.7753 (17)	0.670 (3)	0.357 (4)	0.0267 (13)	0.281 (3)
C2B	0.797 (2)	0.6021 (13)	0.484 (3)	0.0410 (15)	0.281 (3)
H2BA	0.7309	0.5676	0.5099	0.049*	0.281 (3)
C3B	0.9481 (16)	0.6001 (12)	0.563 (3)	0.0465 (13)	0.281 (3)
H3BA	0.9903	0.5596	0.6488	0.056*	0.281 (3)
C4B	1.0253 (17)	0.6584 (10)	0.5075 (19)	0.0396 (13)	0.281 (3)
H4BA	1.1212	0.6624	0.5501	0.048*	0.281 (3)
C5	0.6420 (3)	0.68954 (16)	0.2103 (3)	0.0308 (5)	
H5A	0.6323	0.7374	0.1370	0.037*	
C6	0.4062 (3)	0.67187 (17)	0.0565 (4)	0.0376 (6)	
H6A	0.4305	0.7003	-0.0372	0.045*	
H6B	0.3541	0.7126	0.1026	0.045*	
C7	0.3187 (3)	0.59292 (18)	-0.0144 (3)	0.0373 (6)	
H7A	0.2353	0.6106	-0.1061	0.045*	
H7B	0.3695	0.5538	-0.0659	0.045*	
C8	0.1727 (3)	0.59356 (19)	0.1696 (4)	0.0441 (7)	
H8A	0.0927	0.5997	0.0675	0.066*	
H8B	0.2060	0.6499	0.2143	0.066*	
H8C	0.1484	0.5615	0.2577	0.066*	
C9	0.2323 (3)	0.45972 (18)	0.0614 (4)	0.0440 (7)	
H9A	0.1555	0.4636	-0.0449	0.066*	
H9B	0.2036	0.4305	0.1494	0.066*	
H9C	0.3059	0.4278	0.0398	0.066*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.04731 (18)	0.02362 (13)	0.02861 (14)	0.00286 (10)	0.01606 (11)	0.00094 (9)
Cu1	0.03302 (19)	0.02855 (17)	0.02764 (16)	-0.00042 (12)	0.00816 (13)	0.00348 (11)
N1	0.0276 (11)	0.0331 (11)	0.0266 (10)	-0.0016 (9)	0.0086 (8)	-0.0014 (8)
N2	0.0286 (11)	0.0240 (10)	0.0284 (10)	0.0017 (8)	0.0085 (8)	0.0006 (8)
S1A	0.0361 (7)	0.0372 (7)	0.0417 (7)	-0.0028 (5)	0.0033 (5)	0.0064 (6)
C1A	0.0332 (14)	0.0278 (14)	0.024 (4)	-0.0043 (10)	0.0161 (16)	-0.005 (3)
C2A	0.030 (3)	0.054 (3)	0.034 (3)	0.001 (2)	0.004 (2)	0.001 (2)
C3A	0.033 (3)	0.048 (3)	0.064 (4)	-0.010 (2)	0.023 (3)	-0.021 (2)
C4A	0.022 (2)	0.045 (3)	0.044 (2)	0.002 (2)	-0.0012 (19)	-0.010 (2)
S1B	0.0361 (7)	0.0372 (7)	0.0417 (7)	-0.0028 (5)	0.0033 (5)	0.0064 (6)
C1B	0.0332 (14)	0.0278 (14)	0.024 (4)	-0.0043 (10)	0.0161 (16)	-0.005 (3)
C2B	0.030 (3)	0.054 (3)	0.034 (3)	0.001 (2)	0.004 (2)	0.001 (2)
C3B	0.033 (3)	0.048 (3)	0.064 (4)	-0.010 (2)	0.023 (3)	-0.021 (2)
C4B	0.022 (2)	0.045 (3)	0.044 (2)	0.002 (2)	-0.0012 (19)	-0.010 (2)
C5	0.0361 (15)	0.0243 (12)	0.0340 (13)	-0.0020 (10)	0.0140 (11)	0.0022 (9)

supporting information

C6	0.0387 (16)	0.0341 (14)	0.0357 (14)	-0.0003 (11)	0.0057 (11)	0.0111 (11)
C7	0.0346 (15)	0.0486 (16)	0.0265 (13)	-0.0048 (12)	0.0068 (11)	0.0045 (11)
C8	0.0316 (16)	0.0579 (18)	0.0443 (16)	0.0077 (13)	0.0140 (13)	0.0023 (13)
C9	0.0428 (17)	0.0437 (16)	0.0417 (16)	-0.0137 (13)	0.0084 (13)	-0.0083 (12)

Geometric parameters (Å, °)

Br1—Cu1 ⁱ	2.4241 (4)	S1B—C1B	1.71 (2)
Br1—Cu1	2.4805 (4)	C1B—C2B	1.43 (2)
Cu1—N2	2.008 (2)	C1B—C5	1.521 (18)
Cu1—N1	2.240 (2)	C2B—C3B	1.473 (19)
Cu1—Br1 ⁱ	2.4242 (4)	C2B—H2BA	0.9300
Cu1—Cu1 ⁱ	2.9803 (6)	C3B—C4B	1.360 (14)
N1—C8	1.460 (3)	СЗВ—НЗВА	0.9300
N1—C7	1.462 (3)	C4B—H4BA	0.9300
N1—C9	1.468 (3)	С5—Н5А	0.9300
N2—C5	1.274 (3)	C6—C7	1.509 (4)
N2—C6	1.474 (3)	C6—H6A	0.9700
S1A—C4A	1.685 (5)	C6—H6B	0.9700
S1A—C1A	1.701 (9)	C7—H7A	0.9700
C1A—C5	1.413 (7)	С7—Н7В	0.9700
C1A—C2A	1.422 (11)	C8—H8A	0.9600
C2A—C3A	1.482 (8)	C8—H8B	0.9600
C2A—H2AA	0.9300	C8—H8C	0.9600
C3A—C4A	1.364 (7)	С9—Н9А	0.9600
СЗА—НЗАА	0.9300	С9—Н9В	0.9600
C4A—H4AA	0.9300	С9—Н9С	0.9600
S1B—C4B	1.641 (11)		
Cul ⁱ —Br1—Cu1	74.829 (13)	C1B—C2B—H2BA	128.6
N2—Cu1—N1	85.27 (8)	C3B—C2B—H2BA	128.6
N2—Cu1—Br1 ⁱ	132.01 (6)	C4B—C3B—C2B	118.9 (18)
N1—Cu1—Br1 ⁱ	106.45 (5)	C4B—C3B—H3BA	120.5
N2—Cu1—Br1	115.60 (6)	C2B—C3B—H3BA	120.5
N1—Cu1—Br1	107.16 (6)	C3B—C4B—S1B	109.8 (15)
Brli—Cul—Brl	105.171 (13)	C3B—C4B—H4BA	125.1
N2—Cu1—Cu1 ⁱ	154.69 (6)	S1B—C4B—H4BA	125.1
N1—Cu1—Cu1 ⁱ	118.42 (5)	N2—C5—C1A	126.4 (5)
Br1 ⁱ —Cu1—Cu1 ⁱ	53.447 (11)	N2—C5—C1B	120.1 (10)
Br1—Cu1—Cu1 ⁱ	51.724 (11)	N2—C5—H5A	116.8
C8—N1—C7	111.3 (2)	C1A—C5—H5A	116.8
C8—N1—C9	109.6 (2)	C1B—C5—H5A	122.5
C7—N1—C9	109.3 (2)	N2—C6—C7	109.8 (2)
C8—N1—Cu1	112.30 (16)	N2—C6—H6A	109.7
C7—N1—Cu1	99.58 (15)	С7—С6—Н6А	109.7
C9—N1—Cu1	114.39 (16)	N2—C6—H6B	109.7
C5—N2—C6	116.8 (2)	C7—C6—H6B	109.7
C5—N2—Cu1	134.54 (17)	H6A—C6—H6B	108.2

C6—N2—Cu1	108.42 (15)	N1—C7—C6	111.7 (2)
C4A—S1A—C1A	92.6 (3)	N1—C7—H7A	109.3
C5—C1A—C2A	121.9 (7)	С6—С7—Н7А	109.3
C5—C1A—S1A	122.7 (6)	N1—C7—H7B	109.3
C2A—C1A—S1A	115.4 (5)	С6—С7—Н7В	109.3
C1A—C2A—C3A	104.4 (6)	H7A—C7—H7B	107.9
C1A—C2A—H2AA	127.8	N1—C8—H8A	109.5
СЗА—С2А—Н2АА	127.8	N1—C8—H8B	109.5
C4A—C3A—C2A	116.4 (6)	H8A—C8—H8B	109.5
С4А—С3А—НЗАА	121.8	N1—C8—H8C	109.5
С2А—С3А—НЗАА	121.8	H8A—C8—H8C	109.5
C3A—C4A—S1A	111.2 (5)	H8B—C8—H8C	109.5
СЗА—С4А—Н4АА	124.4	N1—C9—H9A	109.5
S1A—C4A—H4AA	124.4	N1—C9—H9B	109.5
C4B—S1B—C1B	94.1 (10)	H9A—C9—H9B	109.5
C2B—C1B—C5	126 (2)	N1—C9—H9C	109.5
C2B—C1B—S1B	114.3 (12)	H9A—C9—H9C	109.5
C5—C1B—S1B	118.4 (15)	H9B—C9—H9C	109.5
C1B—C2B—C3B	102.8 (15)		
Cu1 ⁱ —Br1—Cu1—N2	-154.00 (7)	C2A—C3A—C4A—S1A	-2.6 (7)
Cu1 ⁱ —Br1—Cu1—N1	113.00 (6)	C1A—S1A—C4A—C3A	1.5 (6)
Cu1 ⁱ —Br1—Cu1—Br1 ⁱ	0.0	C4B—S1B—C1B—C2B	2 (3)
N2—Cu1—N1—C8	-100.19 (18)	C4B—S1B—C1B—C5	-168 (2)
Br1 ⁱ —Cu1—N1—C8	127.30 (16)	C5—C1B—C2B—C3B	167 (3)
Br1—Cu1—N1—C8	15.16 (18)	S1B—C1B—C2B—C3B	-2 (3)
Cu1 ⁱ —Cu1—N1—C8	70.41 (18)	C1B—C2B—C3B—C4B	2 (3)
N2—Cu1—N1—C7	17.69 (15)	C2B—C3B—C4B—S1B	0 (2)
Br1 ⁱ —Cu1—N1—C7	-114.82 (14)	C1B—S1B—C4B—C3B	-0.8 (19)
Br1—Cu1—N1—C7	133.04 (14)	C6—N2—C5—C1A	-175.2 (7)
Cu1 ⁱ —Cu1—N1—C7	-171.71 (13)	Cu1—N2—C5—C1A	10.8 (7)
N2—Cu1—N1—C9	134.13 (18)	C6—N2—C5—C1B	176.8 (17)
Br1 ⁱ —Cu1—N1—C9	1.62 (18)	Cu1—N2—C5—C1B	2.8 (18)
Br1—Cu1—N1—C9	-110.51 (17)	C2A—C1A—C5—N2	175.9 (7)
Cu1 ⁱ —Cu1—N1—C9	-55.26 (19)	S1A—C1A—C5—N2	-2.0 (13)
N1—Cu1—N2—C5	-174.8 (2)	C2A—C1A—C5—C1B	-135 (14)
Br1 ⁱ —Cu1—N2—C5	-66.8 (3)	S1A-C1A-C5-C1B	47 (12)
Br1—Cu1—N2—C5	78.5 (2)	C2B—C1B—C5—N2	4 (4)
Cu1 ⁱ —Cu1—N2—C5	24.9 (3)	S1B-C1B-C5-N2	172.0 (16)
N1—Cu1—N2—C6	10.83 (16)	C2B-C1B-C5-C1A	-132 (16)
Br1 ⁱ —Cu1—N2—C6	118.76 (15)	S1B-C1B-C5-C1A	37 (11)
Br1—Cu1—N2—C6	-95.95 (16)	C5—N2—C6—C7	146.5 (2)
Cu1 ⁱ —Cu1—N2—C6	-149.55 (14)	Cu1—N2—C6—C7	-38.0 (3)
C4A—S1A—C1A—C5	177.9 (9)	C8—N1—C7—C6	75.1 (3)
C4A—S1A—C1A—C2A	-0.2 (9)	C9—N1—C7—C6	-163.7 (2)
C5—C1A—C2A—C3A	-179.2 (9)	Cu1—N1—C7—C6	-43.5 (2)

S1A—C1A—C2A—C3A	-1.1 (11)	N2—C6—C7—N1	58.7 (3)
C1A—C2A—C3A—C4A	2.3 (9)		

Symmetry code: (i) -x+1, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

Cg1, Cg3 and Cg4 are the centroids of the Br1/Cu1/Br1A/Cu1A, S1A/C1A/C2A/C3A/C4A and S1B/C1B/C2B/C3B/C4B rings, respectively.

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
C2A—H2AA···Cg3 ⁱⁱ	0.93	2.87	3.721 (8)	153
C2A—H2AA····Cg4 ⁱⁱ	0.93	2.70	3.573 (12)	157
C2 <i>B</i> —H2 <i>BA</i> ··· <i>Cg</i> 1	0.93	2.55	3.45 (2)	162
$C2B$ — $H2BA$ ··· $Cg1^{i}$	0.93	2.55	3.45 (2)	162

Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x, -y+1/2, z-3/2.