

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(1RS,2SR,5SR)-9-Benzyl-2-[(1RS)-1hydroxybenzyl]-9-azabicyclo[3.3.1]nonan-3-one from synchrotron data

Ryszard Lazny,^a* Karol Wolosewicz,^a Zbigniew Dauter^b and Krzysztof Brzezinski^{b,a}

^aInstitute of Chemistry, University of Bialystok, Hurtowa 1, 15-399 Bialystok, Poland, and ^bSynchrotron Radiation Research Section, MCL, National Cancer Institute, Argonne National Laboratory, Biosciences Division, Bldg 202, Argonne, IL 60439, LISA

Correspondence e-mail: lazny@uwb.edu.pl

Received 30 March 2012; accepted 4 April 2012

Key indicators: single-crystal synchrotron study; T = 100 K; mean $\sigma(C-C) = 0.001$ Å; R factor = 0.040; wR factor = 0.119; data-to-parameter ratio = 37.8.

In the crystal structure of the racemic title compound, C₂₂H₂₅NO₂, solved and refined against sychrotron diffraction data, the hydroxy group and the carbonyl O atom participate in the formation of $O-H \cdots O$ hydrogen bonds between pairs of enantiomers related by a crystallographic centre of symmetry.

Related literature

For recent background literature on the synthesis, structure and applications of related granatane-derived aldols, see: Lazny et al. (2011a) and references cited therein. For the stereoselective syntheses, applications and structures of related tropinone aldols, see: Sienkiewicz et al. (2009); Lazny et al. (2011b); Brzezinski et al. (2012) and for related nortropinone aldols, see: Lazny et al. (2001, 2010); Lazny & Nodzewska (2003).

Experimental

Crystal data

C ₂₂ H ₂₅ NO ₂	a = 14.380(3) Å
$M_r = 335.43$	b = 9.3100 (19)Å
Monoclinic, $P2_1/c$	c = 13.270 (3) Å

 $\lambda = 0.61992$ Å

 $\mu = 0.08 \text{ mm}^{-1}$

 $0.3 \times 0.1 \times 0.1 \text{ mm}$

64629 measured reflections

8582 independent reflections 7757 reflections with $I > 2\sigma(I)$

T = 100 K

 $R_{\rm int} = 0.046$

 $\beta = 106.21 \ (3)^{\circ}$ V = 1705.9 (6) Å³ Z = 4Synchrotron radiation

Data collection

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.040$	227 parameters
$wR(F^2) = 0.119$	H-atom parameters constrained
S = 1.03	$\Delta \rho_{\rm max} = 0.58 \ {\rm e} \ {\rm \AA}^{-3}$
8582 reflections	$\Delta \rho = -0.30 \text{ e} \text{ Å}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
O10-H10A···O3 ⁱ	0.84	2.11	2.9298 (9)	165

Symmetry code: (i) -x + 1, -v + 1, -z.

Data collection: NECAT APS beamline software; cell refinement: HKL-2000 (Otwinowski & Minor, 1997); data reduction: HKL-2000; program(s) used to solve structure: SHELXD (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and pyMOL (DeLano, 2002); software used to prepare material for publication: SHELXL97.

This work was supported in part by the University of Bialystok (BST-125), the National Science Center, Poland (grant No. N N204 546939), by the Intramural Research Program of NIH, National Cancer Institute, Center for Cancer Research, and with Federal funds from the National Cancer Institute, National Institutes of Health, under Contract HHSN261200800001E.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2402).

References

- Brzezinski, K., Lazny, R., Sienkiewicz, M., Wojtulewski, S. & Dauter, Z. (2012). Acta Cryst. E68, o149-o150.
- DeLano, W. L. (2002). pyMOL. DeLano Scientific, San Carlos, CA, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Lazny, R. & Nodzewska, A. (2003). Tetrahedron Lett. 44, 2441-2444.
- Lazny, R., Nodzewska, A. & Sienkiewicz, M. (2010). Lett. Org. Chem. 7, 21-26. Lazny, R., Nodzewska, A. & Tomczuk, I. (2011b). Tetrahedron Lett. 52, 5680-5683.
- Lazny, R., Sienkiewicz, M. & Bräse, S. (2001). Tetrahedron, 57, 5825-5832.
- Lazny, R., Wolosewicz, K., Zielinska, P., Urbanczyk-Lipkowska, Z. & Kalicki, P. (2011a). Tetrahedron, 67, 9433-9439.
- Otwinowski, Z., Borek, D., Majewski, W. & Minor, W. (2003). Acta Cryst. A59, 228-234.
- Otwinowski, Z. & Minor, W. (1997). Methods in Enzymology, Vol. 276, Macromolecular Crystallography, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307-326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Sienkiewicz, M., Wilkaniec, U. & Lazny, R. (2009). Tetrahedron Lett. 50, 7196-7198.

supporting information

Acta Cryst. (2012). E68, o1367 [doi:10.1107/S1600536812014754]

(1*RS*,2*SR*,5*SR*)-9-Benzyl-2-[(1*RS*)-1-hydroxybenzyl]-9-azabicyclo[3.3.1]nonan-3one from synchrotron data

Ryszard Lazny, Karol Wolosewicz, Zbigniew Dauter and Krzysztof Brzezinski

S1. Comment

Granatane (9-methyl-9-azabicyclo[3.3.1]nonane) and norgranatane (9-azabicyclo[3.3.1]nonane) are known scaffolds of several molecules tested *e.g.* as antagonists of human serotonin type-3 receptor (5-HT3*R*). So far, relatively few synthetic and natural granatane derivatives have been synthesized and studied as potential pharmaceutically useful agents. Related diastereomerically and enantimerically pure aldols of granatanone have been recently described (Lazny *et al.*, 2011*a*). Related aldols of tropinone have been used as key intermediates in several stereoselective syntheses of alkaloids *e.g.*, ferrugine (Sienkiewicz *et al.*, 2009 and references cited therein). The *N*-benzyl derivative is a potentially useful intermediate for synthesis of nor-aldols of granatanone, preparation of which is unknown. Effective, stereoselective syntheses of related nortropinone aldols (Lazny & Nodzewska, 2003; Lazny *et al.*, 2001) is still an unsolved problem. Therefore synthetically equivalent *N*-benzylnorgranatanone aldols should open a route to preparative accessibility of substituted norgranatanes for biomedical studies. The described *N*-benzyl derivative was prepared by a procedure analogous to methods known for *N*-methyl aldols. The synthetic procedure gave a racemic product.

The crystal structure of the title compound contains one molecule in the asymmetric unit (Fig. 1). Two intermolecular hydrogen bonds are formed between a pair of enantiomers in the crystal lattice. hydroxy group and carbonyl oxygen atom of the azabicyclo[3.3.1]nonan-3-one system participate in this interaction (Table 1, Fig. 2).

S2. Experimental

A solution of n-butyllithium in hexane (2.5*M*, 0.88 mL, 2.0 mmol) was added dropwise to a cooled (273 K) and stirred solution of diisopropylamine (0.3 ml, 2.2 mmol) in tetrahydrofuran (6 mL). The mixture was stirred for 30 min at 273 K, and cooled down to 195 K. Then a solution of *N*-benzylnorgranatanone (0.459 g, 2.0 mmol) in tetrahydrofuran (3 mL) was added dropwise. After stirring for 90 min, benzaldehyde (0.22 ml, 2.18 mmol) was added dropwise and the mixture was stirred for another 15 min. The reaction was quenched with saturated aq. NH₄Cl (2 mL), the mixture was diluted with water (10 mL), and extracted with dichloromethane (3 × 20 mL). The combined organic extracts were dried over Na₂SO₄ and concentrated to give the crude product as a white solid (0.663 g, 99%). Crystallization from a mixed solvent system heptane/dichloromethane gave the product (0.243 g, 75%) as white crystals. Analytical sample was recrystallized from ethyl acetate. [m.p. 412–413 K, *R_j*: 0.65 (50% ethyl acetate/hexanes); HR (MS-ESI): MNa+, found 358.1794, C₂₂H₂₅NNaO₂ requires 358.1783; 'H NMR (CDCl₃): 7.43–7.41 (m, 4H), 7.40–7.34 (m, 1H), 7.31–7.28 (m, 1H), 7.26–7.20 (m, 3H), 6.67 (s, 1H), 5.16 (d, *J*= 4.0 Hz, 1H), 4.04 (q, *J*= 12.8 Hz, 2H), 3.41 (d, *J*= 3.6 Hz, 1H), 3.68–3.64 (m, 1H), 2.92 (dd, *J_i*= 16.2 Hz, *J₂*=7.0 Hz, 1H), 2.57 (d, *J*= 4.0 Hz, 1H), 2.43 (d, *J*= 16.2 Hz, 1H), 2.19–2.13 (m, 2H), 1.65–1.62 (m, 2H), 1.37–1.32 (m, 2H)].

S3. Refinement

All hydrogen atoms were constrained to idealized positions with C—H distances fixed at 0.95–1.00 Å and O—H distances fixed at 0.84 Å and $U_{iso}(H) = 1.5 U_{eq}(C)$ for hydroxy hydrogen atom and $1.2 U_{eq}(C)$ for others.

Figure 1

The molecular structure of the title compound. Displacement ellipsoids are drawn at the 50% probability level.

Figure 2

Crystal packing viewed along *z*-axis. Dashed lines represent hydrogen bonds. For clarity, only hydrogen atoms involved in the intermolecular interactions are shown.

(1RS,2SR,5SR)-9-Benzyl-2-[(1RS)-1-hydroxybenzyl]- 9-azabicyclo[3.3.1]nonan-3-one

Crystal data	
C ₂₂ H ₂₅ NO ₂	F(000) = 720
$M_r = 335.43$	$D_{\rm x} = 1.306 {\rm ~Mg} {\rm ~m}^{-3}$
Monoclinic, $P2_1/c$	Synchrotron radiation, $\lambda = 0.61992$ Å
Hall symbol: -P 2ybc	Cell parameters from 8582 reflections
a = 14.380 (3) Å	$\theta = 2.4 - 31.7^{\circ}$
b = 9.3100 (19) Å	$\mu = 0.08 \mathrm{~mm^{-1}}$
c = 13.270 (3) Å	T = 100 K
$\beta = 106.21 \ (3)^{\circ}$	Needle, colourless
V = 1705.9 (6) Å ³	$0.3 \times 0.1 \times 0.1 \text{ mm}$
Z = 4	
Data collection	
Mar Research MAR315 CCD	64629 measured reflections
diffractometer	8582 independent reflections
Radiation source: NECAT 24ID-C synchrotron	7757 reflections with $I > 2\sigma(I)$
beamline APS, USA	$R_{\rm int}=0.046$
Si111 double crystal monochromator	$\theta_{\text{max}} = 31.7^{\circ}, \ \theta_{\text{min}} = 2.4^{\circ}$
ω scans	$h = -24 \rightarrow 23$
Absorption correction: multi-scan	$k = -15 \rightarrow 0$
(SCALEPACK; Otwinowski et al., 2003)	$l = 0 \rightarrow 22$
$T_{\min} = 0.975, \ T_{\max} = 0.992$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.040$	Hydrogen site location: inferred from
$wR(F^2) = 0.119$	neighbouring sites
S = 1.03 8582 reflections 227 parameters	H-atom parameters constrained $w = 1/[\sigma^{2}(F_{o}^{2}) + (0.076P)^{2} + 0.3P]$ where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
0 restraints	$(\Delta/\sigma)_{\text{max}} = 0.001$
Primary atom site location: structure-invariant	$\Delta\rho_{\text{max}} = 0.58 \text{ e } \text{Å}^{-3}$
direct methods	$\Delta\rho_{\text{min}} = -0.30 \text{ e } \text{Å}^{-3}$

Special details

Experimental. The crystal was mounted with vaseline on a pin-attached capillary. Upon mounting, the crystal was quenched to 100 K in a nitrogen-gas stream supplied by an Oxford Cryo-Jet. Diffraction data were measured at the station 24-ID—C of the APS synchrotron by rotation method.

Geometry. All e.s.d.'s are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry.

Refinement. Refinement of F^2 against all reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.30958 (3)	0.78442 (5)	0.11193 (4)	0.00793 (8)	
H1	0.2751	0.7328	0.1570	0.010*	
C2	0.36548 (3)	0.67096 (5)	0.06626 (4)	0.00840 (8)	
H2	0.4214	0.6355	0.1241	0.010*	
C3	0.40394 (4)	0.73073 (6)	-0.02043 (4)	0.01010 (8)	
O3	0.48222 (3)	0.69336 (5)	-0.03110 (4)	0.01510 (8)	
C4	0.33793 (4)	0.83261 (6)	-0.09524 (4)	0.01142 (9)	
H4A	0.2903	0.7762	-0.1489	0.014*	
H4B	0.3768	0.8897	-0.1317	0.014*	
C5	0.28317 (4)	0.93572 (6)	-0.04151 (4)	0.01032 (8)	
Н5	0.2313	0.9837	-0.0976	0.012*	
C6	0.34966 (4)	1.05349 (6)	0.02088 (4)	0.01288 (9)	
H6A	0.3832	1.1020	-0.0254	0.015*	
H6B	0.3099	1.1261	0.0443	0.015*	
C7	0.42514 (4)	0.99255 (6)	0.11677 (4)	0.01233 (9)	
H7A	0.4588	1.0726	0.1614	0.015*	
H7B	0.4740	0.9370	0.0933	0.015*	
C8	0.37747 (4)	0.89508 (6)	0.18111 (4)	0.01071 (8)	
H8A	0.3402	0.9548	0.2178	0.013*	
H8B	0.4284	0.8442	0.2350	0.013*	
N9	0.23546 (3)	0.85037 (5)	0.02376 (3)	0.00863 (7)	
C10	0.29832 (3)	0.54154 (6)	0.02123 (4)	0.00928 (8)	
H10	0.2345	0.5823	-0.0194	0.011*	

O10	0.33364 (3)	0.45861 (5)	-0.05034 (3)	0.01360 (8)
H10A	0.3898	0.4294	-0.0203	0.020*
C11	0.27972 (3)	0.45235 (5)	0.10896 (4)	0.00883 (8)
C12	0.18961 (4)	0.45726 (6)	0.12906 (4)	0.01206 (9)
H12	0.1403	0.5180	0.0881	0.014*
C13	0.17105 (4)	0.37413 (7)	0.20856 (5)	0.01465 (10)
H13	0.1093	0.3782	0.2213	0.018*
C14	0.24272 (4)	0.28511 (6)	0.26930 (4)	0.01428 (10)
H14	0.2298	0.2270	0.3227	0.017*
C15	0.33362 (4)	0.28183 (6)	0.25111 (4)	0.01342 (9)
H15	0.3833	0.2228	0.2933	0.016*
C16	0.35203 (4)	0.36467 (6)	0.17144 (4)	0.01158 (9)
H16	0.4141	0.3616	0.1595	0.014*
C17	0.16235 (4)	0.93738 (6)	0.05545 (4)	0.01253 (9)
H17A	0.1176	0.9806	-0.0079	0.015*
H17B	0.1954	1.0166	0.1014	0.015*
C18	0.10470 (4)	0.85031 (6)	0.11268 (4)	0.01131 (9)
C19	0.13134 (4)	0.84836 (6)	0.22226 (4)	0.01282 (9)
H19	0.1831	0.9076	0.2603	0.015*
C20	0.08325 (4)	0.76093 (7)	0.27672 (5)	0.01567 (10)
H20	0.1035	0.7585	0.3512	0.019*
C21	0.00550 (4)	0.67733 (7)	0.22170 (5)	0.01794 (11)
H21	-0.0269	0.6164	0.2584	0.022*
C22	-0.02467 (4)	0.68332 (8)	0.11257 (5)	0.01934 (11)
H22	-0.0794	0.6292	0.0749	0.023*
C23	0.02508 (4)	0.76839 (7)	0.05837 (5)	0.01621 (10)
H23	0.0047	0.7707	-0.0162	0.019*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.00930 (16)	0.00893 (19)	0.00596 (16)	0.00061 (13)	0.00280 (13)	-0.00010 (13)
C2	0.00893 (16)	0.00910 (19)	0.00783 (16)	-0.00015 (13)	0.00343 (13)	-0.00046 (13)
C3	0.01167 (18)	0.0101 (2)	0.01030 (18)	-0.00211 (14)	0.00599 (14)	-0.00254 (14)
O3	0.01403 (16)	0.01532 (19)	0.01972 (19)	0.00038 (13)	0.01092 (14)	-0.00186 (15)
C4	0.01423 (19)	0.0137 (2)	0.00782 (17)	-0.00160 (15)	0.00560 (15)	0.00005 (15)
C5	0.01295 (18)	0.0109 (2)	0.00784 (17)	-0.00003 (15)	0.00418 (14)	0.00183 (14)
C6	0.0171 (2)	0.0097 (2)	0.0129 (2)	-0.00171 (16)	0.00595 (16)	0.00079 (15)
C7	0.01364 (19)	0.0116 (2)	0.01232 (19)	-0.00284 (15)	0.00451 (15)	-0.00222 (16)
C8	0.01263 (18)	0.0115 (2)	0.00778 (17)	-0.00095 (15)	0.00251 (14)	-0.00161 (14)
N9	0.00942 (15)	0.01032 (18)	0.00683 (15)	0.00179 (12)	0.00338 (12)	0.00153 (12)
C10	0.01063 (17)	0.0100 (2)	0.00774 (17)	-0.00114 (14)	0.00340 (13)	-0.00120 (14)
O10	0.01844 (17)	0.01365 (18)	0.01040 (15)	-0.00106 (13)	0.00681 (13)	-0.00429 (13)
C11	0.00996 (17)	0.00859 (19)	0.00832 (17)	-0.00088 (13)	0.00316 (13)	-0.00087 (13)
C12	0.01043 (18)	0.0135 (2)	0.0130 (2)	-0.00065 (15)	0.00445 (15)	0.00118 (16)
C13	0.0149 (2)	0.0158 (2)	0.0156 (2)	-0.00242 (17)	0.00802 (17)	0.00100 (18)
C14	0.0206 (2)	0.0125 (2)	0.01139 (19)	-0.00221 (17)	0.00719 (17)	0.00027 (16)
C15	0.0181 (2)	0.0119 (2)	0.01043 (19)	0.00227 (16)	0.00425 (16)	0.00130 (16)

supporting information

C16	0.01218 (18)	0.0124 (2)	0.01057 (18)	0.00178 (15)	0.00386 (14)	0.00047 (15)
C17	0.01361 (19)	0.0129 (2)	0.0126 (2)	0.00440 (16)	0.00617 (15)	0.00246 (16)
C18	0.01020 (17)	0.0139 (2)	0.01086 (18)	0.00307 (15)	0.00472 (14)	0.00007 (15)
C19	0.01191 (18)	0.0166 (2)	0.01089 (19)	0.00131 (16)	0.00477 (15)	-0.00027 (16)
C20	0.0147 (2)	0.0212 (3)	0.0132 (2)	0.00182 (18)	0.00730 (17)	0.00159 (18)
C21	0.0158 (2)	0.0205 (3)	0.0214 (3)	-0.00107 (19)	0.01156 (19)	-0.0008(2)
C22	0.0138 (2)	0.0253 (3)	0.0208 (3)	-0.00457 (19)	0.00800 (19)	-0.0067 (2)
C23	0.01207 (19)	0.0241 (3)	0.0130 (2)	-0.00040 (18)	0.00449 (16)	-0.00376 (19)

Geometric parameters (Å, °)

C1—N9	1.4784 (8)	O10—H10A	0.8400
C1—C8	1.5353 (8)	C11—C12	1.3947 (8)
C1—C2	1.5496 (7)	C11—C16	1.3977 (8)
C1—H1	1.0000	C12—C13	1.3931 (8)
C2—C3	1.5147 (7)	C12—H12	0.9500
C2—C10	1.5554 (8)	C13—C14	1.3910 (9)
С2—Н2	1.0000	C13—H13	0.9500
C3—O3	1.2236 (7)	C14—C15	1.3942 (9)
C3—C4	1.5033 (8)	C14—H14	0.9500
C4—C5	1.5374 (8)	C15—C16	1.3924 (8)
C4—H4A	0.9900	C15—H15	0.9500
C4—H4B	0.9900	C16—H16	0.9500
C5—N9	1.4778 (7)	C17—C18	1.5075 (8)
C5—C6	1.5362 (8)	C17—H17A	0.9900
С5—Н5	1.0000	C17—H17B	0.9900
С6—С7	1.5324 (9)	C18—C23	1.3969 (9)
С6—Н6А	0.9900	C18—C19	1.3966 (8)
С6—Н6В	0.9900	C19—C20	1.3936 (8)
С7—С8	1.5326 (8)	C19—H19	0.9500
C7—H7A	0.9900	C20—C21	1.3903 (10)
С7—Н7В	0.9900	C20—H20	0.9500
C8—H8A	0.9900	C21—C22	1.3920 (10)
C8—H8B	0.9900	C21—H21	0.9500
N9—C17	1.4782 (7)	C22—C23	1.3941 (9)
C10—O10	1.4232 (7)	C22—H22	0.9500
C10—C11	1.5133 (7)	С23—Н23	0.9500
С10—Н10	1.0000		
N9—C1—C8	113.09 (5)	O10—C10—C2	112.19 (4)
N9—C1—C2	108.16 (4)	C11—C10—C2	110.71 (4)
C8—C1—C2	112.25 (4)	O10-C10-H10	106.9
N9—C1—H1	107.7	C11—C10—H10	106.9
C8—C1—H1	107.7	C2—C10—H10	106.9
C2—C1—H1	107.7	C10—O10—H10A	109.5
C3—C2—C1	112.69 (4)	C12—C11—C16	118.86 (5)
C3—C2—C10	108.18 (4)	C12—C11—C10	120.15 (5)
C1—C2—C10	110.12 (4)	C16—C11—C10	120.99 (4)

C3 C2 H2	108.6	C13 C12 C11	120 75 (5)
$C_{3} - C_{2} - H_{2}$	108.0	$C_{13} = C_{12} = C_{11}$	120.75 (5)
$C_1 = C_2 = H_2$	108.6	$C_{13} - C_{12} - H_{12}$	119.0
$C_{10} = C_{2} = C_{12}$	100.0	C14 - C12 - C12	119.0
03 - 03 - 04	122.33(3)	C14 - C13 - C12	120.14(3)
03 - 03 - 02	121.74 (5)	C12 C12 H12	119.9
C4 - C3 - C2	115.87 (4)	C12—C13—H13	119.9
$C_3 - C_4 - C_5$	113.48 (4)		119.45 (5)
C3—C4—H4A	108.9	C13—C14—H14	120.3
C5—C4—H4A	108.9	C15—C14—H14	120.3
C3—C4—H4B	108.9	C16—C15—C14	120.36 (5)
C5—C4—H4B	108.9	С16—С15—Н15	119.8
H4A—C4—H4B	107.7	C14—C15—H15	119.8
N9—C5—C6	112.88 (4)	C15—C16—C11	120.42 (5)
N9—C5—C4	108.53 (5)	C15—C16—H16	119.8
C6—C5—C4	111.92 (4)	C11—C16—H16	119.8
N9—C5—H5	107.8	N9—C17—C18	112.54 (5)
С6—С5—Н5	107.8	N9—C17—H17A	109.1
C4—C5—H5	107.8	C18—C17—H17A	109.1
C7—C6—C5	111.92 (5)	N9—C17—H17B	109.1
С7—С6—Н6А	109.2	C18—C17—H17B	109.1
С5—С6—Н6А	109.2	H17A—C17—H17B	107.8
С7—С6—Н6В	109.2	C23—C18—C19	118.50 (5)
С5—С6—Н6В	109.2	C23—C18—C17	121.36 (5)
H6A—C6—H6B	107.9	C19—C18—C17	120.13 (5)
C6—C7—C8	111.01 (4)	C20-C19-C18	121.06 (6)
С6—С7—Н7А	109.4	С20—С19—Н19	119.5
С8—С7—Н7А	109.4	C18—C19—H19	119.5
С6—С7—Н7В	109.4	C21—C20—C19	119.83 (6)
С8—С7—Н7В	109.4	C21—C20—H20	120.1
H7A—C7—H7B	108.0	С19—С20—Н20	120.1
C7—C8—C1	111.89 (4)	C22—C21—C20	119.68 (6)
С7—С8—Н8А	109.2	C22—C21—H21	120.2
C1—C8—H8A	109.2	C20—C21—H21	120.2
C7—C8—H8B	109.2	C21—C22—C23	120.25 (6)
C1—C8—H8B	109.2	C21—C22—H22	119.9
H8A—C8—H8B	107.9	C23—C22—H22	119.9
C5—N9—C1	109.70 (4)	C22—C23—C18	120.58 (6)
C5—N9—C17	110.82 (4)	C22—C23—H23	119.7
C1—N9—C17	114.54 (4)	C18—C23—H23	119.7
010-C10-C11	112.85 (5)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
O10—H10 <i>A</i> ···O3 ⁱ	0.84	2.11	2.9298 (9)	165

Symmetry code: (i) -x+1, -y+1, -z.