

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

(R)-N-(Biphenyl-4-yl)-tert-butanesulfinamide

Binbin Zhang,^a Yan Wang,^a Xiaofei Sun,^a Wenguo Wang^b and Qingle Zeng^a*

^aState Key Lab of Geohazard Prevention and Geoenvironment Protection and Institute of Green Catalysis and Synthesis. College of Materials and Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu 610059, People's Republic of China, and ^bFujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, People's Republic of China Correspondence e-mail: ginglezeng@hotmail.com

Received 30 March 2012; accepted 5 April 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.047; wR factor = 0.097; data-to-parameter ratio = 15.8.

In the title compound, C₁₆H₁₉NOS, the dihedral angle between the two aromatic rings is 38.98 (8)°. The crystal structure is stabilized by N-H···O hydrogen bonds, which link neighbouring molecules into chains running parallel to the *a* axis.

Related literature

For related structures, see: Sun et al. (2012); Jasinski et al. (2012); Gainsford et al. (2011).

Experimental

b = 11.9452 (5) Å

c = 13.3136 (7) Å

Crystal data C16H19NOS $M_r = 273.38$ Orthorhombic, P212121 a = 9.3588 (5) Å

 $V = 1488.36 (12) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.21 \text{ mm}^-$ T = 293 K0.43 \times 0.41 \times 0.40 mm 3983 measured reflections

 $R_{\rm int} = 0.019$

2766 independent reflections

2325 reflections with $I > 2\sigma(I)$

Data collection

Oxford Diffraction Xcalibur Eos diffractometer Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) $T_{\min} = 0.988, T_{\max} = 1.000$

Refinement

ŀ

ν

S

2

1 F

1

Absolute structure: assigned from
the known absolute structure of
the (R) -tert-butanesulfinamide
starting material; the Flack (1983)
parameter is consistent with this
assignment, 1017 Friedel pairs
Flack parameter: 0.03 (10)

Table 1		
Hydrogen-bond geometry	(Å.	°).

 $D - H \cdot \cdot \cdot A$ D-H $D - H \cdot \cdot \cdot A$ $H \cdot \cdot \cdot A$ $D \cdot \cdot \cdot A$ $N1 - H1 \cdots O1^i$ 2.35 0.86 3.144(3)154

Symmetry code: (i) $x + \frac{1}{2}, -y - \frac{1}{2}, -z - 1$.

Data collection: CrysAlis PRO (Oxford Diffraction, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008): program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: OLEX2 (Dolomanov et al., 2009); software used to prepare material for publication: OLEX2.

We thank the Sci-Tech Bureau of Sichuan (No. 2011HH0016), the Opening Fund of the State Key Laboratory of Geohazard Prevention and Geoenvironment Protection (No. SKLGP2012K005) and the Cultivating Programme for the Excellent Innovation Team of Chengdu University of Technology (No. HY0084) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2735).

References

- Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst. 42, 339-341.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Gainsford, G. J., Ashraf, M. & Kay, A. J. (2011). Acta Cryst. E67, 0893.
- Jasinski, J. P., Golen, J. A., Siddaraju, B. P., Narayana, B. & Yathirajan, H. S. (2012). Acta Cryst. E68, 0362-0363.
- Oxford Diffraction (2010). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Sun, X., Dai, C., Tu, X., Wang, W. & Zeng, Q. (2012). Acta Cryst. E68, 0773.

supporting information

Acta Cryst. (2012). E68, o1389 [doi:10.1107/S1600536812015127]

(R)-N-(Biphenyl-4-yl)-tert-butanesulfinamide

Binbin Zhang, Yan Wang, Xiaofei Sun, Wenguo Wang and Qingle Zeng

S1. Comment

Sulfinamides, especially chiral sulfinamides, are an important class of organic compounds in modern organic chemistry, and a great number of such compounds have been synthesized. In our continuous study on chiral *N*-aryl-*tert*-butane-sulfinamides (Sun *et al.*, 2012), we have prepared the title compound and report its crystal structure herein.

In the molecule of the title compound (Fig. 1) the aromatic rings of the biphenyl are tilted to form a dihedral angle of $38.98 (8)^\circ$, which is comparable to the value observed in other related compounds containing the biphenyl group (Jasinski *et al.*, 2012; Gainsford *et al.*, 2011). In the crystal packing (Fig. 2), the molecules are linked by intermolecular N—H···O hydrogen bonds (Table 1) into one-dimensional chains running parallel to the the *a* axis.

S2. Experimental

A oven-dried ground test tube, which was equipped with a magnetic stir bar and fitted with a rubber septum, was charged with (R)-tert-butanesulfinamide (0.121 g, 1.0 mmol), Pd2(dba)3 (0.018 g, 0.02 mmol; dba is dibenzylideneacetone), 2-ditert-butylphosphino-2',4',6'-triisopropylbiphenyl (0.0212 g, 0.05 mmol) and NaOH (0.08 g, 2 mmol). The vessel was evacuated and backfilled with argon three times, then 4-biphenyl bromide (1.3 mmol), toluene (10 ml) and degassed water (0.3 ml) were added via syringe. The solution was stirred at 90°C for 20 h. The reaction mixture was then cooled to room temperature, quenched by water, and extracted with chloroform (20 ml) for twice. The organic layers were combined, and dried over anhydrous sodium sulfate and filtrated. The filterate was condensed under vacuum. The residual was purified with silica gel column chromatography with a solution of petroleum ether and ethyl acetate (5:1 v/v)as eluent to give the title compound (R)-N-(4-biphenyl)-tert-butanesulfinamide. A test tube containing a petroleum ether and ethyl acetate (1:1 v/v) solution of the title compound was covered with a piece of filter paper and placed motionless at room temperature, and a single-crystal was cultured in the bottom of the test tube. Spectroscopic analysis: ¹H NMR (300 MHz, CDCl₃), δ (ppm): 7.49–7.29 (m, 7H), 7.06 (d, J = 8.5 Hz, 2H), 6.03 (d, J = 3.9 Hz, 1H), 1.37 (s, 9H). ¹³C NMR (300 MHz, CDCl₃), δ (ppm): 114.6, 140.4, 135.6, 128.6, 127.9, 126.8, 126.6, 118.4, 56.5, 22.4. FT—IR (KBr) (cm⁻¹): 3453, 3252, 2926, 1610, 1519, 1485, 1386, 1305, 1286, 1268, 1228, 1191, 1057, 912, 880, 838, 767. [α]D = -110.8 (c 0.15, ethyl acetate). ESI-MS (negative mode), m/z = 272 [M-H]-. Anal. Calcd for C₁₆H₁₉NOS: C, 70.29; H, 7.00; N, 5.12. Found: C, 70.43; H, 7.16; N 5.01.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with N—H = 0.86 Å, C—H = 0.93–0.96 Å, and with $U_{iso}(H) = 1.2 U_{eq}(C, N)$ or 1.5 $U_{eq}(C)$ for methyl H atoms.

Figure 1

Molecular structure of (I), with atom labels and 50% probability displacement ellipsoids for non-H atoms.

Figure 2

The one-dimensional structure of (I) in the crystal packing, showing intermolecular hydrogen bonding as dashed lines.

(R)-N-(Biphenyl-4-yl)-tert-butanesulfinamide

Crystal data C₁₆H₁₉NOS $D_{\rm x} = 1.220 {\rm Mg} {\rm m}^{-3}$ $M_r = 273.38$ Melting point: 427 K Orthorhombic, P2₁2₁2₁ Mo *K* α radiation, $\lambda = 0.7107$ Å Hall symbol: P 2ac 2ab Cell parameters from 1425 reflections $\theta = 3.1 - 28.9^{\circ}$ *a* = 9.3588 (5) Å *b* = 11.9452 (5) Å $\mu = 0.21 \text{ mm}^{-1}$ T = 293 K*c* = 13.3136 (7) Å $V = 1488.36 (12) \text{ Å}^3$ Block, colourless Z = 4 $0.43 \times 0.41 \times 0.40$ mm F(000) = 584Data collection Oxford Diffraction Xcalibur Eos Absorption correction: multi-scan (CrysAlis PRO; Oxford Diffraction, 2010) diffractometer $T_{\rm min} = 0.988, T_{\rm max} = 1.000$ Radiation source: Enhance (Mo) X-ray Source Graphite monochromator 3983 measured reflections Detector resolution: 16.0874 pixels mm⁻¹ 2766 independent reflections 2325 reflections with $I > 2\sigma(I)$ ω scans $R_{\rm int} = 0.019$

$\theta_{\max} = 26.4^\circ, \ \theta_{\min} = 3.1^\circ$	$k = -7 \rightarrow 14$
$h = -11 \rightarrow 5$	$l = -16 \rightarrow 16$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.047$	H-atom parameters constrained
$wR(F^2) = 0.097$	$w = 1/[\sigma^2(F_o^2) + (0.0358P)^2 + 0.0448P]$
S = 1.06	where $P = (F_o^2 + 2F_c^2)/3$
2766 reflections	$(\Delta/\sigma)_{max} < 0.001$
175 parameters	$\Delta\rho_{max} = 0.19$ e Å ⁻³
0 restraints	$\Delta\rho_{min} = -0.22$ e Å ⁻³
Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map	Absolute structure: assigned from the known absolute structure of the (<i>R</i>)-tert- butanesulfinamide starting material; the Flack (1983) parameter is consistent with this assignment, 1017 Friedel pairs Absolute structure parameter: 0.03 (10)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , the set of the

conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}*/U_{ m eq}$
S1	-0.15256 (8)	-0.31264 (5)	-0.40407 (5)	0.04256 (19)
01	-0.2124 (3)	-0.22979 (16)	-0.47627 (16)	0.0639 (7)
N1	-0.0065 (3)	-0.36901 (17)	-0.45167 (18)	0.0488 (7)
H1	0.0702	-0.3294	-0.4536	0.059*
C1	-0.0021 (3)	-0.4790 (2)	-0.48927 (19)	0.0355 (6)
C2	-0.1153 (3)	-0.5532 (2)	-0.4810 (2)	0.0415 (7)
H2	-0.1987	-0.5318	-0.4482	0.050*
C3	-0.1032 (3)	-0.6600 (2)	-0.5220(2)	0.0400 (7)
Н3	-0.1801	-0.7090	-0.5166	0.048*
C4	0.0197 (3)	-0.6959 (2)	-0.57082 (17)	0.0357 (6)
C5	0.1315 (3)	-0.6196 (2)	-0.5777 (2)	0.0395 (6)
Н5	0.2149	-0.6404	-0.6107	0.047*
C6	0.1217 (3)	-0.5131 (2)	-0.5366 (2)	0.0423 (7)
H6	0.1990	-0.4644	-0.5410	0.051*
C7	0.0310 (3)	-0.8089 (2)	-0.61585 (18)	0.0377 (6)
C8	-0.0253 (3)	-0.9024 (2)	-0.5693 (2)	0.0476 (8)
H8	-0.0694	-0.8944	-0.5071	0.057*
C9	-0.0181 (4)	-1.0075 (2)	-0.6126 (2)	0.0558 (8)
Н9	-0.0581	-1.0688	-0.5801	0.067*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C10	0.0480 (4)	-1.0208 (3)	-0.7031 (3)	0.0600 (9)
H10	0.0535	-1.0914	-0.7324	0.072*
C11	0.1060 (3)	-0.9301 (3)	-0.7507 (2)	0.0586 (9)
H11	0.1514	-0.9395	-0.8122	0.070*
C12	0.0980 (3)	-0.8240 (2)	-0.7081 (2)	0.0471 (7)
H12	0.1375	-0.7630	-0.7414	0.057*
C13	-0.0712 (3)	-0.2310 (2)	-0.3024 (2)	0.0461 (7)
C14	-0.1958 (4)	-0.1746 (3)	-0.2498 (2)	0.0769 (12)
H14A	-0.2385	-0.1207	-0.2941	0.115*
H14B	-0.1622	-0.1375	-0.1903	0.115*
H14C	-0.2656	-0.2299	-0.2316	0.115*
C15	-0.0002 (6)	-0.3136 (3)	-0.2314 (3)	0.0911 (14)
H15A	-0.0670	-0.3713	-0.2138	0.137*
H15B	0.0301	-0.2752	-0.1718	0.137*
H15C	0.0812	-0.3465	-0.2639	0.137*
C16	0.0316 (4)	-0.1448 (2)	-0.3427 (3)	0.0670 (10)
H16A	0.1088	-0.1818	-0.3767	0.100*
H16B	0.0690	-0.1013	-0.2880	0.100*
H16C	-0.0173	-0.0965	-0.3889	0.100*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0340 (4)	0.0355 (3)	0.0581 (4)	0.0019 (3)	-0.0013 (4)	-0.0073 (4)
01	0.0696 (17)	0.0521 (12)	0.0701 (14)	0.0165 (12)	-0.0276 (13)	-0.0088 (11)
N1	0.0381 (15)	0.0330 (11)	0.0754 (16)	-0.0062 (11)	0.0102 (13)	-0.0137 (11)
C1	0.0374 (16)	0.0289 (13)	0.0403 (14)	0.0022 (12)	-0.0009 (13)	-0.0009 (11)
C2	0.0343 (16)	0.0364 (14)	0.0538 (16)	0.0000 (13)	0.0130 (14)	-0.0031 (13)
C3	0.0377 (16)	0.0319 (14)	0.0505 (16)	-0.0043 (12)	0.0086 (14)	-0.0013 (12)
C4	0.0386 (15)	0.0326 (12)	0.0360 (13)	0.0026 (13)	-0.0008 (12)	0.0012 (12)
C5	0.0306 (15)	0.0389 (13)	0.0488 (16)	0.0043 (12)	0.0058 (14)	-0.0017 (13)
C6	0.0363 (17)	0.0353 (14)	0.0552 (17)	-0.0038 (13)	0.0004 (14)	-0.0009 (13)
C7	0.0333 (14)	0.0373 (13)	0.0423 (14)	0.0061 (13)	-0.0057 (12)	-0.0024 (13)
C8	0.0546 (19)	0.0393 (14)	0.0488 (17)	-0.0007 (15)	0.0038 (16)	-0.0023 (13)
C9	0.063 (2)	0.0360 (14)	0.068 (2)	-0.0014 (16)	-0.0094 (19)	-0.0060 (15)
C10	0.054 (2)	0.0503 (18)	0.075 (2)	0.0092 (17)	-0.021 (2)	-0.0296 (18)
C11	0.046 (2)	0.073 (2)	0.0567 (19)	0.0086 (19)	-0.0018 (16)	-0.0280 (18)
C12	0.0446 (18)	0.0491 (16)	0.0477 (16)	0.0017 (15)	-0.0003 (15)	-0.0044 (15)
C13	0.0484 (19)	0.0452 (15)	0.0447 (16)	0.0038 (14)	-0.0030 (15)	-0.0074 (14)
C14	0.075 (3)	0.085 (3)	0.070 (2)	0.006 (2)	0.014 (2)	-0.030(2)
C15	0.125 (4)	0.076 (2)	0.073 (2)	0.018 (3)	-0.036 (3)	-0.002(2)
C16	0.065 (2)	0.0593 (19)	0.077 (2)	-0.0194 (18)	0.001 (2)	-0.0224 (18)

Geometric parameters (Å, °)

<u>S1—01</u>	1.489 (2)	С9—Н9	0.9300
S1—N1	1.650 (2)	C9—C10	1.364 (4)
S1—C13	1.833 (3)	C10—H10	0.9300

N11 111	0.9700	C10 C11	1 2 (7 (1)
NI—HI	0.8600		1.367 (4)
N1—C1	1.407 (3)	С11—Н11	0.9300
C1—C2	1.385 (3)	C11—C12	1.391 (4)
C1—C6	1.381 (4)	С12—Н12	0.9300
C2—H2	0.9300	C13—C14	1.519 (4)
C2—C3	1.393 (3)	C13—C15	1.519 (4)
С3—Н3	0.9300	C13—C16	1.508 (4)
$C_3 - C_4$	1 389 (4)	C14—H14A	0.9600
C_{4}	1.309(1) 1 300(4)	C14 $H14B$	0.9600
C4 = C3	1.390(4)	C14 U14C	0.9000
	1.401 (3)		0.9000
C5—H5	0.9300	CI5—HI5A	0.9600
C5—C6	1.388 (3)	С15—Н15В	0.9600
С6—Н6	0.9300	C15—H15C	0.9600
C7—C8	1.381 (4)	C16—H16A	0.9600
C7—C12	1.390 (4)	C16—H16B	0.9600
С8—Н8	0.9300	C16—H16C	0.9600
C8—C9	1.383 (4)		
01 S1 N1	100 58 (13)	C9 C10 H10	120.1
01 - 51 - 012	109.36(13) 106.21(12)	C_{2} C_{10} C_{11}	120.1
01 - 51 - C13	100.21(12)	C_{1}	119.8 (5)
	99.00 (13)		120.1
SI—NI—HI	118.6	C10—C11—H11	119.6
C1—N1—S1	122.8 (2)	C10—C11—C12	120.8 (3)
C1—N1—H1	118.6	C12—C11—H11	119.6
C2-C1-N1	123.1 (3)	C7—C12—C11	120.2 (3)
C6-C1-N1	117.5 (2)	C7—C12—H12	119.9
C6—C1—C2	119.3 (2)	C11—C12—H12	119.9
C1—C2—H2	120.2	C14—C13—S1	105.0(2)
C1-C2-C3	119 5 (3)	C_{14} $-C_{13}$ $-C_{15}$	109.7(3)
C3_C2_H2	120.2	C_{15} C_{13} S_{1}	107.7(3)
$C_2 C_2 H_2$	118.0	C_{16} C_{13} S_{1}	107.2(2)
$C_2 = C_3 = C_2$	110.9	$C_{10} - C_{13} - S_{14}$	111.5(2)
C4 - C3 - C2	122.2 (3)		110.6 (3)
C4—C3—H3	118.9	016-013-015	112.6 (3)
C3—C4—C5	116.8 (2)	C13—C14—H14A	109.5
C3—C4—C7	122.0 (2)	C13—C14—H14B	109.5
C5—C4—C7	121.2 (2)	C13—C14—H14C	109.5
C4—C5—H5	119.1	H14A—C14—H14B	109.5
C6—C5—C4	121.7 (3)	H14A—C14—H14C	109.5
С6—С5—Н5	119.1	H14B—C14—H14C	109.5
C1—C6—C5	120.4 (3)	C13—C15—H15A	109.5
C1—C6—H6	119.8	C13—C15—H15B	109.5
C5—C6—H6	119.8	C13 - C15 - H15C	109.5
C_{8} C_{7} C_{4}	1210(2)	H15A C15 H15P	109.5
C° C^{7} C^{12}	121.7(2) 1176(2)		109.5
$\begin{array}{c} 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 \\ 12 $	117.0(2)		109.3
C12 - C7 - C4	120.5 (2)	HISB-CIS-HISC	109.5
C/C8H8	119.1	C13—C16—H16A	109.5
С7—С8—С9	121.9 (3)	C13—C16—H16B	109.5
С9—С8—Н8	119.1	C13—C16—H16C	109.5

supporting information

С8—С9—Н9	120.1	H16A—C16—H16B	109.5
С10—С9—С8	119.8 (3)	H16A—C16—H16C	109.5
С10—С9—Н9	120.1	H16B—C16—H16C	109.5

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H··· A
N1—H1···O1 ⁱ	0.86	2.35	3.144 (3)	154

Symmetry code: (i) x+1/2, -y-1/2, -z-1.