Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

1-[(3-Nitrophenyl)(piperidin-1-yl)methyl]piperidine

Zhe-Qin Wang^a* and Yi Ma^b

^aCenter of Computers and Networks, Jilin Radio Television University, Jilin, Jilin Province 132001, People's Republic of China, and ^bDepartment of Chemical Engineering, Shandong Polytechnic University, Jinan 250353, People's Republic of China

Correspondence e-mail: wangzheqin@sina.com

Received 3 April 2012; accepted 23 May 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.073; wR factor = 0.231; data-to-parameter ratio = 16.4.

In the crystal structure of the title compound, $C_{17}H_{25}N_3O_2$, one-dimensional chains are formed via intermolecular C- $H \cdots O$ hydrogen bonds along the *a* axis.

Related literature

For the activities and uses of piperidine and its derivatives, see: Kumar et al. (2010); Huang et al. (2008); Cardellicchio et al. (2010); Wang et al. (2010).

Experimental

Crystal data

C17H25N3O2 $M_r = 303.40$ Orthorhombic, Pbca a = 12.1993 (14) Å b = 8.2012 (9) Å c = 33.453 (4) Å

V = 3347.0 (7) Å³ Z = 8Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-1}$ T = 296 K $0.40 \times 0.20 \times 0.20$ mm 24143 measured reflections

 $R_{\rm int} = 0.032$

3272 independent reflections 2633 reflections with $I > 2\sigma(I)$

Data collection

Bruker SMART CCD area-detector	
diffractometer	
Absorption correction: multi-scan	
(SADABS; Sheldrick, 1996)	
$T_{\min} = 0.981, \ T_{\max} = 0.984$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.073$	199 parameters
$wR(F^2) = 0.231$	H-atom parameters constrained
S = 1.11	$\Delta \rho_{\rm max} = 0.60 \ {\rm e} \ {\rm \AA}^{-3}$
3272 reflections	$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C5-H5A\cdotsO1^{i}$	0.93	2.43	3.332 (5)	165
Symmetry code: (i) x	$+\frac{1}{2}, -y - \frac{1}{2}, -z$	+ 1.		

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

The authors acknowledge financial support from the Project of Shandong Province Higher Educational Science and Technology Program (grant No. J09LB03) and Shandong Distinguished Middle-aged and Young Scientist Encouragement and Reward Foundation (grant No. BS2011CL034).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: AA2057).

References

- Bruker (2001). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cardellicchio, C., Capozzi, M. A. M. & Naso, F. (2010). Tetrahedron Asymmetry, 21, 507-517.
- Huang, P. J. J., Youssef, D., Cameron, T. S. & Jha, A. (2008). Arkivoc, pp. 165-177
- Kumar, A., Gupta, M. K. & Kumar, M. (2010). Tetrahedron Lett. 51, 1582-1584
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Wang, Y. T., Tang, G. M., Li, T. D., Yu, J. C., Wei, Y. Q., Ling, J. B. & Long, X. F. (2010). Aust. J. Chem. 63, 336-342.

supporting information

Acta Cryst. (2012). E68, o1941 [doi:10.1107/S1600536812023525]

1-[(3-Nitrophenyl)(piperidin-1-yl)methyl]piperidine

Zhe-Qin Wang and Yi Ma

S1. Comment

Piperidine and its derivatives extensively applied to some areas of bio-chemistry and material chemistry, which exhibit good bioactivities (Cardellicchio *et al.* 2010; Huang *et al.* 2008; Kumar *et al.* 2010). On the other hand, they display non-linear optic second harmonic generation response and ferroelectric properties (Wang *et al.*, 2010).

A view of the title structure is shown in Fig. 1. In the crystal structure, one-dimensional chains are formed *via* intermolecular C—H \cdots O hydrogen bonds along the *a* axis (Table 1, Fig. 2).

S2. Experimental

1,1'-((3-nitrophenyl)methylene)dipiperidine (0.100 g) was dissolved in the mixed solvent containing ethanol (10 ml) and water (1 ml). The pale-yellow needle crystals suitable for X-ray diffraction were obtained after one week. Analysis found (%): C, 67.52; H, 8.33; N, 13.81%; calcd (%): C, 67.30; H, 8.31; N, 13.85%.

S3. Refinement

H atoms were calculated geometrically and refined as riding with C—H distances 0.93–0.97 Å and $U_{iso}(H) = 1.2 U_{eq}(C)$

Figure 1

A drawing of the title compound, with the atom numbering scheme. Displacement ellipsoids are drawn at the 30% probability level.

Figure 2

C—H…O interactions in the title compound.

1-[(3-Nitrophenyl)(piperidin-1-yl)methyl]piperidine

Crystal data

 $C_{17}H_{25}N_{3}O_{2}$ $M_{r} = 303.40$ Orthorhombic, *Pbca* Hall symbol: -P 2ac 2ab a = 12.1993 (14) Å b = 8.2012 (9) Å c = 33.453 (4) Å V = 3347.0 (7) Å³ Z = 8

Data collection

Bruker SMART CCD area-detector diffractometer	24143 measured reflections 3272 independent reflections
Radiation source: fine-focus sealed tube	2633 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.032$
φ and ω scans	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 2.1^{\circ}$
Absorption correction: multi-scan	$h = -15 \rightarrow 15$
(SADABS; Sheldrick, 1996)	$k = -9 \rightarrow 10$
$T_{\min} = 0.981, \ T_{\max} = 0.984$	$l = -41 \rightarrow 40$

Refinement

Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.1025P)^2 + 3.0609P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.60 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.32 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

F(000) = 1312

 $\theta = 2.5 - 27.3^{\circ}$

 $\mu = 0.08 \text{ mm}^{-1}$ T = 296 K

 $D_{\rm x} = 1.204 {\rm Mg} {\rm m}^{-3}$

Needle, pale-yellow $0.40 \times 0.20 \times 0.20$ mm

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 8288 reflections

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
0.4378 (2)	0.0644 (3)	0.59215 (7)	0.0407 (6)	
0.3469 (2)	0.0225 (3)	0.56963 (8)	0.0464 (7)	
0.2791	0.0697	0.5748	0.056*	
0.3587 (2)	-0.0929 (4)	0.53875 (8)	0.0500 (7)	
0.4570 (3)	-0.1650 (4)	0.53052 (9)	0.0555 (8)	
	x 0.4378 (2) 0.3469 (2) 0.2791 0.3587 (2) 0.4570 (3)	xy 0.4378 (2) 0.0644 (3) 0.3469 (2) 0.0225 (3) 0.2791 0.0697 0.3587 (2) -0.0929 (4) 0.4570 (3) -0.1650 (4)	xyz 0.4378 (2) 0.0644 (3) 0.59215 (7) 0.3469 (2) 0.0225 (3) 0.56963 (8) 0.2791 0.0697 0.5748 0.3587 (2) -0.0929 (4) 0.53875 (8) 0.4570 (3) -0.1650 (4) 0.53052 (9)	xyz $U_{iso}*/U_{eq}$ 0.4378 (2)0.0644 (3)0.59215 (7)0.0407 (6)0.3469 (2)0.0225 (3)0.56963 (8)0.0464 (7)0.27910.06970.57480.056*0.3587 (2)-0.0929 (4)0.53875 (8)0.0500 (7)0.4570 (3)-0.1650 (4)0.53052 (9)0.0555 (8)

H4A	0.4625	-0.2418	0.5101	0.067*
C5	0.5477 (3)	-0.1236 (4)	0.55250 (9)	0.0564 (8)
H5A	0.6150	-0.1721	0.5471	0.068*
C6	0.5383 (2)	-0.0096 (4)	0.58258 (8)	0.0493 (7)
H6A	0.6005	0.0193	0.5970	0.059*
C7	0.4282 (2)	0.1804 (3)	0.62769 (7)	0.0375 (6)
H7A	0.3635	0.2493	0.6235	0.045*
C8	0.5060 (2)	-0.0124 (4)	0.67719 (8)	0.0465 (7)
H8A	0.5742	0.0475	0.6749	0.056*
H8B	0.5092	-0.1051	0.6592	0.056*
С9	0.4918 (3)	-0.0723 (4)	0.72010 (9)	0.0549 (8)
H9A	0.5522	-0.1436	0.7271	0.066*
H9B	0.4926	0.0200	0.7382	0.066*
C10	0.3842 (3)	-0.1638 (4)	0.72440 (9)	0.0545 (7)
H10A	0.3730	-0.1934	0.7522	0.065*
H10B	0.3868	-0.2632	0.7087	0.065*
C11	0.2898 (3)	-0.0577 (4)	0.71015 (9)	0.0566 (8)
H11A	0.2225	-0.1205	0.7106	0.068*
H11B	0.2811	0.0341	0.7282	0.068*
C12	0.3100 (2)	0.0049 (4)	0.66804 (8)	0.0472 (7)
H12A	0.3115	-0.0863	0.6496	0.057*
H12B	0.2506	0.0767	0.6602	0.057*
C13	0.5397 (3)	0.3828 (4)	0.59340 (8)	0.0496 (7)
H13A	0.4815	0.4628	0.5911	0.060*
H13B	0.5365	0.3119	0.5702	0.060*
C14	0.6505 (3)	0.4692 (4)	0.59470 (9)	0.0549 (8)
H14A	0.7087	0.3886	0.5955	0.066*
H14B	0.6598	0.5337	0.5706	0.066*
C15	0.6591 (3)	0.5790 (4)	0.63100 (10)	0.0592 (8)
H15A	0.7333	0.6207	0.6332	0.071*
H15B	0.6099	0.6710	0.6280	0.071*
C16	0.6299 (3)	0.4858 (4)	0.66823 (9)	0.0581 (8)
H16A	0.6256	0.5609	0.6906	0.070*
H16B	0.6874	0.4076	0.6740	0.070*
C17	0.5214 (2)	0.3963 (4)	0.66416 (8)	0.0489 (7)
H17A	0.5070	0.3345	0.6883	0.059*
H17B	0.4626	0.4747	0.6607	0.059*
N1	0.2630 (3)	-0.1308 (4)	0.51498 (8)	0.0670 (8)
N2	0.41423 (16)	0.0934 (3)	0.66589 (6)	0.0372 (5)
N3	0.52421 (17)	0.2863 (3)	0.62994 (6)	0.0389 (5)
01	0.2761 (3)	-0.2159 (4)	0.48535 (9)	0.1021 (11)
O2	0.1737 (2)	-0.0787 (5)	0.52516 (9)	0.1015 (11)

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0456 (14)	0.0432 (14)	0.0334 (12)	-0.0001(11)	-0.0022(10)	-0.0005(10)
C2	0.0489 (15)	0.0501 (15)	0.0401 (14)	-0.0021(12)	-0.0025(11)	0.0029(12)

C3	0.0551 (16)	0.0565 (16)	0.0383 (14)	-0.0136 (14)	-0.0095 (12)	0.0089 (12)
C4	0.074 (2)	0.0512 (17)	0.0409 (15)	0.0023 (15)	0.0015 (14)	-0.0026 (13)
C5	0.0588 (18)	0.0623 (19)	0.0482 (16)	0.0130 (15)	0.0021 (13)	-0.0052 (14)
C6	0.0490 (15)	0.0576 (17)	0.0413 (14)	0.0055 (13)	0.0017 (12)	-0.0045 (12)
C7	0.0347 (12)	0.0407 (13)	0.0371 (13)	0.0028 (10)	0.0001 (9)	-0.0013 (10)
C8	0.0399 (14)	0.0556 (16)	0.0439 (15)	0.0035 (12)	-0.0019 (11)	0.0042 (12)
C9	0.0568 (17)	0.0593 (18)	0.0486 (16)	-0.0007 (14)	-0.0101 (13)	0.0069 (14)
C10	0.0681 (19)	0.0498 (16)	0.0455 (15)	-0.0089 (14)	-0.0024 (13)	0.0057 (12)
C11	0.0518 (16)	0.0615 (19)	0.0566 (17)	-0.0091 (14)	0.0087 (13)	0.0058 (15)
C12	0.0374 (14)	0.0520 (16)	0.0522 (16)	-0.0035 (12)	-0.0003 (11)	0.0023 (13)
C13	0.0599 (17)	0.0474 (15)	0.0415 (15)	0.0012 (13)	0.0030 (12)	0.0036 (12)
C14	0.0605 (18)	0.0465 (15)	0.0578 (18)	-0.0044 (14)	0.0179 (14)	0.0055 (13)
C15	0.0619 (18)	0.0430 (15)	0.073 (2)	-0.0094 (14)	0.0103 (15)	-0.0014 (14)
C16	0.0659 (19)	0.0538 (17)	0.0547 (17)	-0.0154 (15)	0.0014 (14)	-0.0110 (14)
C17	0.0556 (16)	0.0473 (15)	0.0436 (15)	-0.0056 (13)	0.0081 (12)	-0.0091 (12)
N1	0.0709 (19)	0.077 (2)	0.0527 (15)	-0.0188 (16)	-0.0139 (14)	0.0004 (14)
N2	0.0347 (11)	0.0395 (11)	0.0373 (11)	-0.0002 (9)	0.0013 (8)	-0.0005 (9)
N3	0.0419 (11)	0.0413 (12)	0.0335 (10)	-0.0029 (9)	0.0036 (8)	-0.0016 (8)
01	0.105 (2)	0.126 (3)	0.0762 (17)	-0.013 (2)	-0.0286 (16)	-0.0419 (19)
O2	0.0589 (16)	0.154 (3)	0.091 (2)	-0.0134 (18)	-0.0165 (14)	-0.022 (2)

Geometric parameters (Å, °)

C1—C2	1.384 (4)	C11—C12	1.519 (4)
C1—C6	1.405 (4)	C11—H11A	0.9700
C1—C7	1.527 (3)	C11—H11B	0.9700
С2—С3	1.408 (4)	C12—N2	1.466 (3)
C2—H2A	0.9300	C12—H12A	0.9700
C3—C4	1.366 (4)	C12—H12B	0.9700
C3—N1	1.447 (4)	C13—N3	1.469 (3)
C4—C5	1.371 (5)	C13—C14	1.527 (4)
C4—H4A	0.9300	C13—H13A	0.9700
C5—C6	1.378 (4)	C13—H13B	0.9700
C5—H5A	0.9300	C14—C15	1.515 (4)
С6—Н6А	0.9300	C14—H14A	0.9700
C7—N3	1.460 (3)	C14—H14B	0.9700
C7—N2	1.473 (3)	C15—C16	1.504 (4)
C7—H7A	0.9800	C15—H15A	0.9700
C8—N2	1.466 (3)	C15—H15B	0.9700
С8—С9	1.527 (4)	C16—C17	1.520 (4)
C8—H8A	0.9700	C16—H16A	0.9700
C8—H8B	0.9700	C16—H16B	0.9700
C9—C10	1.518 (4)	C17—N3	1.458 (3)
С9—Н9А	0.9700	C17—H17A	0.9700
С9—Н9В	0.9700	C17—H17B	0.9700
C10-C11	1.521 (4)	N1—O2	1.219 (4)
C10—H10A	0.9700	N1—O1	1.223 (4)
C10—H10B	0.9700		

C2C1C6	117.9 (2)	H11A—C11—H11B	108.0
C2—C1—C7	121.1 (2)	N2—C12—C11	110.7 (2)
C6—C1—C7	120.9 (2)	N2—C12—H12A	109.5
C1—C2—C3	119.0 (3)	C11—C12—H12A	109.5
C1—C2—H2A	120.5	N2—C12—H12B	109.5
C3—C2—H2A	120.5	C11—C12—H12B	109.5
C4—C3—C2	121.9 (3)	H12A—C12—H12B	108.1
C4—C3—N1	120.3 (3)	N3—C13—C14	109.9 (2)
C2—C3—N1	117.7 (3)	N3—C13—H13A	109.7
C3—C4—C5	119.5 (3)	C14—C13—H13A	109.7
C3—C4—H4A	120.2	N3—C13—H13B	109.7
C5—C4—H4A	120.2	C14—C13—H13B	109.7
C4—C5—C6	119.5 (3)	H13A—C13—H13B	108.2
C4—C5—H5A	120.2	C15—C14—C13	111.1 (2)
С6—С5—Н5А	120.2	C15—C14—H14A	109.4
C5—C6—C1	122.1 (3)	C13—C14—H14A	109.4
С5—С6—Н6А	118.9	C15—C14—H14B	109.4
С1—С6—Н6А	118.9	C13—C14—H14B	109.4
N3—C7—N2	109.63 (19)	H14A—C14—H14B	108.0
N3—C7—C1	110.41 (19)	C16—C15—C14	110.2 (2)
N2—C7—C1	112.5 (2)	C16—C15—H15A	109.6
N3—C7—H7A	108.1	C14—C15—H15A	109.6
N2—C7—H7A	108.1	C16—C15—H15B	109.6
C1—C7—H7A	108.1	C14—C15—H15B	109.6
N2—C8—C9	110.3 (2)	H15A—C15—H15B	108.1
N2—C8—H8A	109.6	C15—C16—C17	112.2 (3)
С9—С8—Н8А	109.6	C15—C16—H16A	109.2
N2—C8—H8B	109.6	C17—C16—H16A	109.2
C9—C8—H8B	109.6	C15—C16—H16B	109.2
H8A—C8—H8B	108.1	C17—C16—H16B	109.2
C10—C9—C8	110.3 (2)	H16A—C16—H16B	107.9
С10—С9—Н9А	109.6	N3—C17—C16	110.4 (2)
С8—С9—Н9А	109.6	N3—C17—H17A	109.6
С10—С9—Н9В	109.6	C16—C17—H17A	109.6
С8—С9—Н9В	109.6	N3—C17—H17B	109.6
Н9А—С9—Н9В	108.1	C16—C17—H17B	109.6
C9—C10—C11	110.0 (2)	H17A—C17—H17B	108.1
C9—C10—H10A	109.7	O2—N1—O1	123.0 (3)
C11—C10—H10A	109.7	O2—N1—C3	119.5 (3)
C9—C10—H10B	109.7	O1—N1—C3	117.5 (3)
C11—C10—H10B	109.7	C8—N2—C12	110.9 (2)
H10A—C10—H10B	108.2	C8—N2—C7	114.97 (19)
C12—C11—C10	111.2 (2)	C12—N2—C7	112.48 (19)
C12—C11—H11A	109.4	C17—N3—C7	112.92 (19)
C10-C11-H11A	109.4	C17—N3—C13	108.8 (2)
C12—C11—H11B	109.4	C7—N3—C13	112.4 (2)
C10-C11-H11B	109.4		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	D—H…A
C5—H5A····O1 ⁱ	0.93	2.43	3.332 (5)	165

Symmetry code: (i) x+1/2, -y-1/2, -z+1.