Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

6-Benzyloxy-2-phenylpyridazin-3(2H)one

Zhi-Yu Ju,^a Gong-Chun Li,^a Chao Li,^b Jie Wang^b and Feng-Ling Yang^a*

^aCollege of Chemistry and Chemical Engineering, Xuchang University, Xuchang, Henan Province 461000, People's Republic of China, and ^bCollege of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou, Henan Province 450001, People's Republic of China Correspondence e-mail: 374107445@qq.com

Received 11 April 2012; accepted 26 April 2012

Key indicators: single-crystal X-ray study; T = 113 K; mean σ (C–C) = 0.002 Å; R factor = 0.036; wR factor = 0.070; data-to-parameter ratio = 16.7.

In the title compound, $C_{17}H_{14}N_2O_2$, the central pyridazine ring forms dihedral angles of 47.29 (5) and 88.54 $(5)^{\circ}$ with the benzene rings, while the dihedral angle between the benzene rings is 62.68 (6)°. In the crystal, molecules are linked by two weak C-H···O hydrogen bonds and three weak C-H··· π interactions.

Related literature

For applications of pyridazinone analogues as highly selective anti-HIV agents, see: Loksha et al. (2007), as pesticides, see: Li et al. (2005) and as herbicides, see: Xu et al. (2006). For a related structure, see: Ju et al. (2011).

Experimental

Crystal data C17H14N2O2 $M_r = 278.30$

Triclinic, $P\overline{1}$	
a = 7.390 (4) Å	

b = 9.385 (5) Å	
c = 10.587 (6) Å	
$\alpha = 106.618 \ (7)^{\circ}$	
$\beta = 97.489 \ (6)^{\circ}$	
$\gamma = 101.098 \ (9)^{\circ}$	
V = 676.9 (6) Å ³	

Data collection

Rigaku Saturn CCD area-detector	7083 measured reflections
diffractometer	3167 independent reflections
Absorption correction: multi-scan	2103 reflections with $I > 2\sigma(I)$
(CrystalClear; Rigaku/MSC,	$R_{\rm int} = 0.037$
2005)	
$T_{\min} = 0.982, T_{\max} = 0.987$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.036$	190 parameters
$wR(F^2) = 0.070$	H-atom parameters constrained
S = 1.02	$\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$
3167 reflections	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Z = 2

Mo $K\alpha$ radiation

 $0.20 \times 0.18 \times 0.14~\mathrm{mm}$

 $\mu = 0.09 \text{ mm}^{-1}$

T = 113 K

Table 1

Hydrogen-bond geometry (Å, °).

Cg1 and Cg2 are the centroids of the C1-C6 and C12-C17 rings, respectively.

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C8 - H8 \cdot \cdot \cdot O1^{i}$	0.95	2.54	3.389 (2)	149
$C15-H15\cdots O1^{ii}$	0.95	2.44	3.235 (2)	141
$C4 - H4 \cdots Cg2^{iii}$	0.95	2.76	3.494 (2)	135
$C9 - H9 \cdots Cg2^{iv}$	0.95	2.95	3.752 (2)	143
$C13-H13\cdots Cg1^{v}$	0.95	2.63	3.456 (2)	145

Symmetry codes: (i) -x + 1, -y + 2, -z + 1; (ii) x + 1, y - 1, z; (iii) -x + 1, -y + 1, -z + 2; (iv) -x + 2, -y + 1, -z + 1; (v) x + 1, y, z.

Data collection: CrystalClear (Rigaku/MSC, 2005); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: CrystalStructure (Rigaku/MSC, 2005).

This work was supported by the National Natural Science Foundation of China (grant Nos. 20972143 and 20972130), the Natural Science Foundation of Henan Province Education Committee, China (No. 2010 A150021) and the Natural Science Foundation of Xuchang University (grant No. 2012064).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2457).

References

- Ju, Z.-Y., Jiang, W.-X. & Yang, F.-L. (2011). Acta Cryst. E67, o1042.
- Li, H. S., Ling, Y., Guo, Y. L., Yang, X. L. & Chen, F. H. (2005). Chin. J. Org. Chem. 25, 204-207.
- Loksha, Y. M., Pedersen, E. B., Colla, P. L. & Loddo, R. (2007). J. Heterocycl. Chem. 44, 1351-1356.
- Rigaku/MSC (2005). CrystalClear and CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Xu, H., Zou, X. M. & Yang, H. Z. (2006). Pest Manag. Sci. 62, 522-530.

supporting information

Acta Cryst. (2012). E68, o1646 [doi:10.1107/S1600536812018776]

6-Benzyloxy-2-phenylpyridazin-3(2H)-one

Zhi-Yu Ju, Gong-Chun Li, Chao Li, Jie Wang and Feng-Ling Yang

S1. Comment

Pyridazinones represent an important class of biologically active compounds. Recently, a substantial number of pyridazinones have been reported to possess highly-selective anti-HIV agents (Loksha *et al.*, 2007), pesticide(Li *et al.*, 2005), highly herbicidal activity (Xu *et al.*, 2006). In order to discover further biologically active Pyridazinone analogues, the title compound, (I), was synthesized, and its crystal structure determined (Fig. 1).

As a continuation of our studies on the crystal structures of Pyridazinone analogues (Ju *et al.*, 2011), we report here the synthesis and crystal structure, an ellipsoid plot of which is shown in Fig. 1. The central pyridazine ring forms dihedral angles of 47.29 (5)° and 88.54 (5)° with the two benzene rings, while the dihedral angle between the two benzene rings is 62.68 (6)°. The structure is stabilized by two weak C—H···O and three C—H···Cg intermolecular hydrogen bonds (Cg's: centroids of the benzene rings) (Table 1).

S2. Experimental

3-hydroxyl-1phenyl-6-pyridazone(0.94 g, 5 mmol), benzyl chloride(0.63 g, 5 mmol) and K₂CO₃ (0.69 g, 5 mmol) were added to absolute ethanol(30 ml). The mixture was stirred in the room temperature for 10 h. The suspension was filtered and the residue was washed with absolute ethanol. The title compound was recrystallized from the mother solution and single crystals of (I) were obtained by slow evaporation.

S3. Refinement

All H atoms were placed in calculated positions, with C—H = 0.95 Å and C—H = 0.99 Å, and included in the final cycles of refinement using a riding model, with $U_{iso}(H) = 1.2 \text{Ueq}(C)$.

Figure 1

The asymmetric unit of the title compound, (I), with displacement ellipsoids drawn at the 30% probability level.

6-Benzyloxy-2-phenylpyridazin-3(2H)-one

Crystal data

C₁₇H₁₄N₂O₂ $M_r = 278.30$ Triclinic, *P*1 Hall symbol: -P 1 a = 7.390 (4) Å b = 9.385 (5) Å c = 10.587 (6) Å a = 106.618 (7)° $\beta = 97.489$ (6)° $\gamma = 101.098$ (9)° V = 676.9 (6) Å³

Data collection

Rigaku Saturn CCD area-detector diffractometer Radiation source: rotating anode Multilayer monochromator Detector resolution: 14.63 pixels mm⁻¹ ω and φ scans Absorption correction: multi-scan (*CrystalClear*; Rigaku/MSC, 2005) $T_{\min} = 0.982, T_{\max} = 0.987$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.070$ S = 1.023167 reflections Z = 2 F(000) = 292 $D_x = 1.365 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2420 reflections $\theta = 2.0-27.9^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 113 K Prism, colorless $0.20 \times 0.18 \times 0.14 \text{ mm}$

7083 measured reflections 3167 independent reflections 2103 reflections with $I > 2\sigma(I)$ $R_{int} = 0.037$ $\theta_{max} = 27.9^{\circ}, \theta_{min} = 2.1^{\circ}$ $h = -9 \rightarrow 9$ $k = -12 \rightarrow 12$ $l = -13 \rightarrow 13$

190 parameters0 restraintsPrimary atom site location: structure-invariant direct methodsSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.014P)^2]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta ho_{ m max} = 0.29 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.21 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.42844 (11)	0.94745 (8)	0.63170 (7)	0.0233 (2)	
O2	0.77932 (11)	0.49972 (8)	0.63235 (8)	0.0216 (2)	
N1	0.48299 (13)	0.75278 (10)	0.71052 (9)	0.0164 (2)	
N2	0.57426 (13)	0.63946 (10)	0.71641 (9)	0.0175 (2)	
C1	0.36869 (16)	0.78488 (12)	0.81087 (11)	0.0167 (3)	
C2	0.18835 (17)	0.79994 (12)	0.77449 (12)	0.0201 (3)	
H2	0.1387	0.7879	0.6836	0.024*	
C3	0.08053 (17)	0.83289 (12)	0.87255 (12)	0.0220 (3)	
H3	-0.0429	0.8447	0.8488	0.026*	
C4	0.15216 (17)	0.84853 (12)	1.00468 (12)	0.0226 (3)	
H4	0.0780	0.8708	1.0713	0.027*	
C5	0.33193 (17)	0.83158 (12)	1.03932 (12)	0.0216 (3)	
H5	0.3805	0.8414	1.1298	0.026*	
C6	0.44193 (17)	0.80031 (12)	0.94267 (11)	0.0194 (3)	
H6	0.5658	0.7896	0.9667	0.023*	
C7	0.50525 (16)	0.84005 (12)	0.62487 (11)	0.0175 (3)	
C8	0.62325 (15)	0.79457 (12)	0.52976 (11)	0.0187 (3)	
H8	0.6404	0.8461	0.4653	0.022*	
C9	0.70914 (16)	0.68125 (12)	0.53036 (11)	0.0190 (3)	
H9	0.7855	0.6509	0.4669	0.023*	
C10	0.68183 (16)	0.60737 (12)	0.63011 (11)	0.0172 (3)	
C11	0.76814 (17)	0.43746 (13)	0.74356 (11)	0.0219 (3)	
H11A	0.6432	0.3673	0.7289	0.026*	
H11B	0.7866	0.5214	0.8293	0.026*	
C12	0.91981 (16)	0.35233 (12)	0.74890 (11)	0.0178 (3)	
C13	1.09241 (17)	0.42585 (13)	0.83407 (11)	0.0218 (3)	
H13	1.1142	0.5302	0.8874	0.026*	
C14	1.23333 (17)	0.34891 (13)	0.84226 (11)	0.0230 (3)	
H14	1.3512	0.4006	0.9008	0.028*	
C15	1.20271 (17)	0.19639 (13)	0.76516 (11)	0.0217 (3)	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

Ш15	1 2086	0 1428	0.7712	0.026*	
1115 C1(1.2300	0.1420 0.12208 (12)	0.7712	0.020°	
	1.03045 (17)	0.12308 (13)	0.67916(11)	0.0217(3)	
HI0	1.0090	0.0189	0.6255	0.026*	
C17	0.89004 (17)	0.19985 (12)	0.67083 (11)	0.0206 (3)	
H17	0.7727	0.1484	0.6116	0.025*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0327 (5)	0.0207 (5)	0.0235 (5)	0.0139 (4)	0.0090 (4)	0.0113 (4)
O2	0.0276 (5)	0.0237 (5)	0.0227 (5)	0.0151 (4)	0.0099 (4)	0.0134 (4)
N1	0.0187 (6)	0.0172 (5)	0.0177 (5)	0.0093 (4)	0.0052 (5)	0.0083 (4)
N2	0.0189 (6)	0.0168 (5)	0.0198 (5)	0.0085 (4)	0.0041 (5)	0.0074 (4)
C1	0.0200 (7)	0.0130 (6)	0.0188 (7)	0.0044 (5)	0.0066 (5)	0.0062 (5)
C2	0.0241 (7)	0.0176 (6)	0.0199 (7)	0.0065 (5)	0.0040 (6)	0.0075 (5)
C3	0.0196 (7)	0.0181 (6)	0.0314 (8)	0.0078 (5)	0.0071 (6)	0.0096 (5)
C4	0.0290 (8)	0.0176 (7)	0.0243 (7)	0.0080 (6)	0.0129 (6)	0.0067 (5)
C5	0.0271 (8)	0.0199 (7)	0.0169 (7)	0.0034 (6)	0.0043 (6)	0.0061 (5)
C6	0.0202 (7)	0.0180 (6)	0.0209 (7)	0.0050 (5)	0.0038 (6)	0.0077 (5)
C7	0.0201 (7)	0.0170 (6)	0.0158 (6)	0.0044 (5)	0.0016 (5)	0.0067 (5)
C8	0.0224 (7)	0.0195 (6)	0.0165 (6)	0.0056 (5)	0.0052 (6)	0.0081 (5)
C9	0.0201 (7)	0.0215 (7)	0.0163 (7)	0.0053 (5)	0.0056 (5)	0.0062 (5)
C10	0.0185 (7)	0.0164 (6)	0.0170 (6)	0.0067 (5)	0.0012 (5)	0.0051 (5)
C11	0.0255 (8)	0.0243 (7)	0.0223 (7)	0.0104 (6)	0.0078 (6)	0.0132 (5)
C12	0.0210 (7)	0.0199 (6)	0.0185 (7)	0.0098 (5)	0.0081 (6)	0.0102 (5)
C13	0.0270 (8)	0.0166 (6)	0.0238 (7)	0.0074 (6)	0.0066 (6)	0.0074 (5)
C14	0.0194 (7)	0.0240 (7)	0.0257 (7)	0.0058 (6)	0.0014 (6)	0.0090 (6)
C15	0.0249 (7)	0.0259 (7)	0.0229 (7)	0.0151 (6)	0.0095 (6)	0.0128 (6)
C16	0.0322 (8)	0.0167 (6)	0.0186 (7)	0.0101 (6)	0.0071 (6)	0.0056 (5)
C17	0.0219 (7)	0.0216 (7)	0.0187 (7)	0.0052 (5)	0.0020 (5)	0.0080 (5)

Geometric parameters (Å, °)

01—C7	1.2379 (14)	С8—С9	1.3405 (15)
O2—C10	1.3526 (14)	C8—H8	0.9500
O2—C11	1.4611 (14)	C9—C10	1.4343 (16)
N1—N2	1.3758 (13)	С9—Н9	0.9500
N1—C7	1.3899 (14)	C11—C12	1.5006 (16)
N1-C1	1.4429 (14)	C11—H11A	0.9900
N2-C10	1.2967 (14)	C11—H11B	0.9900
C1—C2	1.3836 (17)	C12—C13	1.3862 (16)
C1—C6	1.3850 (17)	C12—C17	1.3907 (16)
C2—C3	1.3911 (16)	C13—C14	1.3839 (16)
C2—H2	0.9500	C13—H13	0.9500
C3—C4	1.3851 (17)	C14—C15	1.3875 (17)
С3—Н3	0.9500	C14—H14	0.9500
C4—C5	1.3829 (17)	C15—C16	1.3875 (16)
C4—H4	0.9500	C15—H15	0.9500

C5—C6	1.3896 (16)	C16—C17	1.3799 (16)
С5—Н5	0.9500	C16—H16	0.9500
С6—Н6	0.9500	С17—Н17	0.9500
C7—C8	1.4432 (16)		
C10—O2—C11	115.71 (9)	С8—С9—Н9	121.1
N2—N1—C7	125.17 (10)	С10—С9—Н9	121.1
N2—N1—C1	113.91 (9)	N2—C10—O2	119.85 (10)
C7—N1—C1	120.75 (10)	N2—C10—C9	124.22 (12)
C10—N2—N1	116.73 (10)	O2—C10—C9	115.93 (11)
C2—C1—C6	120.99 (11)	O2—C11—C12	107.55 (9)
C2-C1-N1	119.79 (11)	O2—C11—H11A	110.2
C6-C1-N1	119.22 (11)	C12—C11—H11A	110.2
C1—C2—C3	119.21 (11)	O2—C11—H11B	110.2
C1—C2—H2	120.4	C12—C11—H11B	110.2
C3—C2—H2	120.4	H11A—C11—H11B	108.5
C4-C3-C2	120.34 (12)	C13—C12—C17	119.09 (12)
C4—C3—H3	119.8	C13 - C12 - C11	119.69 (11)
C2-C3-H3	119.8	C17 - C12 - C11	121 21 (11)
$C_{5} - C_{4} - C_{3}$	119.82 (11)	C14-C13-C12	120.21(11)
$C_5 - C_4 - H_4$	120.1	C14 - C13 - H13	119.6
$C_3 - C_4 - H_4$	120.1	C_{12} C_{13} H_{13}	119.6
C_{4} C_{5} C_{6}	120.1 120.45(12)	$C_{12} = C_{13} = 113$	119.0 120.09(12)
$C_{4} = C_{5} = C_{0}$	110.8	$C_{13} = C_{14} = C_{13}$	120.09 (12)
C4-C5-H5	119.8	$C_{15} = C_{14} = 1114$	120.0
$C_0 = C_5 = H_5$	117.0 110.10(12)	C14 - C15 - C16	120.0
C1 = C0 = C3	119.19 (12)	C14 - C15 - C16	119.22 (12)
	120.4	C14—C15—H15	120.4
C_{3} — C_{6} —H6	120.4	C16—C15—H15	120.4
OI = C7 = C2	121.34 (11)	C17 - C16 - C13	120.09 (12)
01 - 07 - 08	123.94 (10)	C17 - C16 - H16	119.7
N1 - C / - C8	114.53 (11)	C15—C16—H16	119.7
C9—C8—C7	121.43 (11)		120.20 (12)
С9—С8—Н8	119.3	С16—С17—Н17	119.9
С/—С8—Н8	119.3	С12—С17—Н17	119.9
C8—C9—C10	117.73 (11)		
	$2 \left(7 \left(15 \right) \right)$	N1 67 69 69	277(10)
C/N1N2C10	-3.67 (15)	NI-C/-C8-C9	-2.77 (16)
CI—NI—N2—CIO	-1/8.83(9)	C/C8C9C10	-0.74 (16)
N2—N1—C1—C2	-134.36 (10)	N1—N2—C10—O2	178.41 (9)
C/—NI—CI—C2	50.24 (14)	N1—N2—C10—C9	-0.47 (16)
N2—N1—C1—C6	45.70 (13)	C11—O2—C10—N2	-5.75 (15)
C7—N1—C1—C6	-129.70 (12)	C11—O2—C10—C9	173.22 (9)
C6—C1—C2—C3	0.78 (16)	C8—C9—C10—N2	2.57 (17)
N1—C1—C2—C3	-179.16 (9)	C8—C9—C10—O2	-176.35 (9)
C1—C2—C3—C4	-0.80 (16)	C10—O2—C11—C12	-166.04 (9)
C2—C3—C4—C5	0.13 (16)	O2—C11—C12—C13	94.70 (12)
C3—C4—C5—C6	0.58 (16)	O2—C11—C12—C17	-86.01 (13)
C2-C1-C6-C5	-0.09 (16)	C17—C12—C13—C14	-0.35 (17)

N1—C1—C6—C5	179.85 (9)	C11—C12—C13—C14	178.96 (10)
C4—C5—C6—C1	-0.60 (16)	C12—C13—C14—C15	-0.22 (18)
N2—N1—C7—O1	-174.84 (10)	C13—C14—C15—C16	0.68 (17)
C1—N1—C7—O1	0.01 (17)	C14—C15—C16—C17	-0.59 (17)
N2—N1—C7—C8	5.19 (16)	C15—C16—C17—C12	0.02 (17)
C1—N1—C7—C8	-179.96 (9)	C13—C12—C17—C16	0.44 (17)
C1—N1—C7—C8	-179.96 (9)	C13—C12—C17—C16	0.44 (17)
O1—C7—C8—C9	177.26 (11)	C11—C12—C17—C16	-178.85 (10)

Hydrogen-bond geometry (Å, °)

Cg1 and Cg2 are the centroids of the C1–C6 and C12–C17 rings, respectively.

D—H···A	<i>D</i> —Н	H…A	$D \cdots A$	D—H···A
C8—H8…O1 ⁱ	0.95	2.54	3.389 (2)	149
C15—H15…O1 ⁱⁱ	0.95	2.44	3.235 (2)	141
C4—H4··· $Cg2^{iii}$	0.95	2.76	3.494 (2)	135
C9—H9… <i>Cg</i> 2 ^{iv}	0.95	2.95	3.752 (2)	143
C13—H13··· $Cg1^{v}$	0.95	2.63	3.456 (2)	145

Symmetry codes: (i) -x+1, -y+2, -z+1; (ii) x+1, y-1, z; (iii) -x+1, -y+1, -z+2; (iv) -x+2, -y+1, -z+1; (v) x+1, y, z.