

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Bis(triethylammonium) tetrachloridocobaltate(II)

Reza Azadbakht,^a* Hassan Hadadzadeh^b and Hadi Amiri **Rudbari**^c

^aDepartment of Chemistry, Payame Noor University, Tehran, Iran, ^bDepartment of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran, and ^cDipartimento di Chimica Inorganica, Vill. S. Agata, Salita Sperone 31, Universita di

Messina 98166 Messina, Italy

Correspondence e-mail: r_azadbakht@yahoo.com

Received 12 May 2012; accepted 17 May 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.009 Å; R factor = 0.052; wR factor = 0.119; data-to-parameter ratio = 22.7.

The crystal structure of the title compound, $(C_6H_{16}N)_2[CoCl_4]$, is comprised of a tetrahedral [CoCl₄]²⁻ anion and two independent triethylammonium cations. The latter are featureless while the $[CoCl_4]^{2-}$ anion exhibits typical Co-Cl bond lengths [2.2428 (15)-2.2847 (16) Å] and a Cl-Co-Cl angular range of 107.58 (6)–112.73 (7)°. In the crystal, N-H···Cl hydrogen bonds between the two crystallographically independent cations and the $[CoCl_4]^{2-}$ anion generate discrete ion triplets. The two Co-Cl bonds involved in these interactions are slightly longer than the remaining two.

Related literature

For the crystal structure of a related complex, see: Clegg & Martin (2007).

Experimental

Crystal data

$(C_6H_{16}N)_2[CoCl_4]$	V = 4112 (3) Å ³
$M_r = 405.13$	Z = 8
Orthorhombic, Pbca	Mo $K\alpha$ radiation
a = 11.981 (5) Å	$\mu = 1.35 \text{ mm}^{-1}$
b = 13.226 (5) Å	T = 296 K
c = 25.946 (10) Å	$0.18 \times 0.14 \times 0.13~\text{mm}$

Data collection

Bruker APEXII CCD	42005 measured reflections
diffractometer	4090 independent reflections
Absorption correction: multi-scan	2078 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2007)	$R_{\rm int} = 0.117$
$T_{\min} = 0.661, \ T_{\max} = 0.745$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.052$	H atoms treated by a mixture of
$wR(F^2) = 0.119$	independent and constrained
S = 1.00	refinement
4090 reflections	$\Delta \rho_{\rm max} = 0.45 \text{ e } \text{\AA}^{-3}$
180 parameters	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$
1 restraint	

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1 - H1 \cdots Cl4$ $N2 - H2 \cdots Cl1$	0.84(4) 0.90(4)	2.39 (5) 2.34 (4)	3.216 (6) 3.214 (5)	170 (4) 163 (4)

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: XP in SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

We are grateful to Pavame Noor University (PNU) for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BG2461).

References

Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Clegg, W. & Martin, N. C. (2007). Acta Cryst. E63, m1151.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m859 [doi:10.1107/S1600536812022441]

Bis(triethylammonium) tetrachloridocobaltate(II)

Reza Azadbakht, Hassan Hadadzadeh and Hadi Amiri Rudbari

S1. Comment

The crystal structure of the title compound, Bis (triethylammonium) tetrachloridocobalt (II), is comprised of a $[CoCl_4]^{2-}$ anion and two independent triethylammonium cations. The crystal structure of triethylammonium is similar to that of its analogue salts, Clegg and Martin (2007). The $[CoCl_4]^{2-}$ anion possesses typical Co—Cl bonds (range: 2.2428 (15) to 2.2847 (16) Å), while the Cl—Co—Cl angles range from 107.58 (6) to 112.73 (7)°. An *ORTEP* diagram of the asymmetric unit is presented in Fig. 1. In the crystal structure intermolecular N—H—Cl hydrogen bonds are observed between each of the two crystallographically independent cations and the tetrahedral $[CoCl_4]^{2-}$ anion that generate discrete ion triplets (Table 1). The Co—Cl bonds involving the hydrogen-bonded Cl atoms are slightly longer than the remaining two. The hydrogen bonds between the organic cations and the $[CoCl_4]^{2-}$ anions contribute to the stability of crystal packing (Fig. 2).

S2. Experimental

The compound was obtained unexpectedly in an unsuccessful attempt to prepare a cobalt(II) macrocyclic Schiff-base complex. To 2,6-diformyl-4-chlorophenol (1 mmol) and CoCl₂.6H₂O (2 mmol) in 25ml of MeOH, a methanolic solution (25 ml) of 1,2-bis (2'-aminophenoxy)benzene (1 mmol) and NEt₃ (1 mmol) was added dropwise. The resulting solution was stirred under reflux for 3 h. The precipitate obtained by partial evaporation of the solution was allowed it to stand overnight in refrigerator and was collected by filtration. Suitable crystals for the X-ray crystal structure determination were grown by recrystallization by diffusion of diethylether in the solution of the complex in acetonitrile

S3. Refinement

N-bound H atoms were located in a difference map and refined isotropically. Other H atoms were positioned geometrically and refined with a riding model (including free rotation about C—C bonds), with $U_{iso}(H) = 1.2$ (1.5 for methyl groups) times $U_{eq}(C)$. Atoms C5 and C6 from one of the ethyl branches of the N1 cationic groups show large displacement factors, much larger than neighbouring atoms and (due to libration effects) giving rise to a short, non realistic C-C sp³...sp³ distance of 1.250 (9)Å.

Figure 1

The asymmetric unit with atom labels and 50% probability ellipsoids for non-H atoms. Hydrogen bonds are shown as dashed lines.

Figure 2

The packing, viewed along the c axis. Hydrogen bonds are shown as dashed lines, and H atoms not involved in hydrogen bonding have been omitted.

Bis(triethylammonium) tetrachloridocobaltate(II)

Crystal data	
$(C_6H_{16}N)_2[CoCl_4]$	c = 25.946 (10) Å
$M_r = 405.13$	V = 4112 (3) Å ³
Orthorhombic, Pbca	Z = 8
Hall symbol: -P 2ac 2ab	F(000) = 1704
a = 11.981 (5) Å	$D_{\rm x} = 1.309 {\rm ~Mg} {\rm ~m}^{-3}$
b = 13.226 (5) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3697 reflections $\theta = 2.3-19.2^{\circ}$ $\mu = 1.35 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD	42005 measured reflections
diffractometer	4090 independent reflections
Radiation source: fine-focus sealed tube	2078 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.117$
φ and ω scans	$\theta_{\rm max} = 26.1^{\circ}, \theta_{\rm min} = 1.6^{\circ}$
Absorption correction: multi-scan	$h = -14 \rightarrow 12$
(SADABS; Bruker, 2007)	$k = -16 \rightarrow 16$
$T_{\min} = 0.661, \ T_{\max} = 0.745$	$l = -32 \rightarrow 32$
Refinement	

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.052$	Hydrogen site location: inferred from
$wR(F^2) = 0.119$	neighbouring sites
S = 1.00	H atoms treated by a mixture of independent
4090 reflections	and constrained refinement
180 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0298P)^2 + 6.2054P]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.45 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.51 \text{ e } \text{\AA}^{-3}$

T = 296 K

Irregular, green

 $0.18 \times 0.14 \times 0.13$ mm

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Со	0.05270 (5)	0.21711 (5)	0.12639 (2)	0.0501 (2)	
Cl1	-0.02174 (14)	0.34750 (11)	0.08048 (6)	0.0963 (6)	
Cl2	-0.06848 (12)	0.08799 (10)	0.12358 (5)	0.0758 (4)	
Cl4	0.08198 (12)	0.25981 (12)	0.21063 (5)	0.0840 (5)	
C13	0.21929 (11)	0.17851 (12)	0.09060 (5)	0.0786 (4)	
N1	0.2550 (4)	0.4391 (4)	0.23571 (17)	0.0634 (12)	
N2	0.1187 (4)	0.3092 (3)	-0.02326 (17)	0.0593 (12)	
C2	0.3882 (5)	0.3716 (5)	0.1714 (2)	0.106 (2)	
H2A	0.4369	0.3915	0.1438	0.159*	
H2B	0.3332	0.3252	0.1585	0.159*	
H2C	0.4310	0.3393	0.1980	0.159*	
C1	0.3327 (6)	0.4609 (5)	0.1925 (2)	0.098 (2)	

H1A	0.2913	0.4938	0.1651	0.118*
H1B	0.3891	0.5080	0.2044	0.118*
C3	0.3132 (5)	0.4070 (6)	0.2830 (2)	0.106 (2)
H3A	0.3725	0.3609	0.2734	0.127*
H3B	0.3478	0.4660	0.2985	0.127*
C4	0.2438 (5)	0.3579 (5)	0.3221 (2)	0.099 (2)
H4A	0.2892	0.3396	0.3511	0.149*
H4B	0.2104	0.2982	0.3078	0.149*
H4C	0.1862	0.4036	0.3331	0.149*
C6	0.1254 (8)	0.5774 (8)	0.2169 (4)	0.207 (6)
H6A	0.0886	0.6314	0.2349	0.311*
H6B	0.0705	0.5342	0.2013	0.311*
H6C	0.1727	0.6051	0.1906	0.311*
C5	0.1830 (8)	0.5274 (7)	0.2479 (4)	0.188 (5)
H5A	0.1314	0.5041	0.2742	0.225*
H5B	0.2315	0.5760	0.2647	0.225*
C10	0.2315 (6)	0.4566 (4)	0.0047 (3)	0.121 (3)
H10A	0.3066	0.4816	0.0066	0.182*
H10B	0.2003	0.4532	0.0387	0.182*
H10C	0.1874	0.5013	-0.0161	0.182*
C9	0.2319 (5)	0.3537 (5)	-0.0188 (2)	0.0868 (18)
H9A	0.2651	0.3575	-0.0528	0.104*
H9B	0.2780	0.3093	0.0020	0.104*
C7	0.1263 (5)	0.2003 (4)	-0.0402 (2)	0.0769 (17)
H7A	0.1468	0.1980	-0.0764	0.092*
H7B	0.1847	0.1669	-0.0207	0.092*
C8	0.0190 (5)	0.1446 (4)	-0.0327 (2)	0.095 (2)
H8A	0.0279	0.0758	-0.0437	0.143*
H8B	-0.0386	0.1763	-0.0527	0.143*
H8C	-0.0011	0.1460	0.0031	0.143*
C12	0.0734 (7)	0.3786 (5)	-0.1106 (2)	0.137 (3)
H12A	0.0194	0.4182	-0.1291	0.206*
H12B	0.0776	0.3122	-0.1254	0.206*
H12C	0.1451	0.4107	-0.1128	0.206*
C11	0.0390 (5)	0.3705 (4)	-0.0550 (2)	0.0858 (18)
H11A	0.0336	0.4379	-0.0405	0.103*
H11B	-0.0344	0.3398	-0.0532	0.103*
H2	0.089 (3)	0.310 (3)	0.0084 (17)	0.052 (14)*
H1	0.212 (4)	0.394 (4)	0.2253 (18)	0.055 (17)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}	
Со	0.0547 (4)	0.0482 (4)	0.0476 (3)	-0.0002 (3)	0.0041 (3)	-0.0008 (3)	
Cl1	0.1149 (13)	0.0708 (10)	0.1032 (12)	0.0411 (9)	0.0525 (10)	0.0382 (9)	
Cl2	0.0832 (10)	0.0699 (9)	0.0741 (9)	-0.0231 (8)	-0.0188 (8)	0.0107 (7)	
Cl4	0.0758 (9)	0.1138 (12)	0.0623 (8)	-0.0229 (9)	0.0088 (7)	-0.0328 (8)	
Cl3	0.0671 (9)	0.0994 (11)	0.0693 (9)	0.0168 (8)	0.0126 (7)	-0.0066 (8)	

supporting information

N1	0.064 (3)	0.067 (3)	0.059 (3)	0.001 (3)	0.015 (3)	0.003 (2)
N2	0.067 (3)	0.057 (3)	0.053 (3)	0.008 (2)	0.020 (2)	0.005 (2)
C2	0.116 (5)	0.098 (5)	0.104 (5)	-0.016 (4)	0.050 (4)	-0.020 (4)
C1	0.116 (5)	0.089 (5)	0.091 (4)	-0.009(4)	0.053 (4)	0.002 (4)
C3	0.079 (4)	0.166 (7)	0.072 (4)	-0.027 (5)	-0.013 (4)	-0.005 (4)
C4	0.088 (4)	0.143 (6)	0.066 (4)	-0.001 (4)	-0.009 (4)	0.022 (4)
C6	0.188 (10)	0.214 (11)	0.220 (11)	0.125 (9)	0.093 (8)	0.125 (9)
C5	0.222 (11)	0.164 (8)	0.178 (9)	0.113 (8)	0.118 (8)	0.064 (7)
C10	0.103 (5)	0.063 (4)	0.199 (8)	-0.020 (4)	0.031 (5)	-0.003 (5)
C9	0.067 (4)	0.084 (5)	0.109 (5)	0.001 (3)	0.027 (4)	0.026 (4)
C7	0.099 (5)	0.067 (4)	0.065 (3)	0.029 (3)	0.012 (3)	0.001 (3)
C8	0.118 (5)	0.077 (4)	0.091 (4)	-0.010 (4)	-0.013 (4)	-0.013 (4)
C12	0.220 (9)	0.112 (6)	0.080 (5)	0.032 (6)	-0.019 (5)	0.036 (4)
C11	0.088 (4)	0.062 (4)	0.107 (5)	0.023 (3)	0.003 (4)	0.017 (3)

Geometric parameters (Å, °)

Co-Cl2	2.2428 (15)	C6—C5	1.250 (9)
Co-Cl3	2.2597 (16)	С6—Н6А	0.9600
Co-Cl1	2.2778 (16)	С6—Н6В	0.9600
Co-Cl4	2.2847 (16)	С6—Н6С	0.9600
N1—C3	1.474 (7)	C5—H5A	0.9700
N1—C1	1.486 (6)	С5—Н5В	0.9700
N1—C5	1.486 (8)	C10—C9	1.492 (8)
N1—H1	0.84 (4)	C10—H10A	0.9600
N2—C9	1.483 (7)	C10—H10B	0.9600
N2-C11	1.498 (6)	C10—H10C	0.9600
N2—C7	1.508 (6)	С9—Н9А	0.9700
N2—H2	0.90 (4)	С9—Н9В	0.9700
C2—C1	1.462 (7)	C7—C8	1.494 (7)
C2—H2A	0.9600	C7—H7A	0.9700
C2—H2B	0.9600	С7—Н7В	0.9700
C2—H2C	0.9600	C8—H8A	0.9600
C1—H1A	0.9700	C8—H8B	0.9600
C1—H1B	0.9700	C8—H8C	0.9600
C3—C4	1.464 (7)	C12—C11	1.503 (8)
С3—НЗА	0.9700	C12—H12A	0.9600
С3—Н3В	0.9700	C12—H12B	0.9600
C4—H4A	0.9600	C12—H12C	0.9600
C4—H4B	0.9600	C11—H11A	0.9700
C4—H4C	0.9600	C11—H11B	0.9700
C_{12} C_{0} C_{13}	112 73 (7)	С5—С6—Н6С	109.5
C_{12} C_{0} C_{13}	112.73(7) 107.82(7)	H6A-C6-H6C	109.5
$C_{12} = C_0 = C_{11}$	107.58 (6)	H6B—C6—H6C	109.5
$C12 - C_0 - C_14$	108 58 (6)	C6-C5-N1	126.8 (9)
C12 = C0 = C14	108.26 (6)	C6-C5-H5A	105.6
$C11 - C_0 - C14$	111 92 (7)	N1 - C5 - H5A	105.6
	111.72(7)	1,1 00 110/1	100.0

C3—N1—C1	112.8 (5)	С6—С5—Н5В	105.6
C3—N1—C5	108.9 (6)	N1—C5—H5B	105.6
C1—N1—C5	111.8 (5)	H5A—C5—H5B	106.1
C3—N1—H1	111 (3)	С9—С10—Н10А	109.5
C1—N1—H1	106 (3)	С9—С10—Н10В	109.5
C5—N1—H1	106 (3)	H10A—C10—H10B	109.5
C9—N2—C11	114.3 (4)	С9—С10—Н10С	109.5
C9—N2—C7	110.2 (4)	H10A—C10—H10C	109.5
C11—N2—C7	113.2 (4)	H10B—C10—H10C	109.5
C9—N2—H2	107 (3)	N2-C9-C10	113.0 (5)
C11—N2—H2	104 (3)	N2—C9—H9A	109.0
C7—N2—H2	107 (3)	С10—С9—Н9А	109.0
C1—C2—H2A	109.5	N2—C9—H9B	109.0
C1—C2—H2B	109.5	С10—С9—Н9В	109.0
H2A—C2—H2B	109.5	H9A—C9—H9B	107.8
C1—C2—H2C	109.5	C8—C7—N2	112.4 (4)
H2A—C2—H2C	109.5	С8—С7—Н7А	109.1
H2B—C2—H2C	109.5	N2—C7—H7A	109.1
C2—C1—N1	114.3 (5)	С8—С7—Н7В	109.1
C2—C1—H1A	108.7	N2—C7—H7B	109.1
N1—C1—H1A	108.7	H7A—C7—H7B	107.9
C2—C1—H1B	108.7	С7—С8—Н8А	109.5
N1—C1—H1B	108.7	С7—С8—Н8В	109.5
H1A—C1—H1B	107.6	H8A—C8—H8B	109.5
C4—C3—N1	115.8 (5)	С7—С8—Н8С	109.5
С4—С3—НЗА	108.3	H8A—C8—H8C	109.5
N1—C3—H3A	108.3	H8B—C8—H8C	109.5
C4—C3—H3B	108.3	C11—C12—H12A	109.5
N1—C3—H3B	108.3	C11—C12—H12B	109.5
НЗА—СЗ—НЗВ	107.4	H12A—C12—H12B	109.5
C3—C4—H4A	109.5	C11—C12—H12C	109.5
C3—C4—H4B	109.5	H12A—C12—H12C	109.5
H4A—C4—H4B	109.5	H12B—C12—H12C	109.5
C3—C4—H4C	109.5	N2—C11—C12	113.1 (5)
H4A—C4—H4C	109.5	N2—C11—H11A	109.0
H4B—C4—H4C	109.5	C12—C11—H11A	109.0
С5—С6—Н6А	109.5	N2—C11—H11B	109.0
С5—С6—Н6В	109.5	C12—C11—H11B	109.0
H6A—C6—H6B	109.5	H11A—C11—H11B	107.8
C3—N1—C1—C2	69.4 (8)	C11—N2—C9—C10	59.1 (7)
C5—N1—C1—C2	-167.5 (7)	C7—N2—C9—C10	-172.1 (5)
C1—N1—C3—C4	-163.6 (6)	C9—N2—C7—C8	165.6 (5)
C5—N1—C3—C4	71.6 (8)	C11—N2—C7—C8	-65.0 (6)
C3—N1—C5—C6	176.5 (11)	C9—N2—C11—C12	64.2 (7)
C1—N1—C5—C6	51.2 (14)	C7—N2—C11—C12	-63.1 (6)

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1…Cl4	0.84 (4)	2.39 (5)	3.216 (6)	170 (4)
N2—H2…Cl1	0.90 (4)	2.34 (4)	3.214 (5)	163 (4)