

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

4-[(*E*)-({4-[(4-Aminophenyl)sulfonyl]phenyl}imino)methyl]phenol ethanol monosolvate

Sadaf Afzal,^a Zareen Akhter^a and M. Nawaz Tahir^{b*}

^aDepartment of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan, and ^bUniversity of Sargodha, Department of Physics, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 11 May 2012; accepted 11 May 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.054; wR factor = 0.138; data-to-parameter ratio = 15.5.

In the title compound, $C_{19}H_{16}N_2O_3S \cdot C_2H_6O$, the 4-hydroxybenzylidene group is oriented at dihedral angles of 73.17 (7) and 77.06 (7)° with respect to the aniline groups. The sulfonyl group make dihedral angles of 44.89 (13) and 59.16 (12)° with the adjacent aniline groups. In the crystal, a two-dimensional polymeric network parallel to (010) is formed by N-H···O, O-H···N and O-H···O hydrogen bonds. There also exist π - π interactions with a distance of 3.5976 (18) Å between the centroids of hydroxyphenyl rings.

Related literature

For related structures, see: Bocelli & Cantoni (1990).

Experimental

Crystal data

 $\begin{array}{l} C_{19}H_{16}N_2O_3S\cdot C_2H_6O\\ M_r = 398.47\\ Monoclinic, P_{2_1}/n\\ a = 8.5281 \ (3) \ \AA\\ b = 25.3057 \ (12) \ \AA\\ c = 9.4084 \ (4) \ \AA\\ \beta = 96.738 \ (3)^\circ \end{array}$

 $V = 2016.40 (15) Å^{3}$ Z = 4 Mo K\alpha radiation $\mu = 0.19 \text{ mm}^{-1}$ T = 296 K 0.35 \times 0.25 \times 0.20 mm 16497 measured reflections

 $R_{\rm int} = 0.039$

3969 independent reflections

2400 reflections with $I > 2\sigma(I)$

Data collection

Bruker Kappa APEXII CCD

diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{min} = 0.948, T_{max} = 0.968$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.054$	256 parameters
$wR(F^2) = 0.138$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.22 \text{ e} \text{ Å}^{-3}$
3969 reflections	$\Delta \rho_{\rm min} = -0.22 \text{ e} \text{ \AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D1 - H1 \cdots O4^{i}$ $N2 - H2A \cdots O3^{ii}$ $N2 - H2B \cdots O2^{iii}$	0.82 0.86 0.86	1.89 2.30 2.21	2.698 (3) 3.105 (3) 3.026 (3)	171 156 157
$J4 - H4 \cdots N1^{n}$	0.82	2.13	2.926 (3)	162

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii) x - 1, y, z; (iii) $x - \frac{1}{2}, -y + \frac{1}{2}, z + \frac{1}{2}$; (iv) -x + 1, -y, -z + 1.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana International, Karachi, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BQ2358).

References

Bocelli, G. & Cantoni, A. (1990). Acta Cryst. C46, 2257–2259.
Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.

Spek, A. L. (2009). Acta Cryst. D65, 148–155.

supporting information

Acta Cryst. (2012). E68, o1789 [doi:10.1107/S1600536812021563]

4-[(*E*)-({4-[(4-Aminophenyl)sulfonyl]phenyl}imino)methyl]phenol ethanol monosolvate

Sadaf Afzal, Zareen Akhter and M. Nawaz Tahir

S1. Comment

The structure of 4,4'-diamino-diphenylsulfone (Bocelli & Cantoni, 1990), related to the title compound, (I), shown in Fig. 1., has been published previously. In (I), the 4-hydroxybenzaldehyde moiety A (O1/C1–C7), the anilinic moieties of 4,4'- diaminodiphenylsulfone B (N1/C8–C13) and C (C14–C19/N2) are planar with r.m.s. deviation of 0.0125 Å, 0.0320 Å and 0.0151 Å, respectively. The dihedral angles between A/B, A/C and B/C are 73.17 (7)°, 77.06 (7)° and 77.16 (7)°, respectively. The sulfonyl group D (O2/S1/O3) is of course planar. The dihedral angles between B/D and C/D are 59.16 (12)° and 44.89 (13)°, respectively. The molecules are stabilized in the form of two-dimensional polymeric network due to various type of H-bondings (Table 1, Fig. 2). There exist also π - π interaction between the CgA···CgAⁱ [i = 1 - *x*,-*y*, 2 - *z*] at a distance of 3.5976 (18) Å, where CgA is the centroid of phenyl ring (C1–C6).

S2. Experimental

In a 250 ml two-necked round bottomed flask equipped with condenser and magnetic stirrer, 4-hydroxy benzaldehyde (1.22 g, 0.01 mole) was dissolved in 50 ml of dried ethanol under inert atmosphere of nitrogen gas. 4,4'-diaminodiphenyl-sulfone (1.24 g, 0.005 mole) was added to it. The reaction mixture was refluxed for 6 h with constant stirring, and the progress of the reaction was monitored by TLC [n-hexane/ethanol (3:1)] respectively. The yellow colored product thus obtained was filtered, dried and hence recrystallized in ethanol. Yield: 88%, m.p.: 385 K.

S3. Refinement

The H-atoms were positioned geometrically (C—H = 0.93–0.97 Å, N—H = 0.86 Å O—H = 0.82 Å) and refined as riding with $U_{iso}(H) = xU_{eq}(C, N, O)$, where x = 1.5 for methyl groups and x = 1.2 for other H atoms.

Figure 1

View of the title compound with displacement ellipsoids are drawn at the 50% probability level.

Figure 2

The partial packing (*PLATON*; Spek, 2009) which shows that molecules form two dimensional polymeric network. The H-atoms not involved in H-bondings are omitted for clarity.

4-[(E)-({4-[(4-Aminophenyl)sulfonyl]phenyl}imino)methyl]phenol ethanol monosolvate

F(000) = 840

 $\theta = 1.6 - 26.0^{\circ}$

 $\mu = 0.19 \text{ mm}^{-1}$ T = 296 K

Prism, yellow

 $0.35 \times 0.25 \times 0.20$ mm

 $D_{\rm x} = 1.313 {\rm Mg} {\rm m}^{-3}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 2522 reflections

 $w = 1/[\sigma^2(F_o^2) + (0.0486P)^2 + 0.7969P]$

where $P = (F_0^2 + 2F_c^2)/3$

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\text{max}} = 0.22 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.22 \text{ e } \text{\AA}^{-3}$

Crystal data

C₁₉H₁₆N₂O₃S·C₂H₆O $M_r = 398.47$ Monoclinic, P2₁/n Hall symbol: -P 2yn a = 8.5281 (3) Å b = 25.3057 (12) Å c = 9.4084 (4) Å $\beta = 96.738$ (3)° V = 2016.40 (15) Å³ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer	16497 measured reflections 3969 independent reflections
Radiation source: fine-focus sealed tube	2400 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.039$
Detector resolution: 8.00 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^{\circ}, \ \theta_{\rm min} = 1.6^{\circ}$
ω scans	$h = -10 \rightarrow 10$
Absorption correction: multi-scan	$k = -28 \rightarrow 31$
(SADABS; Bruker, 2005)	$l = -11 \rightarrow 11$
$T_{\min} = 0.948, \ T_{\max} = 0.968$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.054$	Hydrogen site location: inferred from
$wR(F^2) = 0.138$	neighbouring sites
S = 1.04	H-atom parameters constrained

3969 reflections256 parameters0 restraintsPrimary atom site location: structure-invariant direct methods

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	0.16578 (8)	0.17666 (3)	0.09119 (8)	0.0587 (3)	
01	0.4083 (3)	-0.10515 (8)	1.1540 (2)	0.0809 (9)	
O2	0.1370 (3)	0.14540 (8)	-0.0375 (2)	0.0721 (8)	
O3	0.2983 (2)	0.21201 (8)	0.1066 (2)	0.0758 (8)	
N1	0.2707 (3)	0.01949 (9)	0.5599 (3)	0.0605 (9)	

N2	-0.4161 (3)	0.28543 (11)	0.1989 (3)	0.0851 (11)
C1	0.3681 (3)	-0.07205 (11)	1.0424 (3)	0.0588 (11)
C2	0.4236 (4)	-0.08302 (12)	0.9138 (4)	0.0721 (14)
C3	0.3891 (4)	-0.05033 (12)	0.7990 (3)	0.0682 (12)
C4	0.2988 (3)	-0.00543 (11)	0.8088 (3)	0.0562 (10)
C5	0.2454 (4)	0.00539 (13)	0.9378 (3)	0.0764 (14)
C6	0.2771 (4)	-0.02806 (13)	1.0536 (3)	0.0763 (14)
C7	0.2612 (3)	0.03107 (11)	0.6889 (3)	0.0609 (11)
C8	0.2394 (3)	0.05957 (11)	0.4557 (3)	0.0555 (10)
C9	0.1327 (3)	0.04922 (12)	0.3366 (3)	0.0638 (11)
C10	0.1075 (3)	0.08533 (11)	0.2278 (3)	0.0602 (11)
C11	0.1906 (3)	0.13213 (10)	0.2355 (3)	0.0514 (10)
C12	0.2935 (3)	0.14365 (12)	0.3551 (3)	0.0653 (11)
C13	0.3182 (3)	0.10741 (12)	0.4654 (3)	0.0659 (11)
C14	-0.0044 (3)	0.21204 (10)	0.1125 (3)	0.0484 (9)
C15	-0.1499 (3)	0.19453 (11)	0.0475 (3)	0.0565 (10)
C16	-0.2849 (3)	0.21927 (12)	0.0754 (3)	0.0595 (11)
C17	-0.2800 (3)	0.26199 (11)	0.1685 (3)	0.0548 (10)
C18	-0.1330 (3)	0.28033 (11)	0.2303 (3)	0.0556 (10)
C19	0.0020 (3)	0.25527 (11)	0.2027 (3)	0.0561 (10)
O4	0.7066 (3)	0.07876 (9)	0.6003 (2)	0.0849 (10)
C20	0.8298 (5)	0.11197 (18)	0.5671 (5)	0.1181 (19)
C21	0.7841 (6)	0.15143 (18)	0.4597 (5)	0.134 (2)
H1	0.37154	-0.09407	1.22496	0.0971*
H2	0.48515	-0.11294	0.90520	0.0862*
H2A	-0.50591	0.27377	0.16033	0.1019*
H2B	-0.41223	0.31187	0.25664	0.1019*
Н3	0.42698	-0.05840	0.71280	0.0817*
Н5	0.18667	0.03587	0.94737	0.0913*
H6	0.23672	-0.02068	1.13905	0.0918*
H7	0.22811	0.06497	0.70918	0.0731*
H9	0.07762	0.01743	0.33023	0.0765*
H10	0.03426	0.07826	0.14877	0.0723*
H12	0.34661	0.17582	0.36174	0.0784*
H13	0.38791	0.11523	0.54620	0.0789*
H15	-0.15513	0.16594	-0.01499	0.0678*
H16	-0.38177	0.20736	0.03146	0.0714*
H18	-0.12709	0.30965	0.29026	0.0667*
H19	0.09933	0.26744	0.24512	0.0673*
H4	0.69645	0.05409	0.54350	0.1018*
H20A	0.91206	0.09020	0.53444	0.1417*
H20B	0.87447	0.12966	0.65393	0.1417*
H21A	0.74450	0.13442	0.37156	0.2008*
H21B	0.87416	0.17265	0.44508	0.2008*
H21C	0.70331	0.17353	0.49098	0.2008*
-				

	I I 1	1.122	1733	T 712	1713	T 723
	U"	U^{22}	Uss	U^{12}	U^{ij}	U^{23}
S1	0.0582 (4)	0.0594 (5)	0.0613 (5)	0.0032 (4)	0.0187 (3)	0.0088 (4)
01	0.1062 (18)	0.0712 (14)	0.0637 (15)	0.0133 (12)	0.0030 (13)	0.0100 (12)
O2	0.0955 (15)	0.0701 (13)	0.0547 (14)	0.0147 (11)	0.0260 (11)	0.0005 (11)
O3	0.0545 (12)	0.0784 (14)	0.0973 (17)	-0.0049 (10)	0.0206 (11)	0.0223 (12)
N1	0.0746 (16)	0.0550 (15)	0.0515 (17)	0.0026 (12)	0.0056 (12)	0.0024 (13)
N2	0.0591 (16)	0.099 (2)	0.094 (2)	0.0173 (14)	-0.0038 (14)	-0.0306 (17)
C1	0.0683 (18)	0.0521 (18)	0.053 (2)	-0.0043 (14)	-0.0049 (15)	-0.0015 (15)
C2	0.080(2)	0.061 (2)	0.078 (3)	0.0171 (16)	0.0202 (18)	0.0090 (18)
C3	0.077 (2)	0.064 (2)	0.066 (2)	0.0050 (16)	0.0190 (16)	0.0022 (17)
C4	0.0611 (17)	0.0522 (17)	0.0537 (19)	-0.0027 (14)	-0.0005 (14)	-0.0060 (15)
C5	0.105 (3)	0.067 (2)	0.056 (2)	0.0257 (18)	0.0040 (18)	-0.0072 (17)
C6	0.108 (3)	0.076 (2)	0.045 (2)	0.024 (2)	0.0099 (17)	-0.0013 (17)
C7	0.0653 (18)	0.0539 (18)	0.062 (2)	0.0012 (14)	0.0012 (15)	-0.0033 (16)
C8	0.0614 (17)	0.0513 (17)	0.0546 (19)	0.0060 (14)	0.0105 (14)	0.0014 (15)
C9	0.077 (2)	0.0543 (18)	0.060(2)	-0.0126 (15)	0.0077 (16)	-0.0033 (16)
C10	0.0671 (18)	0.0615 (19)	0.0513 (19)	-0.0070 (15)	0.0037 (14)	-0.0017 (16)
C11	0.0494 (15)	0.0525 (17)	0.0538 (19)	0.0056 (13)	0.0128 (13)	-0.0009 (14)
C12	0.0622 (18)	0.0519 (18)	0.080(2)	-0.0065 (14)	0.0004 (16)	0.0059 (17)
C13	0.0654 (18)	0.064 (2)	0.064 (2)	-0.0024 (15)	-0.0103 (15)	0.0039 (17)
C14	0.0526 (16)	0.0446 (16)	0.0484 (17)	-0.0006 (12)	0.0076 (12)	0.0003 (13)
C15	0.0623 (18)	0.0548 (17)	0.0516 (18)	-0.0093 (14)	0.0029 (14)	-0.0106 (14)
C16	0.0509 (17)	0.070 (2)	0.0550 (19)	-0.0057 (14)	-0.0043 (13)	-0.0053 (16)
C17	0.0552 (17)	0.0585 (18)	0.0493 (18)	0.0055 (14)	0.0007 (13)	0.0022 (14)
C18	0.0622 (18)	0.0495 (16)	0.0535 (18)	-0.0006 (14)	0.0003 (14)	-0.0087 (14)
C19	0.0496 (16)	0.0608 (18)	0.0568 (19)	-0.0082 (13)	0.0019 (13)	-0.0012 (15)
O4	0.1173 (19)	0.0697 (15)	0.0691 (16)	-0.0090 (14)	0.0174 (14)	-0.0028 (12)
C20	0.097 (3)	0.113 (3)	0.146 (4)	-0.026 (3)	0.022 (3)	0.017 (3)
C21	0.192 (5)	0.107 (3)	0.098 (3)	-0.055 (3)	-0.001 (3)	0.017 (3)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

<u>S1—O2</u>	1.443 (2)	C14—C15	1.390 (4)
S1—O3	1.435 (2)	C14—C19	1.382 (4)
S1—C11	1.758 (3)	C15—C16	1.363 (4)
S1—C14	1.737 (3)	C16—C17	1.389 (4)
01—C1	1.355 (3)	C17—C18	1.398 (4)
01—H1	0.8200	C18—C19	1.366 (4)
O4—C20	1.409 (5)	C2—H2	0.9300
O4—H4	0.8200	С3—Н3	0.9300
N1—C7	1.260 (4)	С5—Н5	0.9300
N1—C8	1.414 (4)	C6—H6	0.9300
N2—C17	1.363 (4)	C7—H7	0.9300
N2—H2B	0.8600	С9—Н9	0.9300
N2—H2A	0.8600	C10—H10	0.9300
C1—C6	1.368 (4)	C12—H12	0.9300

C1—C2	1.378 (5)	С13—Н13	0.9300
C2—C3	1.365 (5)	С15—Н15	0.9300
C3—C4	1.382 (4)	С16—Н16	0.9300
C4—C5	1.373 (4)	C18—H18	0.9300
C4—C7	1.464 (4)	С19—Н19	0.9300
C5—C6	1 381 (4)	C20—C21	1 441 (7)
C8-C13	1.301(1) 1 382(4)	C20—H20A	0.9700
C8-C9	1.382(1) 1 383(4)	C20—H20B	0.9700
C9-C10	1.303(4)	C21_H21A	0.9700
C10-C11	1.378(4)	C21_H21R	0.9600
C_{11} C_{12}	1.375(4)	C_{21} H21C	0.9000
C12 - C12	1.373(4) 1.382(4)	021—11210	0.9000
012015	1.382 (4)		
02—S1—O3	118.74 (13)	C17—C18—C19	120.1 (3)
O2—S1—C11	106.85 (12)	C14—C19—C18	120.7 (2)
O2—S1—C14	108.50 (14)	C1—C2—H2	120.00
03—S1—C11	107.43 (12)	C3—C2—H2	120.00
03— <u>S1</u> — <u>C14</u>	109.01 (12)	C4—C3—H3	119.00
$C_{11} = S_{1} = C_{14}$	105 53 (13)	С2—С3—Н3	119.00
C1	109.00	C4-C5-H5	119.00
C_{20} O_{4} H_{4}	110.00	C6-C5-H5	119.00
C7—N1—C8	118.2 (2)	C5-C6-H6	120.00
C17 $N2$ $H2B$	120.00	C1-C6-H6	120.00
$H_2 \Lambda N_2 H_2 B$	120.00	N1H7	118.00
$C17$ $N2$ $H2\Delta$	120.00	C4-C7-H7	118.00
$C_1 = 112$ $C_2 = 112$ C_6	120.00 110.2 (3)	$C_{+}C_{-$	120.00
$C_2 = C_1 = C_0$	119.2(3) 119.2(3)	$C_{3} - C_{3} - H_{3}$	120.00
01 - 01 - 02	110.5(3)	$C_{10} - C_{9} - H_{9}$	120.00
01 - 01 - 00	122.3(3)	$C_1 = C_1 = H_1 O$	120.00
C1 = C2 = C3	120.0(3)	$C_{12} = C_{10} = H_{10}$	120.00
$C_2 = C_3 = C_4$	121.0(3)	C13—C12—H12	120.00
$C_{3} = C_{4} = C_{7}$	119.3 (3)	C12 - H12	120.00
$C_3 = C_4 = C_7$	122.7(3)		120.00
$C_3 - C_4 - C_5$	117.9(3)	С12—С13—Н13	120.00
C4 - C5 - C6	121.4 (3)	C14—C15—H15	120.00
CI = C6 = C5	119.9 (3)	C16—C15—H15	120.00
NI-C/-C4	124.2 (3)	CI/-CI6-HI6	119.00
C9—C8—C13	119.2 (3)	С15—С16—Н16	119.00
N1—C8—C13	122.1 (2)	С17—С18—Н18	120.00
N1—C8—C9	118.6 (3)	С19—С18—Н18	120.00
C8—C9—C10	120.6 (3)	С18—С19—Н19	120.00
C9—C10—C11	120.0 (3)	C14—C19—H19	120.00
C10—C11—C12	120.0 (3)	O4—C20—C21	114.9 (4)
S1—C11—C10	119.7 (2)	O4—C20—H20A	109.00
S1—C11—C12	120.3 (2)	O4—C20—H20B	109.00
C11—C12—C13	120.0 (3)	C21—C20—H20A	109.00
C8—C13—C12	120.1 (3)	C21—C20—H20B	109.00
S1—C14—C19	120.4 (2)	H20A—C20—H20B	108.00
C15—C14—C19	119.4 (2)	C20-C21-H21A	109.00

S1—C14—C15	120.0 (2)	C20—C21—H21B	109.00
C14—C15—C16	120.0 (3)	C20—C21—H21C	109.00
C15—C16—C17	121.0 (2)	H21A—C21—H21B	109.00
C16—C17—C18	118.7 (2)	H21A—C21—H21C	109.00
N2—C17—C18	120.8 (3)	H21B—C21—H21C	109.00
N2—C17—C16	120.5 (2)		
O2—S1—C11—C10	-33.3 (3)	C3—C4—C7—N1	18.7 (4)
O2—S1—C11—C12	146.1 (2)	C5-C4-C7-N1	-162.5 (3)
O3—S1—C11—C10	-161.7 (2)	C4—C5—C6—C1	2.3 (5)
O3—S1—C11—C12	17.7 (3)	N1-C8-C9-C10	-175.1 (3)
C14—S1—C11—C10	82.1 (2)	C13—C8—C9—C10	1.4 (4)
C14—S1—C11—C12	-98.5 (2)	N1-C8-C13-C12	174.5 (3)
O2—S1—C14—C15	22.7 (3)	C9—C8—C13—C12	-1.9 (4)
O2—S1—C14—C19	-162.3 (2)	C8—C9—C10—C11	1.0 (4)
O3—S1—C14—C15	153.4 (2)	C9—C10—C11—S1	176.5 (2)
O3—S1—C14—C19	-31.7 (3)	C9—C10—C11—C12	-2.9 (4)
C11—S1—C14—C15	-91.5 (2)	S1—C11—C12—C13	-176.9 (2)
C11—S1—C14—C19	83.5 (2)	C10-C11-C12-C13	2.5 (4)
C8—N1—C7—C4	-176.5 (2)	C11—C12—C13—C8	-0.1 (4)
C7—N1—C8—C9	-129.1 (3)	S1-C14-C15-C16	173.6 (2)
C7—N1—C8—C13	54.6 (4)	C19—C14—C15—C16	-1.4 (4)
O1—C1—C2—C3	-178.7 (3)	S1-C14-C19-C18	-173.9 (2)
C6-C1-C2-C3	0.3 (5)	C15—C14—C19—C18	1.1 (4)
O1—C1—C6—C5	177.3 (3)	C14—C15—C16—C17	-0.1 (4)
C2-C1-C6-C5	-1.7 (5)	C15—C16—C17—N2	-178.0 (3)
C1—C2—C3—C4	0.4 (5)	C15—C16—C17—C18	1.9 (4)
C2—C3—C4—C5	0.3 (5)	N2-C17-C18-C19	177.7 (3)
C2—C3—C4—C7	179.0 (3)	C16—C17—C18—C19	-2.2 (4)
C3—C4—C5—C6	-1.6 (5)	C17—C18—C19—C14	0.8 (4)
C7—C4—C5—C6	179.6 (3)		

Hydrogen-bond geometry (Å, °)

	D—H	H···A	D···A	D—H···A
01—H1····O4 ⁱ	0.82	1.89	2.698 (3)	171
N2—H2A····O3 ⁱⁱ	0.86	2.30	3.105 (3)	156
N2—H2 B ···O2 ⁱⁱⁱ	0.86	2.21	3.026 (3)	157
$O4$ — $H4$ ···· $N1^{iv}$	0.82	2.13	2.926 (3)	162

Symmetry codes: (i) -*x*+1, -*y*, -*z*+2; (ii) *x*-1, *y*, *z*; (iii) *x*-1/2, -*y*+1/2, *z*+1/2; (iv) -*x*+1, -*y*, -*z*+1.