

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Dibromido(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N N'$ zinc

Ali Dehghani,^{a,b} Mostafa M. Amini,^a* Ezzatollah Najafi,^a Azadeh Tadjarodi^b and Behrouz Notash^a

^aDepartment of Chemistry, Shahid Beheshti University, G.C., Evin, Tehran 1983963113, Iran, and ^bDepartment of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran Correspondence e-mail: m-pouramini@sbu.ac.ir

Received 12 May 2012; accepted 18 May 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.008 Å; R factor = 0.050; wR factor = 0.100; data-to-parameter ratio = 23.1.

The reaction of equimolar amounts of zinc bromide and 2,9dimethyl-1,10-phenanthroline in dry methanol provided the title compound, $[ZnBr_2(C_{14}H_{12}N_2)]$, in good yield. The Zn^{II} ion is coordinated in a distorted tetrahedral environment by two N atoms from the chelating 2,9-dimethyl-1,10-phenanthroline ligand and two bromide ions. There is intermolecular π - π stacking between adjacent phenanthroline units, with centroid-centroid distances of 3.594 (3) and 3.652 (3) Å.

Related literature

For similiar structures, see: Seebacher et al. (2004); Harvey et al. (1999); Jordan et al. (1991); Pallenberg et al. (1997).

Experimental

Crystal data

$[ZnBr_2(C_{14}H_{12}N_2)]$	V = 1494.6 (6) Å ³
$M_r = 433.45$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 9.4113 (19) Å	$\mu = 6.98 \text{ mm}^{-1}$
b = 18.424 (4) Å	$T = 298 { m K}$
c = 9.3362 (19) Å	$0.25 \times 0.20 \times 0.17 \text{ mm}$
$\beta = 112.59 \ (3)^{\circ}$	

Data collection

Stoe IPDS 2T diffractometer Absorption correction: numerical [shape of crystal determined optically (X-RED32; Stoe & Cie, (2005)] $T_{\min} = 0.274, T_{\max} = 0.383$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.050$ $wR(F^2) = 0.100$ S = 0.954014 reflections

174 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.40 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$

11850 measured reflections

 $R_{\rm int} = 0.076$

4014 independent reflections

2304 reflections with $I > 2\sigma(I)$

Data collection: X-AREA (Stoe & Cie, 2005); cell refinement: X-AREA; data reduction: X-AREA; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008): program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We thank Shahid Beheshti University and the Iran University of Science and Technology for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5921).

References

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harvey, M., Baggio, S., Baggio, R. & Mombrú, A. W. (1999). Acta Cryst. C55, 308-310.
- Jordan, K. J., Wacholtz, W. F. & Crosby, G. A. (1991). Inorg. Chem. 30, 4588-4593
- Pallenberg, A. J., Marschner, T. M. & Barnhart, D. M. (1997). Polyhedron, 16, 2711-2719
- Seebacher, J., Mian, J. & Vahrenkamp, H. (2004). Eur. J. Inorg. Chem. pp. 409-417
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Stoe & Cie (2005). X-AREA and X-RED32. Stoe & Cie, Darmstadt, Germany.

supporting information

Acta Cryst. (2012). E68, m811 [doi:10.1107/S1600536812022738]

Dibromido(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$)zinc

Ali Dehghani, Mostafa M. Amini, Ezzatollah Najafi, Azadeh Tadjarodi and Behrouz Notash

S1. Comment

1,10-phenanthroline is a good bidentate chelating ligand, we present the crystal structure of the title complex based on 2,9-dimethyl-1,10-phenanthroline.

In the molecule of the title compound, (Fig. 1), the two N atoms of one phen ligand and two Br atoms are coordinated to Zn^{II} atom in a distorted tetrahedral arrangement. The Zn—N bonds [average 2.062 Å] are somewhat shorter than the Zn —Br distances [average 2.328 Å] and they are closed to such bond lengths found in other discrete 1,10-phenanthroline derivatives of zinc complexes (Seebacher *et al.*, (2004); Harvey *et al.*,(1999)). The two N atoms bite angle of phen ligand, N(2)—Zn(1)—N(1), significantly is smaller than N(2)—Zn(1)—Br(1)and N(1)—Zn(1)—Br(2). The bite angle in title complex is also similar to that of found in other zinc complexes of 1,10-phenanthroline, regardless of geometry of complex (Jordan *et al.*,(1991); Pallenberg *et al.*,(1997)).

In the crystal structure, There are intermolecular π - π stacking between adjacent phenanthroline, with a centroidcentroid distances of 3.594 (3) and 3.652 (3) Å (Fig. 2). These π - π stacking interactions lead to the stabilization of the crystal structure.

S2. Experimental

 $ZnBr_2.2H_2O$ (0.22 g, 1 mmol) and 2,9-dimethyl-1,10-phenanthroline (0.21, 1 mmol) were loaded in a convection tube; the tube was filled with methanol and kept at 333 K. Colorless crystals were collected from the side arm after several days(m.p. > 543 K).

S3. Refinement

The C—H protons were positioned geometrically and refined as riding atoms with C—H = 0.93 Å and Uiso(H) = 1.2 Ueq(C) for aromatic C—H groups, C—H = 0.96 Å and Uiso(H) = 1.5 Ueq(C) for methyl groups.

Figure 1

The molecular structure of the title compound, ellipsoids drawn at 30% probability level.

Figure 2

The packing diagram of the title compound showing π - π stacking between adjacent 2,9-dimethyl-1,10-phenanthroline ligands.

Dibromido(2,9-dimethyl-1,10-phenanthroline- $\kappa^2 N, N'$)zinc

Crystal data

 $[ZnBr_2(C_{14}H_{12}N_2)]$ $M_r = 433.45$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc Mo *K* α radiation, $\lambda = 0.71073$ Å

 $\theta = 2.2 - 29.2^{\circ}$

 $\mu = 6.98 \text{ mm}^{-1}$

Block, colorless

 $0.25 \times 0.20 \times 0.17 \text{ mm}$

T = 298 K

Cell parameters from 4014 reflections

a = 9.4113 (19) Å b = 18.424 (4) Å c = 9.3362 (19) Å $\beta = 112.59 (3)^{\circ}$ $V = 1494.6 (6) \text{ Å}^{3}$ Z = 4 F(000) = 840 $D_{x} = 1.926 \text{ Mg m}^{-3}$

Data collection

Data contection		
Stoe IPDS 2T	$T_{\min} = 0.274, \ T_{\max} = 0.383$	
diffractometer	11850 measured reflections	
Radiation source: fine-focus sealed tube	4014 independent reflections	
Graphite monochromator	2304 reflections with $I > 2\sigma(I)$	
Detector resolution: 0.15 mm pixels mm ⁻¹	$R_{\rm int} = 0.076$	
rotation method scans	$\theta_{\rm max} = 29.2^{\circ}, \ \theta_{\rm min} = 2.2^{\circ}$	
Absorption correction: numerical	$h = -12 \rightarrow 12$	
[shape of crystal determined optically (X-	$k = -23 \rightarrow 25$	
<i>RED32</i> ; Stoe & Cie, (2005)]	$l = -12 \rightarrow 12$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.100$	neighbouring sites
<i>S</i> = 0.95	H-atom parameters constrained
4014 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0423P)^2]$
174 parameters	where $P = (F_0^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.40 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.67 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Zn1	0.66996 (6)	0.13233 (3)	0.75289 (6)	0.03618 (15)	
Br1	0.79790 (8)	0.24221 (4)	0.77098 (8)	0.0667 (2)	
Br2	0.74325 (7)	0.03299 (3)	0.63755 (6)	0.05122 (17)	
N1	0.6409 (4)	0.1030 (2)	0.9541 (4)	0.0317 (8)	
N2	0.4348 (4)	0.1459 (2)	0.6749 (4)	0.0349 (9)	
C1	0.9118 (6)	0.0852 (3)	1.1082 (6)	0.0514 (14)	
H1A	0.9226	0.0590	1.0240	0.077*	
H1B	0.9740	0.0627	1.2047	0.077*	

H1C	0.9447	0.1345	1.1074	0.077*
C2	0.7466 (5)	0.0842 (3)	1.0900 (5)	0.0359 (10)
C3	0.7030 (6)	0.0634 (3)	1.2131 (5)	0.0429 (12)
Н3	0.7775	0.0492	1.3077	0.051*
C4	0.5507 (6)	0.0641 (3)	1.1932 (6)	0.0434 (12)
H4	0.5217	0.0492	1.2733	0.052*
C5	0.4398 (6)	0.0872 (3)	1.0528 (5)	0.0376 (11)
C6	0.4904 (5)	0.1057 (2)	0.9352 (5)	0.0318 (10)
C7	0.2784 (7)	0.0920 (3)	1.0226 (7)	0.0479 (13)
H7	0.2437	0.0787	1.0996	0.058*
C8	0.1774 (6)	0.1151 (3)	0.8858 (7)	0.0561 (15)
H8	0.0740	0.1188	0.8706	0.067*
C9	0.2244 (6)	0.1343 (3)	0.7625 (6)	0.0442 (12)
C10	0.3796 (5)	0.1290 (3)	0.7864 (5)	0.0346 (10)
C11	0.1239 (6)	0.1607 (3)	0.6167 (7)	0.0557 (14)
H11	0.0195	0.1660	0.5956	0.067*
C12	0.1803 (6)	0.1781 (3)	0.5082 (6)	0.0549 (14)
H12	0.1140	0.1956	0.4124	0.066*
C13	0.3386 (6)	0.1702 (3)	0.5378 (6)	0.0442 (12)
C14	0.4045 (7)	0.1888 (3)	0.4201 (6)	0.0588 (15)
H14A	0.4686	0.2310	0.4535	0.088*
H14B	0.3224	0.1985	0.3222	0.088*
H14C	0.4648	0.1488	0.4089	0.088*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Zn1	0.0290 (3)	0.0397 (3)	0.0402 (3)	0.0015 (3)	0.0137 (2)	0.0058 (2)
Br1	0.0542 (4)	0.0502 (4)	0.0879 (5)	-0.0154 (3)	0.0186 (3)	0.0098 (3)
Br2	0.0539 (4)	0.0554 (4)	0.0464 (3)	0.0142 (3)	0.0216 (3)	0.0027 (3)
N1	0.028 (2)	0.032 (2)	0.035 (2)	0.0023 (17)	0.0115 (17)	0.0016 (16)
N2	0.032 (2)	0.035 (2)	0.0329 (19)	0.0022 (18)	0.0073 (16)	-0.0006 (17)
C1	0.037 (3)	0.062 (4)	0.050 (3)	0.005 (3)	0.011 (3)	0.003 (3)
C2	0.033 (3)	0.034 (3)	0.035 (2)	0.001 (2)	0.007 (2)	-0.0042 (19)
C3	0.049 (3)	0.041 (3)	0.033 (2)	0.002 (3)	0.008 (2)	0.000 (2)
C4	0.056 (3)	0.041 (3)	0.039 (3)	-0.002(3)	0.024 (3)	0.000(2)
C5	0.039 (3)	0.032 (3)	0.047 (3)	-0.005 (2)	0.023 (2)	-0.005 (2)
C6	0.025 (2)	0.027 (2)	0.042 (2)	0.0005 (19)	0.012 (2)	-0.0028 (19)
C7	0.046 (3)	0.046 (3)	0.064 (3)	0.000 (3)	0.034 (3)	0.004 (3)
C8	0.030 (3)	0.061 (4)	0.080 (4)	-0.004(3)	0.024 (3)	0.002 (3)
C9	0.028 (2)	0.045 (3)	0.056 (3)	0.001 (2)	0.011 (2)	-0.002 (3)
C10	0.024 (2)	0.031 (3)	0.044 (2)	0.000(2)	0.0077 (19)	-0.001(2)
C11	0.025 (3)	0.065 (4)	0.066 (4)	0.011 (3)	0.004 (2)	-0.002(3)
C12	0.039 (3)	0.058 (4)	0.047 (3)	0.012 (3)	-0.006(2)	0.007 (3)
C13	0.043 (3)	0.037 (3)	0.044 (3)	0.010 (2)	0.007 (2)	-0.001 (2)
C14	0.066 (4)	0.061 (4)	0.039 (3)	0.013 (3)	0.010 (3)	0.013 (3)
C14	0.066 (4)	0.061 (4)	0.039 (3)	0.013 (3)	0.010 (3)	0.013

Geometric parameters (Å, °)

Zn1—N2	2.062 (4)	C5—C6	1.396 (6)
Zn1—N1	2.071 (3)	С5—С7	1.437 (7)
Zn1—Br1	2.3281 (9)	C6—C10	1.445 (7)
Zn1—Br2	2.3572 (8)	C7—C8	1.336 (8)
N1C2	1.322 (6)	С7—Н7	0.9300
N1—C6	1.360 (6)	C8—C9	1.427 (7)
N2-C13	1.329 (6)	C8—H8	0.9300
N2-C10	1.366 (5)	C9—C10	1.394 (7)
C1—C2	1.498 (7)	C9—C11	1.412 (8)
C1—H1A	0.9600	C11—C12	1.351 (7)
C1—H1B	0.9600	C11—H11	0.9300
C1—H1C	0.9600	C12—C13	1.414 (7)
C2—C3	1.414 (6)	C12—H12	0.9300
C3—C4	1.372 (7)	C13—C14	1.494 (7)
С3—Н3	0.9300	C14—H14A	0.9600
C4—C5	1.392 (7)	C14—H14B	0.9600
C4—H4	0.9300	C14—H14C	0.9600
N2—Zn1—N1	81.63 (14)	N1—C6—C5	122.8 (4)
N2—Zn1—Br1	112.03 (11)	N1C6C10	117.8 (4)
N1—Zn1—Br1	113.94 (11)	C5-C6-C10	119.4 (4)
N2—Zn1—Br2	113.29 (11)	C8—C7—C5	121.2 (4)
N1—Zn1—Br2	112.05 (11)	C8—C7—H7	119.4
Br1—Zn1—Br2	118.32 (3)	С5—С7—Н7	119.4
C2—N1—C6	119.7 (4)	C7—C8—C9	121.5 (5)
C2—N1—Zn1	128.7 (3)	С7—С8—Н8	119.2
C6—N1—Zn1	111.5 (3)	С9—С8—Н8	119.2
C13—N2—C10	119.5 (4)	C10—C9—C11	116.8 (4)
C13—N2—Zn1	128.5 (3)	C10—C9—C8	118.9 (5)
C10—N2—Zn1	112.0 (3)	C11—C9—C8	124.2 (5)
C2C1H1A	109.5	N2-C10-C9	123.0 (4)
C2C1H1B	109.5	N2-C10-C6	117.1 (4)
H1A—C1—H1B	109.5	C9—C10—C6	119.9 (4)
C2-C1-H1C	109.5	C12—C11—C9	119.6 (5)
H1A—C1—H1C	109.5	C12—C11—H11	120.2
H1B—C1—H1C	109.5	C9—C11—H11	120.2
N1—C2—C3	120.3 (4)	C11—C12—C13	121.1 (5)
N1-C2-C1	118.1 (4)	C11—C12—H12	119.5
C3—C2—C1	121.6 (4)	C13—C12—H12	119.5
C4—C3—C2	120.1 (5)	N2—C13—C12	120.0 (5)
С4—С3—Н3	120.0	N2—C13—C14	117.6 (5)
С2—С3—Н3	120.0	C12—C13—C14	122.4 (5)
C3—C4—C5	119.8 (4)	C13—C14—H14A	109.5
C3—C4—H4	120.1	C13—C14—H14B	109.5
C5—C4—H4	120.1	H14A—C14—H14B	109.5
C4—C5—C6	117.1 (4)	C13—C14—H14C	109.5

C4—C5—C7	123.9 (4)	H14A—C14—H14C	109.5
C6—C5—C7	119.0 (5)	H14B—C14—H14C	109.5
N2—Zn1—N1—C2	-177.9 (4)	C7—C5—C6—C10	-0.1 (7)
Br1—Zn1—N1—C2	-67.4 (4)	C4—C5—C7—C8	179.4 (5)
Br2—Zn1—N1—C2	70.3 (4)	C6—C5—C7—C8	-1.5 (8)
N2—Zn1—N1—C6	1.1 (3)	C5—C7—C8—C9	1.7 (9)
Br1—Zn1—N1—C6	111.6 (3)	C7—C8—C9—C10	-0.3 (9)
Br2—Zn1—N1—C6	-110.7 (3)	C7—C8—C9—C11	-178.5 (6)
N1—Zn1—N2—C13	176.8 (4)	C13—N2—C10—C9	1.5 (7)
Br1—Zn1—N2—C13	64.3 (4)	Zn1—N2—C10—C9	179.4 (4)
Br2—Zn1—N2—C13	-72.7 (4)	C13—N2—C10—C6	-177.5 (4)
N1—Zn1—N2—C10	-0.8 (3)	Zn1—N2—C10—C6	0.4 (5)
Br1-Zn1-N2-C10	-113.3 (3)	C11—C9—C10—N2	-1.9 (8)
Br2—Zn1—N2—C10	109.7 (3)	C8—C9—C10—N2	179.8 (5)
C6—N1—C2—C3	3.3 (7)	C11—C9—C10—C6	177.1 (5)
Zn1—N1—C2—C3	-177.8 (3)	C8—C9—C10—C6	-1.3 (8)
C6—N1—C2—C1	-177.3 (4)	N1-C6-C10-N2	0.6 (6)
Zn1—N1—C2—C1	1.7 (7)	C5-C6-C10-N2	-179.5 (4)
N1—C2—C3—C4	-1.5 (7)	N1-C6-C10-C9	-178.4 (4)
C1—C2—C3—C4	179.1 (5)	C5—C6—C10—C9	1.4 (7)
C2—C3—C4—C5	-1.7 (8)	C10-C9-C11-C12	1.0 (8)
C3—C4—C5—C6	2.8 (7)	C8—C9—C11—C12	179.2 (6)
C3—C4—C5—C7	-178.0 (5)	C9-C11-C12-C13	0.2 (9)
C2—N1—C6—C5	-2.0(7)	C10-N2-C13-C12	-0.2 (7)
Zn1—N1—C6—C5	178.9 (4)	Zn1—N2—C13—C12	-177.7 (4)
C2-N1-C6-C10	177.8 (4)	C10-N2-C13-C14	179.4 (4)
Zn1—N1—C6—C10	-1.3 (5)	Zn1—N2—C13—C14	1.9 (7)
C4—C5—C6—N1	-1.1 (7)	C11—C12—C13—N2	-0.7 (9)
C7—C5—C6—N1	179.8 (5)	C11—C12—C13—C14	179.8 (6)
C4—C5—C6—C10	179.1 (4)		