

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

N-(4-Methylbenzyl)-3-nitroaniline

Marijana Đaković,^a* Tomislav Portada^b and Tin Klačić^c

^aDepartment of Chemistry, Faculty of Science, University of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia, ^bDepartment of Organic Chemistry and Biochemistry, Ruder Bošković Institute, PO Box 180, HR-10000 Zagreb, Croatia, and ^c5th High School, Klaićeva 1, HR-10000 Zagreb, Croatia Correspondence e-mail: mdjakovic@chem.pmf.hr

Received 7 May 2012; accepted 28 May 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.046; wR factor = 0.117; data-to-parameter ratio = 11.1.

In the title compound, $C_{14}H_{14}N_2O_2$, the angle between the mean plane of the N-methyl-3-nitroaniline system (r.m.s. deviation = 0.0185 Å) and the *p*-tolyl unit is 89.79 (4)°. In the crystal, hydrogen-bonded chains running along $[10\overline{1}]$ are generated by the linking of neighbouring molecules via N- $H \cdots O$ and $C - H \cdots O$ hydrogen bonds involving the 3nitroaniline systems and forming $R_2^2(8)$ motifs.

Related literature

For related structures, see: Betz et al. (2011); Stilinović & Portada (2011); Xing et al. (2006). For the synthesis, see: Magyarfalvi (2008). For graph-set theory, see: Etter (1990); Bernstein et al. (1995).

Experimental

Crystal data

C14H14N2O2 $M_{\rm m} = 242.27$ Monoclinic, P21 a = 5.1851 (4) Å b = 21.408 (2) Å c = 5.6833 (4) Å $\beta = 98.010 \ (7)^{\circ}$

Data collection

Oxford Diffraction Xcalibur diffractometer with a Sapphire-3 CCD area detector Absorption correction: multi-scan (CrysAlis PRO; Oxford

V = 624.71 (8) Å³ Z = 2Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K

Diffraction, 2009) $T_{\min} = 0.953, \ T_{\max} = 0.958$ 11868 measured reflections 1856 independent reflections 1373 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.042$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.046$ $m P(F^2) = 0.117$	H atoms treated by a mixture of
WR(F) = 0.117 S = 1.03	refinement
1856 reflections	$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
167 parameters	$\Delta \rho_{\rm min} = -0.11 \text{ e } \text{\AA}^{-3}$
1 restraint	

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - H \cdots A$
$ \begin{array}{c} \hline N1 - H1N \cdots O2^{i} \\ C6 - H6 \cdots O1^{i} \\ C7 - H7A \cdots O2^{ii} \\ C13 - H13 \cdots O2^{iii} \end{array} $	0.78 (3)	2.52 (3)	3.277 (3)	168 (3)
	0.93	2.44	3.364 (3)	171
	0.97	2.64	3.352 (3)	130
	0.93	2.69	3.282 (4)	122

Symmetry codes: (i) x + 1, y, z - 1; (ii) x + 1, y, z; (iii) x, y, z - 1.

Data collection: CrysAlis PRO (Oxford Diffraction, 2009); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and Mercury (Macrae et al., 2006); software used to prepare material for publication: SHELXL97 and PLATON (Spek, 2009).

This research was supported by the Ministry of Science, Education and Sports of the Republic of Croatia, Zagreb (grant Nos. 119-1193079-1332 and 098-0982904-2912) and the 5th High School, Zagreb, Croatia.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: FJ2555).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.
- Betz, R., McCleland, C. & Marchand, H. (2011). Acta Cryst. E67, o1195.
- Etter, M. C. (1990). Acc. Chem. Res. 23, 120-126.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Macrae, C. F., Edgington, P. R., McCabe, P., Pidcock, E., Shields, G. P., Taylor, R., Towler, M. & van de Streek, J. (2006). J. Appl. Cryst. 39, 453-457.
- Magyarfalvi, G. (2008). Preparatory problems for the 40th International Chemistry Olympiad, edited by G. Magyarfalvi, p. 48. Chemistry Olympiad, Budapest.
- Oxford Diffraction (2009). CrysAlis PRO. Oxford Diffraction Ltd, Yarnton, England.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.
- Stilinović, V. & Portada, T. (2011). Acta Cryst. E67, o3013.
- Xing, J.-D., Bai, G.-Y., Zeng, T. & Li, J.-S. (2006). Acta Cryst. E62, 079-080.

 $0.57 \times 0.50 \times 0.19 \; \mathrm{mm}$

supporting information

Acta Cryst. (2012). E68, o1967 [doi:10.1107/S1600536812024348]

N-(4-Methylbenzyl)-3-nitroaniline

Marijana Đaković, Tomislav Portada and Tin Klačić

S1. Comment

The title compound, *N*-(4-methylbenzyl)-3-nitroaniline, is prepared as a part of the laboratory work with high school students, and the synthesis followed the Preparatory problems for the 40th International Chemistry Olympiad (Magyarfalvi, 2008) involving slight modifications.

Recently, *N*-benzyl-3-nitroaniline was reported (Stilinović & Portada, 2011). The difference between the title compound and the previously reported one is only in methyl substituent on the *N*-benzyl moiety, since it was of interest to study the influence of the benzyl moiety substituents on the molecular conformation, and consequently the hydrogen bonding formation.

The addition of methyl substituent on the benzyl moiety in the title compound did not cause any significant conformational difference. The molecule retained a bent conformation with the torsion angle about the central C—N bond of 73.9 (2)° being very similar to analogous one in the recently reported compound (Stilinović & Portada, 2011). Furthermore, the *N*-methyl-3-nitroaniline system in the title compound is nearly ideally planar (r.m.s. deviation of the atoms C1–C7/N1/N2/O1/O2 from their mean plane is 0.0185 Å, with oxygen atom O2 being the one that deviates most from that plane, 0.031 (2) Å). The *p*-tolyl substituent is tilted at an angle of 89.79 (4)° to the rest of the molecule.

Two neighbouring molecules are connected through the set of N—H···O and C—H···O hydrogen bonds in the head to tail manner forming $R^2_2(8)$ motifs (Etter, 1990; Bernstein *et al.*, 1995) that generate one-dimensional chains running in the [101] direction. The same hydrogen bonding pattern is also found in *N*-benzyl-3-nitroaniline (Stilinović & Portada, 2011) what leads to the conclusion that the methyl substituent in *p*-position to the central C—N bond do not influence neither hydrogen bonding geometry nor general hydrogen bonding framework formation.

S2. Experimental

The title compound was prepared using a slightly modified procedure (Magyarfalvi, 2008) and isolated in a form of yellow crystalline product. Used: 3-nitroaniline (1.10 g; 7.96 mmol), *p*-tolualdehyde (1.74 ml; 1.77 g; 14.7 mmol), sodium tetrahydridoborate (0.50 g; 13.2 mmol). Yield: 1.12 g (58%). Upon re-crystallization in ethanol, yellow block-like crystalls suitable for the X-ray experiment were obtained in 3–4 days.

S3. Refinement

In the final cycles of refinement, in the absence of significant anomalous scattering effect, 1856 Friedel pairs were merged and $\Delta f''$ set to zero. The amine H atom was located in the difference Fourier map and freely refined, giving N—H distance of 0.78 (3) Å. All other H atoms were placed in geometrically idealized positions and constrained to ride on their parent C atom at distances of 0.93, 0.96 and 0.97 Å for aromatic, methyl and CH₂ H atoms, respectively, and with $U_{iso}(H)$ = $1.2U_{eq}(C)$ (for aromatic and CH₂ H atoms), and $U_{iso}(H) = 1.5U_{eq}(C)$ (for methyl group).

Figure 1

Molecular structure of the title compound with the atom labelling scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level. Hydrogen atoms are shown as a spheres of arbitrary radius.

Figure 2

Infinite one-dimensional chains running in the $[10\overline{1}]$ direction constructed *via* N—H···O and C—H···O hydrogen bonds between neighbouring molecules forming $R^2_2(8)$ motifs.

N-(4-Methylbenzyl)-3-nitroaniline

Crystal data	
$C_{14}H_{14}N_{2}O_{2}$ $M_{r} = 242.27$ Monoclinic, P2 ₁ Hall symbol: P 2 yb a = 5.1851 (4) Å b = 21.408 (2) Å c = 5.6833 (4) Å $\beta = 98.010 (7)^{\circ}$ $V = 624.71 (8) \text{ Å}^{3}$ Z = 2	F(000) = 256 $D_x = 1.288 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 4334 reflections $\theta = 4.4-32.7^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 296 K Plate, yellow $0.57 \times 0.50 \times 0.19 \text{ mm}$
Data collection	
Oxford Diffraction Xcalibur diffractometer with a Sapphire-3 CCD area detector Radiation source: Enhance (Mo) X-ray Source	Graphite monochromator Detector resolution: 16.3426 pixels mm ⁻¹ CCD scans

Absorption correction: multi-scan	$R_{\rm int} = 0.042$
(CrysAlis PRO; Oxford Diffraction, 2009)	$\theta_{\rm max} = 30.0^\circ, \theta_{\rm min} = 4.4^\circ$
$T_{\min} = 0.953, T_{\max} = 0.958$	$h = -7 \rightarrow 7$
11868 measured reflections	$k = -30 \rightarrow 30$
1856 independent reflections	$l = -7 \rightarrow 7$
1373 reflections with $I > 2\sigma(I)$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.046$	Hydrogen site location: inferred from
$wR(F^2) = 0.117$	neighbouring sites
S = 1.03	H atoms treated by a mixture of independent
1856 reflections	and constrained refinement
167 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0688P)^2]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.16 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.11 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
01	0.0400 (4)	0.59135 (11)	0.2460 (4)	0.0814 (8)
O2	0.1836 (4)	0.49767 (11)	0.2911 (3)	0.0688 (7)
N1	0.8389 (4)	0.47827 (11)	-0.2730 (5)	0.0645 (8)
N2	0.1802 (4)	0.54885 (10)	0.1976 (3)	0.0525 (7)
C1	0.6686 (4)	0.52300 (11)	-0.2149 (4)	0.0455 (6)
C2	0.5065 (4)	0.51224 (10)	-0.0402 (4)	0.0417 (6)
C3	0.3489 (4)	0.56021 (10)	0.0150 (4)	0.0434 (6)
C4	0.3374 (5)	0.61797 (11)	-0.0925 (5)	0.0564 (8)
C5	0.4936 (5)	0.62762 (13)	-0.2656 (5)	0.0627 (9)
C6	0.6563 (5)	0.58119 (12)	-0.3245 (4)	0.0558 (8)
C7	0.8676 (5)	0.41780 (13)	-0.1683 (5)	0.0619 (8)
C8	0.6482 (4)	0.37253 (11)	-0.2473 (4)	0.0511 (7)
C9	0.5891 (6)	0.32463 (15)	-0.1024 (5)	0.0703 (10)
C10	0.3929 (7)	0.28214 (14)	-0.1763 (6)	0.0747 (11)
C11	0.2506 (6)	0.28531 (12)	-0.3980 (5)	0.0628 (9)
C12	0.3078 (6)	0.33344 (14)	-0.5412 (5)	0.0669 (9)
C13	0.5021 (6)	0.37587 (13)	-0.4681 (5)	0.0608 (8)
C14	0.0335 (7)	0.23991 (16)	-0.4795 (9)	0.0912 (13)
H1N	0.913 (6)	0.4885 (14)	-0.376 (5)	0.061 (8)*

H2	0.50580	0.47380	0.03580	0.0500*
H4	0.22830	0.64920	-0.04980	0.0680*
Н5	0.48930	0.66590	-0.34350	0.0750*
H6	0.76130	0.58890	-0.44120	0.0670*
H7A	0.88320	0.42240	0.00290	0.0740*
H7B	1.02900	0.39970	-0.20470	0.0740*
H9	0.68320	0.32070	0.04860	0.0840*
H10	0.35690	0.25070	-0.07280	0.0890*
H12	0.21290	0.33750	-0.69180	0.0800*
H13	0.53540	0.40770	-0.57100	0.0730*
H14A	-0.04300	0.25020	-0.63840	0.1370*
H14B	-0.09690	0.24240	-0.37530	0.1370*
H14C	0.10230	0.19820	-0.47650	0.1370*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0779 (13)	0.0904 (15)	0.0858 (13)	0.0136 (12)	0.0468 (11)	-0.0109 (11)
O2	0.0736 (12)	0.0795 (13)	0.0590 (10)	-0.0050 (10)	0.0297 (9)	0.0073 (10)
N1	0.0566 (13)	0.0626 (13)	0.0834 (15)	-0.0065 (10)	0.0420 (12)	-0.0110 (11)
N2	0.0432 (10)	0.0693 (14)	0.0474 (10)	-0.0029 (9)	0.0144 (8)	-0.0086 (10)
C1	0.0394 (10)	0.0524 (12)	0.0462 (11)	-0.0081 (9)	0.0108 (8)	-0.0108 (9)
C2	0.0376 (9)	0.0446 (11)	0.0443 (10)	-0.0026 (8)	0.0111 (8)	-0.0001 (8)
C3	0.0394 (10)	0.0537 (12)	0.0387 (9)	-0.0031 (9)	0.0116 (8)	-0.0042 (8)
C4	0.0525 (13)	0.0498 (13)	0.0695 (14)	0.0056 (11)	0.0173 (11)	-0.0005 (12)
C5	0.0689 (16)	0.0546 (14)	0.0668 (15)	0.0009 (12)	0.0177 (13)	0.0136 (12)
C6	0.0534 (13)	0.0654 (15)	0.0530 (13)	-0.0136 (11)	0.0226 (10)	0.0013 (11)
C7	0.0446 (12)	0.0669 (15)	0.0753 (16)	0.0093 (12)	0.0120 (11)	-0.0171 (13)
C8	0.0521 (12)	0.0502 (12)	0.0528 (12)	0.0131 (10)	0.0142 (10)	-0.0040 (10)
C9	0.0801 (19)	0.0749 (17)	0.0551 (14)	0.0082 (16)	0.0069 (13)	0.0144 (14)
C10	0.085 (2)	0.0564 (15)	0.088 (2)	0.0077 (14)	0.0303 (17)	0.0262 (15)
C11	0.0629 (16)	0.0478 (13)	0.0820 (19)	0.0067 (11)	0.0252 (15)	-0.0065 (13)
C12	0.0719 (17)	0.0706 (17)	0.0572 (14)	-0.0026 (14)	0.0057 (12)	-0.0049 (13)
C13	0.0720 (15)	0.0569 (13)	0.0547 (13)	-0.0022 (13)	0.0135 (11)	0.0080 (12)
C14	0.078 (2)	0.0619 (18)	0.137 (3)	-0.0059 (15)	0.027 (2)	-0.021 (2)

Geometric parameters (Å, °)

01—N2	1.220 (3)	C11—C14	1.510 (5)	
O2—N2	1.217 (3)	C11—C12	1.371 (4)	
N1-C1	1.374 (3)	C12—C13	1.377 (4)	
N1—C7	1.424 (4)	C2—H2	0.9300	
N2—C3	1.468 (3)	C4—H4	0.9300	
N1—H1N	0.78 (3)	C5—H5	0.9300	
C1—C6	1.390 (3)	C6—H6	0.9300	
C1—C2	1.406 (3)	C7—H7A	0.9700	
C2—C3	1.376 (3)	C7—H7B	0.9700	
C3—C4	1.377 (3)	С9—Н9	0.9300	

C4—C5	1.374 (4)	C10—H10	0.9300
С5—С6	1.375 (4)	C12—H12	0.9300
С7—С8	1.514 (4)	C13—H13	0.9300
C8—C13	1.374 (4)	C14—H14A	0.9600
C8—C9	1.376 (4)	C14—H14B	0.9600
C9—C10	1 386 (5)	C14—H14C	0.9600
C10-C11	1.300(3) 1 370(4)		0.9000
	1.570(1)		
O1····C1 ⁱ	3,362 (3)	C13····H7B ⁱ	3,0900
01···C6 ⁱⁱ	3.364(3)	$H1N\cdots O2^{vi}$	2.52 (3)
02…C7 ⁱ	3.352 (3)	H1N···H6	2.3000
02···C13 ⁱⁱⁱ	3282(4)	H2O2	2 4200
01H14C ^{iv}	2 7900	H2···C7	2.6300
01 ····H4	2.4000	H2···C8	2.8600
01H6 ⁱⁱ	2.4400	H2H7A	2.8800
02H1N ⁱⁱ	2.52 (3)	H4…O1	2.2000
02 HIN 02…H2	2.52 (5)	$H5\cdots H14C^{viii}$	2.1000
02 HZ 02…H7A ⁱ	2.4200	H6···O1 ^{vi}	2.3700
02 ···H13 ⁱⁱⁱ	2.6900	H6H1N	2.4400
N1C3v	3398(3)	H6H14Cviii	2.5000
N2…C1 ⁱ	3,333 (3)	$H7A \cdots O2^{v}$	2.5100
N1H13	2 6200	H7AC2	2.0400
$C1\cdots O1^{v}$	3362(3)	H7AH2	2.7500
$C1 \cdots N2^{v}$	3.302(3)	H7AH9	2.2000
C1C13	3,520 (4)	$H7B\cdots C11^{v}$	2.4400
C2···C8	3.320(4)	$H7B \cdots C12^{v}$	2.9800
C3N1 ⁱ	3 398 (3)	$H7B \cdots C13^{v}$	3 0900
	3.364(3)	H9H7A	2 4400
$C7O2^{v}$	3,352 (3)	$H9\cdots H14A^{ix}$	2.4400
C8C2	3.332(3)	H12H14A	2.0000
C13…C1	3,520 (4)	H13···· $\Omega^{2^{vii}}$	2.5400
$C13\cdots O2^{vii}$	3.320(4) 3.282(4)	H13N1	2.6200
С2…Н7А	2 7300	$H14A\cdots H9^{x}$	2.6200
C6···H14C ^{viii}	3.0800	H14A…H12	2.0000
С7…Н2	2 6300	$H14BC9^{i}$	2.9800
C8…H2	2.8600	$H14C\cdots O1^{xi}$	2.7900
C9H14B ^v	2.8800	H14C····C6 ^{xii}	3 0800
C11···H7B ⁱ	2.9800	$H14C\cdots H5^{xii}$	2 5700
$C12 \cdots H7B^{i}$	2.9000	$H14C \cdots H6^{xii}$	2.5700
C12 11/D	2.9200	1114C 110	2.3100
C1 - N1 - C7	124.5(2)	C1—C2—H2	121.00
01 - N2 - 02	121.3(2) 1231(2)	C_{3} C_{2} H_{2}	121.00
01 - N2 - C3	1179(2)	C3-C4-H4	121.00
02 - N2 - C3	117.9(2) 119.0(2)	C5-C4-H4	121.00
C7 - N1 - H1N	173 (2)	C4—C5—H5	121.00
$C1_N1_H1N$	123(2) 113(2)	Сс-С5-Н5	120.00
N1 - C1 - C6	113(2) 1205(2)	С1—С6. Н6	120.00
C_{2}	120.3(2) 117 0(2)	С1С0110	119.00
	11/.7(4)	0.000110	117.00

N1—C1—C2	121.5 (2)	N1—C7—H7A	108.00
C1—C2—C3	118.1 (2)	N1—C7—H7B	108.00
N2—C3—C4	118.0 (2)	C8—C7—H7A	108.00
N2—C3—C2	117.97 (19)	C8—C7—H7B	108.00
C2—C3—C4	124.0 (2)	H7A—C7—H7B	107.00
C3—C4—C5	117.3 (2)	С8—С9—Н9	119.00
C4—C5—C6	120.6 (2)	С10—С9—Н9	119.00
C1—C6—C5	122.0 (2)	C9—C10—H10	119.00
N1—C7—C8	115.3 (2)	C11—C10—H10	119.00
C9—C8—C13	116.4 (2)	C11—C12—H12	119.00
С7—С8—С9	121.4 (2)	C13—C12—H12	119.00
C7—C8—C13	122.2 (2)	C8—C13—H13	119.00
C8—C9—C10	121.5 (3)	C12—C13—H13	119.00
C9—C10—C11	121.7 (3)	C11—C14—H14A	109.00
C10-C11-C14	122.2 (3)	C11—C14—H14B	110.00
C10-C11-C12	116.7 (3)	C11—C14—H14C	109.00
C12—C11—C14	121.0 (3)	H14A—C14—H14B	109.00
C11—C12—C13	121.8 (3)	H14A—C14—H14C	109.00
C8—C13—C12	121.9 (3)	H14B—C14—H14C	109.00
C7—N1—C1—C2	0.7 (4)	C3—C4—C5—C6	-0.9 (4)
C7—N1—C1—C6	179.2 (2)	C4—C5—C6—C1	0.6 (4)
C1—N1—C7—C8	73.9 (3)	N1—C7—C8—C9	-152.7 (3)
O1—N2—C3—C2	-179.8 (2)	N1—C7—C8—C13	29.0 (4)
O1—N2—C3—C4	-0.6 (3)	C7—C8—C13—C12	178.1 (3)
O2—N2—C3—C2	-0.8 (3)	C7—C8—C9—C10	-178.3 (3)
O2—N2—C3—C4	178.5 (2)	C13—C8—C9—C10	0.1 (4)
N1—C1—C2—C3	177.4 (2)	C9—C8—C13—C12	-0.3 (4)
C6—C1—C2—C3	-1.1 (3)	C8—C9—C10—C11	0.8 (5)
N1—C1—C6—C5	-178.1 (2)	C9—C10—C11—C12	-1.5 (5)
C2-C1-C6-C5	0.5 (4)	C9—C10—C11—C14	-179.0 (3)
C1-C2-C3-N2	-179.93 (19)	C10-C11-C12-C13	1.3 (5)
C1—C2—C3—C4	0.9 (3)	C14—C11—C12—C13	178.9 (3)
N2-C3-C4-C5	-179.1 (2)	C11—C12—C13—C8	-0.4 (5)
C2—C3—C4—C5	0.1 (4)		

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*-1, *y*, *z*+1; (iii) *x*, *y*, *z*+1; (iv) -*x*, *y*+1/2, -*z*; (v) *x*+1, *y*, *z*; (vi) *x*+1, *y*, *z*-1; (vii) *x*, *y*, *z*-1; (viii) -*x*+1, *y*+1/2, -*z*-1; (ix) *x*+1, *y*, *z*+1; (x) *x*-1, *y*, *z*-1; (xi) -*x*, *y*-1/2, -*z*; (xii) -*x*+1, *y*-1/2, -*z*-1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N1—H1 <i>N</i> ···O2 ^{vi}	0.78 (3)	2.52 (3)	3.277 (3)	168 (3)
C6—H6····O1 ^{vi}	0.93	2.44	3.364 (3)	171
C7— $H7A$ ···O2 ^v	0.97	2.64	3.352 (3)	130
C13—H13…O2 ^{vii}	0.93	2.69	3.282 (4)	122

Symmetry codes: (v) *x*+1, *y*, *z*; (vi) *x*+1, *y*, *z*-1; (vii) *x*, *y*, *z*-1.