

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3,3,3',3'-Tetramethyl-6,6'-bis[(pyridin-4yl)methoxy]-1,1'-spirobiindane monohydrate

Ya-Jie Zhang, Yan Sun, Shu-Mei Gao, Xiao-Qing Jiang and Yu-Heng Deng*

Department of Chemistry, Capital Normal University, Beijing 100048, People's Republic of China

Correspondence e-mail: dyh@mail.cnu.edu.cn

Received 3 May 2012; accepted 10 May 2012

Key indicators: single-crystal X-ray study; T = 173 K; mean σ (C–C) = 0.003 Å; R factor = 0.069; wR factor = 0.137; data-to-parameter ratio = 14.4.

The asymmetric unit in the title compound, $C_{33}H_{34}N_2O_2 \cdot H_2O_3$. consists of a V-shaped molecule and a water molecule to which it is hydrogen bonded. The angle between the mean planes of the two spiro-connected indane groups is $77.06 (5)^{\circ}$. The two five-membered rings of the indane groups have envelope conformations with the methylene atoms adjacent to the spiro C atom forming the flaps. They have deviations from the mean plane of the other four atoms in the rings of 0.374 (4) and 0.362 (4) Å. In the crystal, molecules are linked to form inversion dimers *via* $O-H \cdot \cdot \cdot N$ hydrogen bonds involving the pyridine N atoms and the solvent water molecule. The dimers are linked into a chain along the b axis by π - π stacking interactions between a pyridine ring and its centrosymmetrically related ring in an adjacent dimer. The centroidcentroid distance between the planes is 3.7756 (17) Å, the perpendicular distance is 3.4478 (11) Å and the offset is 1.539 Å.

Related literature

For the use of spirane derivatives in ligand design, see: Chan et al. (1997); Cottam & Steel (2009); Ding et al. (2009); Srivastava et al. (1992). For 1,1'-spirobiindane and its analogues, see: Cottam & Steel (2009); Birman et al. (1999); Brewster & Prudence (1973). For the experimental procedure, see: Cottam & Steel (2009); Kendhale et al. (2008); Yao et al. (2010).

Experimental

Crystal data

$C_{33}H_{34}N_2O_2 \cdot H_2O$	$\gamma = 77.22 \ (3)^{\circ}$
$M_r = 508.64$	V = 1378.6 (5) Å ³
Triclinic, P1	Z = 2
a = 6.0101 (12) Å	Mo $K\alpha$ radiation
b = 10.724 (2) Å	$\mu = 0.08 \text{ mm}^{-1}$
c = 22.156 (4) Å	$T = 173 { m K}$
$\alpha = 81.92 \ (3)^{\circ}$	$0.49 \times 0.25 \times 0.2$
$\beta = 87.17 \ (3)^{\circ}$	

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\min} = 0.963, \ T_{\max} = 0.984$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.069$	347
$wR(F^2) = 0.137$	H-a
S = 1.16	$\Delta \rho$
4988 reflections	$\Delta \rho$

 $K\alpha$ radiation 0.08 mm^{-1} 173 K \times 0.25 \times 0.21 mm

10554 measured reflections 4988 independent reflections 4253 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.034$

347	7 parameters
H-	atom parameters constrained
Δμ	$p_{\rm max} = 0.24 \ {\rm e} \ {\rm A}^{-3}$
$\Delta \mu$	$p_{\min} = -0.17 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O3-H3A\cdots N2$ $O3-H3B\cdots N1^{i}$	0.89	2.00	2.888(3) 2.940(3)	173 173
05-1150-111	0.89	2.05	2.940 (3)	175

Symmetry code: (i) -x + 1, -y + 1, -z + 1.

Data collection: APEX2 (Bruker, 2007); cell refinement: APEX2 and SAINT (Bruker, 2007); data reduction: APEX2 and SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2001); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

This work was supported by the National Natural Science Foundation of China (grant No. 20971091), the Beijing Municipal Natural Science Foundation (grant No. 2102011) and the Scientific Research Common Program of Beijing Municipal Commission of Education (grant No. KM201010028008).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GO2055).

References

Birman, V. B., Rheingold, A. L. & Lamb, K. (1999). Tetrahedron Asymmetry, 10, 125-131.

Brandenburg, K. (2001). DIAMOND. Crystal Impact GbR, Bonn, Germany. Brewster, J. H. & Prudence, R. T. (1973). J. Am. Chem. Soc. 95, 1217-1229. Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin USA

Chan, A. S. C., Hu, W., Pai, C.-C. & Lau, C.-P. (1997). J. Am. Chem. Soc. 119, 9570-9571

Cottam, J. R. A. & Steel, P. J. (2009). Tetrahedron, 65, 7948-7953. Ding, K., Han, Z. & Wang, Z. (2009). Chem. Asian J. 4, 32-41.

Kendhale, A. M., Gonnade, R., Rajamohanan, P. R., Hofmann, H. & Sanjayan, G. J. (2008). Chem. Commun. 22, 2541–2543. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Srivastava, N., Mital, A. & Kumar, A. (1992). J. Chem. Soc. Chem. Commun. pp. 493–494.
Yao, M., Ding, Y., Wang, Z. & Deng, Y. (2010). Acta Cryst. E66, 03191.

supporting information

Acta Cryst. (2012). E68, o1763-o1764 [doi:10.1107/S1600536812021289]

3,3,3',3'-Tetramethyl-6,6'-bis[(pyridin-4-yl)methoxy]-1,1'-spirobiindane monohydrate

Ya-Jie Zhang, Yan Sun, Shu-Mei Gao, Xiao-Qing Jiang and Yu-Heng Deng

S1. Comment

Spirane derivatives, which are typical molecules with axial chirality, have been mainly employed in ligand design and asymmetric synthesis (Srivastava *et al.*, 1992; Chan *et al.*, 1997; Ding *et al.*, 2009; Cottam & Steel, 2009). Among them, 1,1'-spirobiindane and its analogs have also attracted much attention for their featuring C2-symmetric chiral property (Birman *et al.*, 1999; Brewster & Prudence, 1973; Cottam & Steel, 2009). Following our previous work(Yao *et al.*, 2010), we report the structure of a bidentate flexible nitrogen ligand by coupling 1,1,-spirobiindane with nitrogen-containing heterocycles.

The molecule of $C_{33}H_{34}N_2O_2.H_2O$, is V-shaped, Figure 1. The angle between the mean planes of the two spiro connected indane groups is 77.06 (5)°.

The two five membered rings of the indane groups have an envelope pucker with the methylene atoms, C9 and C17, adjacent to the spiro carbon atom forming the flaps. They have deviations from mean plane of other 4 atoms in the rings of 0.374 (4) Å and 0.362 (4) Å, respectively.

Two molecules are linked to form a centrosymmetric dimer *via* hydrogen bonds between the pyridinyl nitrogen atoms and the solvent water, O3—H3A···N2 (within the asymmetric unit) and O3—H3B···N1 (1 - x, 1 - y, 1 - z), Table 1 and Figure 2.

The dimers are linked to form a one-dimensional chain structure by π — π stacking interactions between the pyridinyl ring (C29—C30—N1—C31—C32—C33) and its centrosymmetrically related ring at (3 - *x*,-*y*,1 - *z*+). The centroid-centroid distance between the planes is 3.7756 (17) Å, the perpendicular distance is 3.4478 (11) Å and the offset is 1.539 Å, Figure 2.

S2. Experimental

The starting material compound, 6,6'-dihydroxy-3,3,3',3'-tetramethyl- 1,1'-spirobiindane, was synthesized by the literature method (Kendhale *et al.*, 2008). The title compound was prepared following the literature procedure (Cottam & Steel, 2009). A mixture of 6,6'-dihydroxy-3,3,3',3'- tetramethyl-1,1'-spirobiindane, 4-chloromethylpyridine and sodium hydroxide (mole ratio: 1:2:4) was refluxed in dry acetone solvent for 3 days under an N₂ atmosphere. The solid crude product was obtained by removal of the solvent and further purified by column chromatography on silica gel (hexane/EtOAc = 8:2 v.v), yield 50%. Colourless crystals were obtained by slow evaporation from a solution of hexane.

S3. Refinement

The hydrogen atoms were placed in idealized positions and allowed to ride on the relevant atoms, with C—H = 0.93 and 0.97 Å for aryl and methylene H atoms, respectively, $U_{iso}(H)=1.2U_{eq}(C)$, O—H = 0.89 Å with $U_{iso}(H)=1.2U_{eq}(O)$. The positions of the methyl and water H atoms were checked on a final difference Fourier.

Figure 1

ORTEP drawing of title compound with the atom-numbering scheme, showing 30% probability displacement ellipsoids. (All labels of the H atoms are omitted for clarity, the dotted line represents as hydrogen bond).

Figure 2

The chain structure constructed by the dimers by the π -- π stacking forces shown as dotted lines.

3,3,3',3'-Tetramethyl-6,6'-bis[(pyridin-4-yl)methoxy]-1,1'-spirobiindane monohydrate

Crystal data	
$C_{33}H_{34}N_2O_2 \cdot H_2O$	$\beta = 87.17 \ (3)^{\circ}$
$M_r = 508.64$	$\gamma = 77.22 \ (3)^{\circ}$
Triclinic, $P\overline{1}$	V = 1378.6 (5) Å ³
a = 6.0101 (12) Å	Z = 2
b = 10.724 (2) Å	F(000) = 544
c = 22.156 (4) Å	$D_{\rm x} = 1.225 {\rm ~Mg} {\rm ~m}^{-3}$
$\alpha = 81.92 \ (3)^{\circ}$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å

Cell parameters from 3702 reflections
$\theta = 1.9 - 25.3^{\circ}$
$\mu = 0.08 \text{ mm}^{-1}$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2007)
$T_{\min} = 0.963, \ T_{\max} = 0.984$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.069$	Hydrogen site location: inferred from
$wR(F^2) = 0.137$	neighbouring sites
<i>S</i> = 1.16	H-atom parameters constrained
4988 reflections	$w = 1/[\sigma^2(F_o^2) + (0.035P)^2 + 0.7601P]$
347 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.24 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.17 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

T = 173 K Block, colourless $0.49 \times 0.25 \times 0.21$ mm

 $R_{\rm int} = 0.034$

 $k = -12 \rightarrow 12$ $l = -24 \rightarrow 26$

10554 measured reflections 4988 independent reflections 4253 reflections with $I > 2\sigma(I)$

 $\theta_{\text{max}}^{\text{m}} = 25.3^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$ $h = -7 \rightarrow 7$

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	1.1312 (3)	0.04027 (16)	0.33047 (7)	0.0397 (4)	
O2	0.1540 (3)	0.43323 (16)	0.23137 (8)	0.0427 (4)	
N1	1.5601 (4)	0.2248 (2)	0.46452 (11)	0.0507 (6)	
N2	-0.4528 (4)	0.5560 (2)	0.38411 (11)	0.0528 (6)	
C1	0.6971 (4)	0.0684 (2)	0.14537 (10)	0.0306 (5)	
C2	0.5655 (4)	0.2053 (2)	0.14847 (10)	0.0292 (5)	
C3	0.4135 (4)	0.2482 (2)	0.19451 (10)	0.0314 (5)	
Н3	0.3835	0.1900	0.2288	0.038*	
C4	0.3069 (4)	0.3778 (2)	0.18911 (11)	0.0336 (5)	
C5	0.3525 (4)	0.4625 (2)	0.13868 (11)	0.0395 (6)	
Н5	0.2780	0.5511	0.1353	0.047*	
C6	0.5050 (4)	0.4188 (2)	0.09374 (11)	0.0381 (6)	
H6	0.5361	0.4771	0.0596	0.046*	

C7	0.6129 (4)	0.2894 (2)	0.09859 (10)	0.0313 (5)
C8	0.7834 (4)	0.2204 (2)	0.05474 (11)	0.0351 (6)
C9	0.8772 (4)	0.0906 (2)	0.09442 (11)	0.0386 (6)
H9A	1.0229	0.0928	0.1128	0.046*
H9B	0.9059	0.0194	0.0691	0.046*
C10	0.8030 (4)	0.0020(2)	0.20557 (10)	0.0286 (5)
C11	0.9276 (4)	0.0530 (2)	0.24253 (10)	0.0313 (5)
H11	0.9555	0.1370	0.2312	0.038*
C12	1.0119 (4)	-0.0205 (2)	0.29660 (10)	0.0318 (5)
C13	0.9705 (4)	-0.1428 (2)	0.31379 (10)	0.0345 (6)
H13	1.0265	-0.1919	0.3512	0.041*
C14	0.8451 (4)	-0.1929 (2)	0.27528 (11)	0.0350 (5)
H14	0.8170	-0.2770	0.2864	0.042*
C15	0.7615 (4)	-0.1208 (2)	0.22100 (10)	0.0291 (5)
C16	0.6323 (4)	-0.1574 (2)	0.17100 (11)	0.0315 (5)
C17	0.5423 (4)	-0.0241(2)	0.13356 (11)	0.0373 (6)
H17A	0.3828	0.0110	0.1460	0.045*
H17B	0.5455	-0.0327	0.0896	0.045*
C18	0.6609 (4)	0.2012 (3)	-0.00128 (11)	0.0429 (6)
H18A	0.5397	0.1550	0.0119	0.064*
H18B	0.7705	0.1510	-0.0277	0.064*
H18C	0.5941	0.2855	-0.0239	0.064*
C19	0.9733 (4)	0.2922(3)	0.03409 (13)	0.0521 (7)
H19A	0.9085	0.3739	0.0091	0.078*
H19B	1.0881	0.2390	0.0100	0.078*
H19C	1.0449	0.3095	0.0699	0.078*
C20	0.4349 (4)	-0.2201(3)	0.19443 (13)	0.0433 (6)
H20A	0.4950	-0.3051	0.2172	0.065*
H20B	0.3473	-0.2297	0.1599	0.065*
H20C	0.3354	-0.1656	0.2213	0.065*
C21	0.7993 (4)	-0.2496(2)	0.13409 (12)	0.0405 (6)
H21A	0.9238	-0.2087	0.1176	0.061*
H21B	0.7186	-0.2695	0.1005	0.061*
H21C	0.8619	-0.3295	0.1607	0.061*
C22	0.1231 (4)	0.3548 (2)	0.28763 (12)	0.0405 (6)
H22A	0.2627	0.3366	0.3122	0.049*
H22B	0.0926	0.2717	0.2796	0.049*
C23	-0.0741 (4)	0.4264 (2)	0.32137 (11)	0.0361 (6)
C24	-0.0538(5)	0.4563 (2)	0.37921 (12)	0.0445 (6)
H24	0.0898	0.4334	0.3986	0.053*
C25	-0.2440(5)	0.5196 (3)	0.40854 (13)	0.0533 (8)
H25	-0.2268	0.5388	0.4484	0.064*
C26	-0.4693(5)	0.5269 (3)	0.32831 (13)	0.0479 (7)
H26	-0.6144	0.5520	0.3098	0.057*
C27	-0.2893 (4)	0.4629 (2)	0.29563 (12)	0.0410 (6)
H27	-0.3119	0.4439	0.2561	0.049*
C28	1.2225 (4)	-0.0277 (2)	0.38685 (11)	0.0400 (6)
H28A	1.3343	-0.1076	0.3800	0.048*

1.0993	-0.0513	0.4144	0.048*
1.3368 (4)	0.0620(2)	0.41402 (10)	0.0336 (5)
1.2521 (4)	0.1158 (2)	0.46561 (11)	0.0388 (6)
1.1150	0.0987	0.4847	0.047*
1.3682 (5)	0.1949 (3)	0.48926 (12)	0.0473 (7)
1.3082	0.2300	0.5252	0.057*
1.6353 (4)	0.1750 (3)	0.41367 (13)	0.0463 (7)
1.7691	0.1965	0.3944	0.056*
1.5327 (4)	0.0949 (3)	0.38721 (11)	0.0404 (6)
1.5951	0.0623	0.3509	0.048*
-0.8355 (3)	0.67390 (19)	0.45596 (8)	0.0520 (5)
-0.7253	0.6347	0.4324	0.078*
-0.7606	0.7035	0.4826	0.078*
	1.0993 1.3368 (4) 1.2521 (4) 1.1150 1.3682 (5) 1.3082 1.6353 (4) 1.7691 1.5327 (4) 1.5951 -0.8355 (3) -0.7253 -0.7606	1.0993 -0.0513 1.3368 (4) 0.0620 (2) 1.2521 (4) 0.1158 (2) 1.1150 0.0987 1.3682 (5) 0.1949 (3) 1.3082 0.2300 1.6353 (4) 0.1750 (3) 1.7691 0.1965 1.5327 (4) 0.0949 (3) 1.5951 0.0623 -0.8355 (3) 0.67390 (19) -0.7253 0.6347 -0.7606 0.7035	1.0993 -0.0513 0.4144 1.3368 (4) 0.0620 (2) 0.41402 (10) 1.2521 (4) 0.1158 (2) 0.46561 (11) 1.1150 0.0987 0.4847 1.3682 (5) 0.1949 (3) 0.48926 (12) 1.3082 0.2300 0.5252 1.6353 (4) 0.1750 (3) 0.41367 (13) 1.7691 0.1965 0.3944 1.5327 (4) 0.0949 (3) 0.38721 (11) 1.5951 0.0623 0.3509 -0.8355 (3) 0.67390 (19) 0.45596 (8) -0.7253 0.6347 0.4324 -0.7606 0.7035 0.4826

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0548 (11)	0.0366 (10)	0.0309 (9)	-0.0167 (8)	-0.0149 (8)	-0.0001 (7)
O2	0.0518 (11)	0.0325 (10)	0.0368 (10)	0.0030 (8)	0.0097 (8)	-0.0040 (8)
N1	0.0622 (15)	0.0435 (14)	0.0499 (15)	-0.0175 (11)	-0.0158 (12)	-0.0026 (11)
N2	0.0571 (15)	0.0490 (15)	0.0481 (15)	-0.0058 (12)	0.0146 (12)	-0.0065 (11)
C1	0.0310 (12)	0.0293 (12)	0.0299 (12)	-0.0006 (9)	-0.0058 (10)	-0.0058 (10)
C2	0.0268 (11)	0.0292 (12)	0.0311 (12)	-0.0030 (9)	-0.0053 (9)	-0.0060 (10)
C3	0.0330 (12)	0.0294 (12)	0.0307 (13)	-0.0053 (10)	-0.0019 (10)	-0.0024 (10)
C4	0.0308 (12)	0.0335 (13)	0.0355 (13)	-0.0022 (10)	0.0014 (10)	-0.0092 (10)
C5	0.0460 (15)	0.0266 (13)	0.0422 (15)	-0.0014 (11)	-0.0023 (12)	-0.0015 (11)
C6	0.0452 (14)	0.0313 (13)	0.0353 (14)	-0.0066 (11)	0.0014 (11)	0.0003 (11)
C7	0.0313 (12)	0.0330 (13)	0.0286 (12)	-0.0037 (10)	-0.0051 (10)	-0.0042 (10)
C8	0.0330 (13)	0.0406 (14)	0.0286 (13)	-0.0023 (10)	-0.0023 (10)	-0.0022 (10)
C9	0.0325 (13)	0.0450 (15)	0.0321 (13)	0.0044 (11)	-0.0018 (10)	-0.0046 (11)
C10	0.0261 (11)	0.0300 (12)	0.0269 (12)	0.0005 (9)	-0.0015 (9)	-0.0042 (9)
C11	0.0332 (12)	0.0293 (12)	0.0315 (13)	-0.0060 (10)	-0.0040 (10)	-0.0044 (10)
C12	0.0343 (12)	0.0332 (13)	0.0294 (13)	-0.0078 (10)	-0.0020 (10)	-0.0085 (10)
C13	0.0404 (14)	0.0376 (14)	0.0238 (12)	-0.0065 (11)	-0.0035 (10)	-0.0004 (10)
C14	0.0386 (13)	0.0309 (13)	0.0359 (14)	-0.0091 (10)	-0.0003 (11)	-0.0035 (10)
C15	0.0252 (11)	0.0293 (12)	0.0316 (12)	-0.0009 (9)	0.0002 (9)	-0.0080 (10)
C16	0.0304 (12)	0.0293 (13)	0.0350 (13)	-0.0027 (10)	-0.0040 (10)	-0.0092 (10)
C17	0.0380 (13)	0.0334 (14)	0.0405 (14)	-0.0015 (10)	-0.0132 (11)	-0.0109 (11)
C18	0.0453 (15)	0.0482 (16)	0.0295 (13)	0.0035 (12)	-0.0064 (11)	-0.0058 (11)
C19	0.0449 (16)	0.065 (2)	0.0454 (17)	-0.0152 (14)	0.0060 (13)	-0.0031 (14)
C20	0.0371 (14)	0.0431 (16)	0.0535 (17)	-0.0118 (11)	-0.0017 (12)	-0.0139 (13)
C21	0.0406 (14)	0.0403 (15)	0.0397 (15)	-0.0005 (11)	-0.0045 (11)	-0.0136 (12)
C22	0.0463 (15)	0.0314 (14)	0.0422 (15)	-0.0057 (11)	0.0005 (12)	-0.0039 (11)
C23	0.0449 (14)	0.0287 (13)	0.0369 (14)	-0.0123 (11)	0.0015 (11)	-0.0054 (10)
C24	0.0543 (16)	0.0398 (15)	0.0398 (15)	-0.0104 (12)	-0.0047 (12)	-0.0053 (12)
C25	0.078 (2)	0.0466 (17)	0.0330 (15)	-0.0080 (15)	0.0076 (14)	-0.0106 (13)
C26	0.0449 (15)	0.0467 (16)	0.0514 (17)	-0.0113 (13)	0.0031 (13)	-0.0035 (13)
C27	0.0460 (15)	0.0413 (15)	0.0387 (15)	-0.0145 (12)	0.0022 (12)	-0.0087 (12)

supporting information

C28	0.0528 (16)	0.0402 (15)	0.0281 (13)	-0.0147 (12)	-0.0095 (11)	0.0019 (11)
C29	0.0383 (13)	0.0319 (13)	0.0292 (13)	-0.0058 (10)	-0.0085 (10)	0.0011 (10)
C30	0.0358 (13)	0.0449 (15)	0.0344 (14)	-0.0066 (11)	-0.0011 (11)	-0.0041 (11)
C31	0.0596 (18)	0.0447 (16)	0.0379 (15)	-0.0071 (13)	-0.0071 (13)	-0.0114 (12)
C32	0.0420 (15)	0.0523 (17)	0.0459 (16)	-0.0182 (13)	-0.0060 (12)	0.0042 (13)
C33	0.0430 (14)	0.0449 (15)	0.0329 (14)	-0.0086 (12)	0.0000 (11)	-0.0055 (11)
O3	0.0498 (11)	0.0609 (13)	0.0485 (12)	-0.0123 (9)	-0.0020 (9)	-0.0167 (10)

Geometric parameters (Å, °)

1.378 (3)	C16—C17	1.547 (3)
1.424 (3)	C17—H17A	0.9900
1.380 (3)	C17—H17B	0.9900
1.431 (3)	C18—H18A	0.9800
1.331 (3)	C18—H18B	0.9800
1.336 (4)	C18—H18C	0.9800
1.330 (4)	C19—H19A	0.9800
1.345 (4)	C19—H19B	0.9800
1.515 (3)	С19—Н19С	0.9800
1.519 (3)	C20—H20A	0.9800
1.556 (3)	C20—H20B	0.9800
1.556 (3)	С20—Н20С	0.9800
1.385 (3)	C21—H21A	0.9800
1.393 (3)	C21—H21B	0.9800
1.387 (3)	C21—H21C	0.9800
0.9500	C22—C23	1.491 (3)
1.394 (3)	C22—H22A	0.9900
1.379 (3)	C22—H22B	0.9900
0.9500	C23—C24	1.381 (3)
1.388 (3)	C23—C27	1.392 (4)
0.9500	C24—C25	1.378 (4)
1.520 (3)	C24—H24	0.9500
1.531 (3)	С25—Н25	0.9500
1.534 (3)	C26—C27	1.378 (4)
1.545 (3)	C26—H26	0.9500
0.9900	С27—Н27	0.9500
0.9900	C28—C29	1.502 (3)
1.378 (3)	C28—H28A	0.9900
1.387 (3)	C28—H28B	0.9900
1.389 (3)	C29—C30	1.377 (3)
0.9500	C29—C33	1.386 (3)
1.387 (3)	C30—C31	1.379 (4)
1.399 (3)	С30—Н30	0.9500
0.9500	C31—H31	0.9500
1.387 (3)	C32—C33	1.368 (4)
0.9500	С32—Н32	0.9500
1.525 (3)	С33—Н33	0.9500
1.524 (3)	O3—H3A	0.8906
	$\begin{array}{c} 1.378 (3) \\ 1.424 (3) \\ 1.380 (3) \\ 1.431 (3) \\ 1.331 (3) \\ 1.336 (4) \\ 1.330 (4) \\ 1.345 (4) \\ 1.515 (3) \\ 1.519 (3) \\ 1.556 (3) \\ 1.556 (3) \\ 1.385 (3) \\ 1.385 (3) \\ 1.387 (3) \\ 0.9500 \\ 1.394 (3) \\ 1.379 (3) \\ 0.9500 \\ 1.388 (3) \\ 0.9500 \\ 1.520 (3) \\ 1.531 (3) \\ 1.534 (3) \\ 1.545 (3) \\ 0.9900 \\ 0.9900 \\ 0.9900 \\ 1.378 (3) \\ 1.387 (3) \\ 1.387 (3) \\ 1.387 (3) \\ 1.387 (3) \\ 1.387 (3) \\ 1.387 (3) \\ 1.387 (3) \\ 1.387 (3) \\ 1.387 (3) \\ 1.387 (3) \\ 1.387 (3) \\ 1.387 (3) \\ 1.399 (3) \\ 0.9500 \\ 1.525 (3) \\ 1.524 (3) \end{array}$	1.378 (3) $C16-C17$ 1.424 (3) $C17-H17A$ 1.380 (3) $C17-H17B$ 1.431 (3) $C18-H18A$ 1.331 (3) $C18-H18B$ 1.336 (4) $C19-H19A$ 1.336 (4) $C19-H19A$ 1.336 (4) $C19-H19A$ 1.345 (4) $C19-H19B$ 1.515 (3) $C19-H19C$ 1.519 (3) $C20-H20A$ 1.556 (3) $C20-H20C$ 1.385 (3) $C21-H21A$ 1.393 (3) $C21-H21B$ 1.387 (3) $C22-H22A$ 1.379 (3) $C22-H22B$ 0.9500 $C22-C23$ 1.394 (3) $C22-H22B$ 0.9500 $C23-C27$ 0.9500 $C24-C25$ 1.520 (3) $C26-H26$ 0.9900 $C27-H27$ 0.9900 $C28-C29$ 1.378 (3) $C28-H28A$ 1.387 (3) $C28-H28B$ 1.387 (3) $C29-C30$ 0.9500 $C29-C33$ 1.387 (3) $C30-C31$ 1.387 (3) $C32-C33$ 0.9500 $C32-H32$ 1.525 (3) $C33-H33$ 1.524 (3) $O3-H3A$

C16—C21	1.536 (3)	O3—H3B	0.8904
C12—O1—C28	118.01 (18)	H17A—C17—H17B	108.4
C4—O2—C22	117.53 (18)	C8—C18—H18A	109.5
C32—N1—C31	115.9 (2)	C8—C18—H18B	109.5
C26—N2—C25	116.0 (2)	H18A—C18—H18B	109.5
C2-C1-C10	113.22 (19)	C8—C18—H18C	109.5
C2—C1—C9	101.17 (19)	H18A—C18—H18C	109.5
C10—C1—C9	113.16 (18)	H18B—C18—H18C	109.5
C2—C1—C17	113.07 (18)	C8—C19—H19A	109.5
C10—C1—C17	101.16 (19)	C8—C19—H19B	109.5
C9—C1—C17	115.6 (2)	H19A—C19—H19B	109.5
C7—C2—C3	121.4 (2)	C8—C19—H19C	109.5
C7—C2—C1	111.9 (2)	H19A—C19—H19C	109.5
C3—C2—C1	126.7 (2)	H19B—C19—H19C	109.5
C4—C3—C2	118.5 (2)	C16—C20—H20A	109.5
С4—С3—Н3	120.8	C16—C20—H20B	109.5
С2—С3—Н3	120.8	H20A—C20—H20B	109.5
O2—C4—C3	124.5 (2)	C16—C20—H20C	109.5
O2—C4—C5	115.1 (2)	H20A-C20-H20C	109.5
C3—C4—C5	120.4 (2)	H20B-C20-H20C	109.5
C6—C5—C4	120.5 (2)	C16—C21—H21A	109.5
С6—С5—Н5	119.8	C16—C21—H21B	109.5
C4—C5—H5	119.8	H21A—C21—H21B	109.5
C5—C6—C7	119.7 (2)	C16—C21—H21C	109.5
С5—С6—Н6	120.1	H21A—C21—H21C	109.5
С7—С6—Н6	120.1	H21B—C21—H21C	109.5
C2—C7—C6	119.6 (2)	O2—C22—C23	108.06 (19)
C2—C7—C8	111.7 (2)	O2—C22—H22A	110.1
C6—C7—C8	128.7 (2)	C23—C22—H22A	110.1
C7—C8—C19	112.7 (2)	O2—C22—H22B	110.1
C7—C8—C18	110.23 (19)	С23—С22—Н22В	110.1
C19—C8—C18	109.5 (2)	H22A—C22—H22B	108.4
С7—С8—С9	101.34 (18)	C24—C23—C27	117.4 (2)
C19—C8—C9	111.4 (2)	C24—C23—C22	122.2 (2)
C18—C8—C9	111.5 (2)	C27—C23—C22	120.4 (2)
C8—C9—C1	108.22 (18)	C25—C24—C23	119.3 (3)
С8—С9—Н9А	110.1	C25—C24—H24	120.3
С1—С9—Н9А	110.1	C23—C24—H24	120.3
С8—С9—Н9В	110.1	N2-C25-C24	123.9 (3)
С1—С9—Н9В	110.1	N2—C25—H25	118.0
H9A—C9—H9B	108.4	С24—С25—Н25	118.0
C11—C10—C15	121.5 (2)	N2-C26-C27	124.2 (3)
C11—C10—C1	126.1 (2)	N2—C26—H26	117.9
C15—C10—C1	112.4 (2)	С27—С26—Н26	117.9
C10—C11—C12	118.9 (2)	C26—C27—C23	119.1 (3)
C10-C11-H11	120.5	С26—С27—Н27	120.4
C12-C11-H11	120.5	С23—С27—Н27	120.4

O1—C12—C13	124.8 (2)	O1—C28—C29	106.27 (19)
O1—C12—C11	114.2 (2)	O1—C28—H28A	110.5
C13—C12—C11	121.0 (2)	C29—C28—H28A	110.5
C12—C13—C14	119.0 (2)	O1—C28—H28B	110.5
C12—C13—H13	120.5	C29—C28—H28B	110.5
C14—C13—H13	120.5	H28A—C28—H28B	108.7
C15—C14—C13	120.5 (2)	C30—C29—C33	117.3 (2)
C15—C14—H14	119.7	C30—C29—C28	122.1 (2)
C13—C14—H14	119.7	C33—C29—C28	120.6 (2)
C14—C15—C10	119.0 (2)	C29—C30—C31	119.4 (2)
C14—C15—C16	129.7 (2)	С29—С30—Н30	120.3
C10—C15—C16	111.2 (2)	С31—С30—Н30	120.3
C20—C16—C15	114.1 (2)	N1—C31—C30	123.8 (3)
C20—C16—C21	109.0 (2)	N1—C31—H31	118.1
C15—C16—C21	109.26 (18)	С30—С31—Н31	118.1
C20—C16—C17	110.53 (19)	N1—C32—C33	124.4 (3)
C15—C16—C17	101.35 (18)	N1—C32—H32	117.8
C21-C16-C17	112.5 (2)	C33—C32—H32	117.8
C16—C17—C1	108.51(18)	C32—C33—C29	119.2 (2)
С16—С17—Н17А	110.0	С32—С33—Н33	120.4
C1-C17-H17A	110.0	С29—С33—Н33	120.4
С16—С17—Н17В	110.0	H3A—O3—H3B	103.8
C1-C17-H17B	110.0		
C10—C1—C2—C7	135.5 (2)	C10—C11—C12—C13	-0.6 (3)
C9—C1—C2—C7	14.1 (2)	O1—C12—C13—C14	179.5 (2)
C17—C1—C2—C7	-110.2 (2)	C11—C12—C13—C14	1.1 (3)
C10—C1—C2—C3	-44.3 (3)	C12—C13—C14—C15	-0.6 (3)
C9—C1—C2—C3	-165.7 (2)	C13-C14-C15-C10	-0.3 (3)
C17—C1—C2—C3	70.0 (3)	C13—C14—C15—C16	176.7 (2)
C7—C2—C3—C4	0.8 (3)	C11-C10-C15-C14	0.9 (3)
C1—C2—C3—C4	-179.4 (2)	C1-C10-C15-C14	-179.16 (19)
C22—O2—C4—C3	7.4 (3)	C11—C10—C15—C16	-176.65 (19)
C22—O2—C4—C5	-172.1 (2)	C1-C10-C15-C16	3.3 (3)
C2—C3—C4—O2	-179.6 (2)	C14—C15—C16—C20	47.7 (3)
C2—C3—C4—C5	-0.2 (3)	C10-C15-C16-C20	-135.1 (2)
O2—C4—C5—C6	179.1 (2)	C14—C15—C16—C21	-74.5 (3)
C3—C4—C5—C6	-0.4 (4)	C10-C15-C16-C21	102.7 (2)
C4—C5—C6—C7	0.4 (4)	C14—C15—C16—C17	166.5 (2)
C3—C2—C7—C6	-0.8 (3)	C10-C15-C16-C17	-16.3 (2)
C1—C2—C7—C6	179.4 (2)	C20-C16-C17-C1	144.4 (2)
C3—C2—C7—C8	179.9 (2)	C15—C16—C17—C1	23.1 (2)
C1—C2—C7—C8	0.1 (3)	C21—C16—C17—C1	-93.5 (2)
C5—C6—C7—C2	0.2 (4)	C2-C1-C17-C16	-142.7 (2)
C5—C6—C7—C8	179.4 (2)	C10—C1—C17—C16	-21.3 (2)
C2—C7—C8—C19	-133.6 (2)	C9—C1—C17—C16	101.4 (2)
C6—C7—C8—C19	47.2 (3)	C4—O2—C22—C23	-170.9 (2)
C2C7C8C18	103.8 (2)	O2—C22—C23—C24	-122.1 (3)

C6—C7—C8—C18	-75.4 (3)	O2—C22—C23—C27	59.6 (3)
C2—C7—C8—C9	-14.3 (3)	C27—C23—C24—C25	0.1 (4)
C6—C7—C8—C9	166.5 (2)	C22—C23—C24—C25	-178.3 (2)
C7—C8—C9—C1	22.9 (2)	C26—N2—C25—C24	0.1 (4)
C19—C8—C9—C1	143.0 (2)	C23—C24—C25—N2	-0.4 (4)
C18—C8—C9—C1	-94.3 (2)	C25—N2—C26—C27	0.5 (4)
C2-C1-C9-C8	-22.9 (2)	N2-C26-C27-C23	-0.8 (4)
C10—C1—C9—C8	-144.3 (2)	C24—C23—C27—C26	0.5 (4)
C17—C1—C9—C8	99.6 (2)	C22—C23—C27—C26	178.9 (2)
C2-C1-C10-C11	-47.6 (3)	C12—O1—C28—C29	-178.67 (19)
C9—C1—C10—C11	66.8 (3)	O1—C28—C29—C30	111.0 (2)
C17—C1—C10—C11	-168.9 (2)	O1—C28—C29—C33	-68.3 (3)
C2-C1-C10-C15	132.4 (2)	C33—C29—C30—C31	-2.3 (3)
C9—C1—C10—C15	-113.2 (2)	C28—C29—C30—C31	178.3 (2)
C17—C1—C10—C15	11.2 (2)	C32—N1—C31—C30	1.1 (4)
C15—C10—C11—C12	-0.4 (3)	C29—C30—C31—N1	0.9 (4)
C1-C10-C11-C12	179.6 (2)	C31—N1—C32—C33	-1.7 (4)
C28—O1—C12—C13	1.1 (3)	N1—C32—C33—C29	0.2 (4)
C28—O1—C12—C11	179.6 (2)	C30—C29—C33—C32	1.8 (4)
C10-C11-C12-O1	-179.12 (19)	C28—C29—C33—C32	-178.8 (2)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	D—H···A
O3—H3A…N2	0.89	2.00	2.888 (3)	173
O3—H3 <i>B</i> ···N1 ⁱ	0.89	2.05	2.940 (3)	173

Symmetry code: (i) -x+1, -y+1, -z+1.