

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Di- μ -acetato- κ^4 O:O-bis({2-[(piperidin-2-ylmethyl)iminomethyl]phenolato- $\kappa^3 N, N', O$ }copper(II)) monohydrate

Xiao-qin Wang

Department of Medicinal Chemistry and Pharm-analysis, Guangdong Medical College, Dong guan, People's Republic of China Correspondence e-mail: 1545@gdmc.edu.cn

Received 3 March 2012; accepted 20 May 2012

Key indicators: single-crystal X-ray study; T = 292 K; mean σ (C–C) = 0.006 Å; R factor = 0.041; wR factor = 0.136; data-to-parameter ratio = 16.8.

In the binuclear centrosymmetric title compound, $[Cu_2(C_{13}H_{17}N_2O)_2(C_2H_3O_2)_2]\cdot H_2O$, the Cu^{II} atom is coordinated by two N atoms and one O atom from the Schiff base ligand and an acetate O atom in a distorted suare-planar geometry. The water O atom is invoved in three different hydrogen-bonding interactions, as donor to the acetate O atom and to the the ligand O atom and as acceptor to a ligand N atom.

Related literature

The ligand was prepared according to a literature method, see: Greatti *et al.* (2008).

7559 measured reflections 3542 independent reflections

 $R_{\rm int} = 0.034$

refinement $\Delta \rho_{\text{max}} = 0.55 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\min} = -0.84 \text{ e} \text{ Å}^{-3}$

2473 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Experimental

Crystal data

Data collection

Bruker APEXII diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{\rm min} = 0.772, T_{\rm max} = 0.876$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.041$ $wR(F^2) = 0.136$ S = 1.243542 reflections 211 parameters

Table 1Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$D1W-H1W2\cdots O2^{i}$ $D1W-H1W1\cdots O3^{ii}$ $N2-H1N\cdots O1W^{iii}$	0.79 (6) 0.81 (8) 1.00 (5)	2.06 (6) 2.24 (9) 2.09 (5)	2.845 (5) 2.970 (6) 3.047 (5)	173 (6) 151 (8) 159 (4)
Symmetry codes: (i) -x + 1, -y + 1, -z + 1.	-x+2, -y	v+1, -z+1;	(ii) <i>x</i> , <i>y</i> , <i>z</i>	- 1; (iii)

Data collection: *APEX2* (Bruker, 2005); cell refinement: *SAINT* (Bruker, 2005); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X-SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The author thanks Guangdong Medical college for supporting this study

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: GW2117).

References

Barbour, J. L. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2005). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Greatti, A., Scarpellini, M., Peralta, R. A., Bortoluzi, A. J., Xavier, F. R., Szoganicz, B., Tomkowicz, Z., Rams, M., Haase, W. & Neves, A. (2008). *Inorg. Chem.* 47, 1107–1119.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2012). E68, m833 [doi:10.1107/S1600536812023070]

Di- μ -acetato- κ^4 O:O-bis({2-[(piperidin-2-ylmethyl)iminomethyl]phenolato- $\kappa^3 N, N', O$ }copper(II)) monohydrate

Xiao-qin Wang

S1. Comment

There are no crystal structure studies of metal complexes of the new tridentate Schiff ligand. In the title compound, the binuclear molecule is centrosymmetric and the copper atom adopts a distorted square geometry, coordinated by N1, N2, O3 from the ligand and O1 from acetate. There are three kinds of hydrogen bonging in O1w of the lattice water with O2 from acetate, O3 and N2 from ligand. Related hydrogen bonding distances are listed in Table 1.

S2. Experimental

0.12 g (1 mmol) of salicylaldehyde and 0.12 g (1 mmol) of 2-(aminomethyl)piperidine were dissolved in 10 ml of methanol. The solution was stirred at room temperature for 1 h and 0.20 g (1 mmol) monohydrate copper(II) acetate was added. The reaction was stirred at room temperature for 30 minutes. The crude product was collected by filtration and then washed with methanol. Blue block shaped crystals suitable for single-crystal X-ray study were obtained by recrystallization from 2:1 MeCN-MeOH solution (5 ml) with the yield of 66%. CH&N elemental analysis. Found (calcd): C, 50.59 (50.29); H, 6.18 (6.15); N, 8.02 (7.82).

S3. Refinement

Carbon-bound H-atoms were placed in calculated positions (C—H 0.95 to 0.99 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2 to 1.5U(C).

The amino H-atom was located in a difference Fourier map, and was refined with a distance restraint of N–H 0.88±0.01 Å; its temperature factor was freely refined.

The final difference Fourier map had a peak in the vicinity of Zn1 but was otherwise featureless.

Figure 1

Thermal ellipsoid plot (Barbour, 2001) of $[Cu_2(C_{13}H_{17}N_2O)_2(C_2H_3O_2)_2](H_2O)$, at the 30% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

$Di-\mu$ -acetato- $\kappa^4 O:O$ -bis({2-[(piperidin-2- ylmethyl)iminomethyl]phenolato- $\kappa^3 N, N', O$ }copper(II)) monohydrate

 $l = -15 \rightarrow 15$

Crystal data	
$[Cu_2(C_{13}H_{17}N_2O)_2(C_2H_3O_2)_2]$ ·H ₂ O	Z = 1
$M_r = 715.79$	F(000) = 374
Triclinic, $P\overline{1}$	$D_{\rm x} = 1.467 {\rm Mg} {\rm m}^{-3}$
a = 8.7725 (18) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 8.8259 (18) Å	Cell parameters from 7559 reflections
c = 11.894 (2) Å	$\theta = 3.4 - 27.5^{\circ}$
$\alpha = 101.98 \ (3)^{\circ}$	$\mu = 1.37 \text{ mm}^{-1}$
$\beta = 101.04 \ (3)^{\circ}$	T = 292 K
$\gamma = 110.13 \ (3)^{\circ}$	Block, blue
V = 810.4 (3) Å ³	$0.20 \times 0.10 \times 0.10 \text{ mm}$
Data collection	
Bruker APEXII	7559 measured reflections
diffractometer	3542 independent reflections
Radiation source: fine-focus sealed tube	2473 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.034$
ωscans	$\theta_{\rm max} = 27.5^{\circ}, \theta_{\rm min} = 3.4^{\circ}$
Absorption correction: multi-scan	$h = -11 \rightarrow 11$
(SADABS; Sheldrick, 1996)	$k = -10 \rightarrow 11$

(SADABS; Sheldrick, 1996) $T_{min} = 0.772, T_{max} = 0.876$ Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.041$	Hydrogen site location: inferred from
$wR(F^2) = 0.136$	neighbouring sites
<i>S</i> = 1.24	H atoms treated by a mixture of independent
3542 reflections	and constrained refinement
211 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0652P)^2]$
0 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.55 \ { m e} \ { m \AA}^{-3}$
	$\Delta ho_{ m min} = -0.84$ e Å ⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Cu1	0.49939 (5)	0.30738 (5)	1.01386 (3)	0.03597 (17)	
01	0.6331 (3)	0.4839 (3)	0.9559 (2)	0.0377 (5)	
O2	0.7691 (4)	0.3218 (3)	0.9094 (3)	0.0531 (7)	
O3	0.6639(3)	0.4046 (3)	1.1697 (2)	0.0440 (6)	
N1	0.3578 (4)	0.1242 (4)	1.0631 (2)	0.0376 (6)	
N2	0.3251 (4)	0.1769 (4)	0.8508 (2)	0.0401 (7)	
C1	0.7429 (5)	0.4504 (4)	0.9107 (3)	0.0381 (7)	
C2	0.8387 (6)	0.5763 (5)	0.8546 (4)	0.0541 (10)	
H2A	0.9169	0.5389	0.8231	0.081*	
H2B	0.9000	0.6844	0.9141	0.081*	
H2C	0.7604	0.5858	0.7908	0.081*	
C3	0.6383 (5)	0.3757 (4)	1.2699 (3)	0.0411 (8)	
C4	0.7613 (6)	0.4822 (5)	1.3792 (3)	0.0554 (10)	
H4A	0.8585	0.5680	1.3781	0.066*	
C5	0.7393 (7)	0.4609 (6)	1.4868 (4)	0.0724 (14)	
H5A	0.8207	0.5344	1.5577	0.087*	
C6	0.5978 (7)	0.3316 (7)	1.4920 (4)	0.0782 (15)	
H6A	0.5833	0.3192	1.5655	0.094*	
C7	0.4810(7)	0.2237 (6)	1.3877 (3)	0.0645 (12)	
H7A	0.3879	0.1348	1.3907	0.077*	
C8	0.4966 (5)	0.2425 (5)	1.2753 (3)	0.0457 (9)	
C9	0.3696 (5)	0.1199 (4)	1.1711 (3)	0.0407 (8)	
H9A	0.2882	0.0287	1.1827	0.049*	
C10	0.2178 (5)	-0.0093 (5)	0.9659 (3)	0.0476 (9)	
H10A	0.1134	0.0057	0.9662	0.057*	
H10B	0.2041	-0.1185	0.9770	0.057*	
C11	0.2541 (5)	-0.0029 (4)	0.8480 (3)	0.0444 (8)	
H11A	0.3430	-0.0453	0.8431	0.053*	

C12	0.1037 (6)	-0.1121 (5)	0.7406 (3)	0.0539 (10)	
H12A	0.0094	-0.0806	0.7468	0.065*	
H12B	0.0700	-0.2294	0.7394	0.065*	
C13	0.1453 (6)	-0.0928 (5)	0.6245 (3)	0.0600 (11)	
H13A	0.2260	-0.1421	0.6114	0.072*	
H13B	0.0431	-0.1531	0.5578	0.072*	
C14	0.2180 (6)	0.0888 (5)	0.6292 (3)	0.0543 (10)	
H14A	0.1303	0.1322	0.6285	0.065*	
H14B	0.2547	0.0978	0.5580	0.065*	
C15	0.3660 (5)	0.1960 (5)	0.7388 (3)	0.0473 (9)	
H15A	0.4605	0.1645	0.7332	0.057*	
H15B	0.4007	0.3136	0.7409	0.057*	
O1W	0.9643 (5)	0.7056 (5)	0.1856 (4)	0.0694 (10)	
H1N	0.230 (7)	0.211 (6)	0.859 (4)	0.085 (16)*	
H1W1	0.908 (11)	0.625 (10)	0.203 (7)	0.16 (4)*	
H1W2	1.033 (8)	0.696 (8)	0.153 (5)	0.10 (2)*	

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cu1	0.0363 (3)	0.0324 (2)	0.0375 (2)	0.00788 (19)	0.01277 (17)	0.01509 (17)
01	0.0356 (14)	0.0359 (12)	0.0444 (13)	0.0106 (11)	0.0183 (11)	0.0178 (10)
O2	0.0530 (18)	0.0478 (15)	0.0771 (19)	0.0241 (15)	0.0353 (15)	0.0341 (14)
03	0.0374 (15)	0.0459 (14)	0.0419 (13)	0.0051 (12)	0.0094 (11)	0.0211 (11)
N1	0.0361 (17)	0.0389 (15)	0.0404 (15)	0.0120 (14)	0.0135 (12)	0.0195 (12)
N2	0.0419 (19)	0.0388 (16)	0.0378 (14)	0.0091 (15)	0.0149 (13)	0.0163 (13)
C1	0.032 (2)	0.0364 (18)	0.0431 (17)	0.0094 (16)	0.0105 (15)	0.0143 (15)
C2	0.059 (3)	0.050(2)	0.069 (2)	0.021 (2)	0.039 (2)	0.032 (2)
C3	0.049 (2)	0.0379 (18)	0.0377 (17)	0.0190 (18)	0.0101 (16)	0.0129 (15)
C4	0.064 (3)	0.043 (2)	0.049 (2)	0.013 (2)	0.010 (2)	0.0138 (18)
C5	0.092 (4)	0.068 (3)	0.037 (2)	0.021 (3)	0.007 (2)	0.005 (2)
C6	0.093 (4)	0.089 (4)	0.038 (2)	0.016 (3)	0.023 (2)	0.021 (2)
C7	0.072 (3)	0.073 (3)	0.045 (2)	0.018 (3)	0.026 (2)	0.023 (2)
C8	0.050 (2)	0.051 (2)	0.0424 (18)	0.023 (2)	0.0174 (17)	0.0175 (17)
C9	0.039 (2)	0.0374 (18)	0.0494 (19)	0.0115 (17)	0.0174 (16)	0.0215 (16)
C10	0.039 (2)	0.0402 (19)	0.050(2)	-0.0002 (17)	0.0073 (16)	0.0192 (16)
C11	0.043 (2)	0.0354 (18)	0.0478 (19)	0.0063 (17)	0.0102 (16)	0.0166 (15)
C12	0.050 (3)	0.043 (2)	0.052 (2)	0.0030 (19)	0.0039 (18)	0.0180 (18)
C13	0.062 (3)	0.054 (2)	0.048 (2)	0.011 (2)	0.006 (2)	0.0130 (19)
C14	0.063 (3)	0.053 (2)	0.0387 (18)	0.014 (2)	0.0096 (18)	0.0171 (17)
C15	0.053 (3)	0.047 (2)	0.0376 (17)	0.0107 (19)	0.0141 (17)	0.0188 (16)
O1W	0.061 (2)	0.064 (2)	0.091 (3)	0.032 (2)	0.030(2)	0.0183 (19)

Geometric parameters (Å, °)

Cu1—O3	1.928 (3)	С6—Н6А	0.9300
Cu1—O1	1.944 (2)	С7—С8	1.408 (5)
Cu1—N1	1.946 (3)	С7—Н7А	0.9300

	2,027,(2)	C9 C9	1 40((5)
CuI—N2	2.037 (3)	C8-C9	1.426 (5)
OI—CI	1.277 (4)	С9—Н9А	0.9300
02—C1	1.230 (4)	C10—C11	1.504 (5)
O3—C3	1.313 (4)	C10—H10A	0.9700
N1—C9	1.278 (4)	C10—H10B	0.9700
N1—C10	1.459 (5)	C11—C12	1.506 (5)
N2—C15	1.472 (4)	C11—H11A	0.9800
N2—C11	1.482 (4)	C12—C13	1.522 (6)
N2—H1N	1.00 (5)	C12—H12A	0.9700
C1—C2	1.505 (5)	C12—H12B	0.9700
C2—H2A	0.9600	C13—C14	1.491 (6)
C2—H2B	0.9600	С13—Н13А	0.9700
C2—H2C	0.9600	C13—H13B	0.9700
C3—C8	1.410 (6)	C14—C15	1.508 (5)
C3—C4	1.412 (5)	C14—H14A	0.9700
C4—C5	1.372 (6)	C14—H14B	0.9700
C4—H4A	0.9300	C15—H15A	0.9700
C5-C6	1 390 (7)	C15—H15B	0.9700
C5H5A	0.9300	O1W—H1W1	0.81 (8)
C6 C7	1 350 (6)	O1W $H1W2$	0.01 (6)
20-27	1.559 (0)	01 w—111 w2	0.79(0)
O3—Cu1—O1	91.10 (11)	С7—С8—С9	117.6 (4)
O3—Cu1—N1	91.94 (12)	C3—C8—C9	123.0 (3)
O1—Cu1—N1	176.92 (10)	N1—C9—C8	125.7 (4)
O3—Cu1—N2	173.00 (11)	N1—C9—H9A	117.1
O1—Cu1—N2	93.92 (11)	С8—С9—Н9А	117.1
N1—Cu1—N2	83.01 (12)	N1—C10—C11	109.4 (3)
C1	114.3 (2)	N1—C10—H10A	109.8
C3—O3—Cu1	126.2 (2)	C11—C10—H10A	109.8
C9—N1—C10	119.3 (3)	N1—C10—H10B	109.8
C9—N1—Cu1	125.8 (3)	C11—C10—H10B	109.8
C10-N1-Cu1	114.6 (2)	H10A—C10—H10B	108.2
C15 - N2 - C11	111.7(3)	N_{2} C11 - C10	107.8(3)
C15 - N2 - Cu1	121.4(3)	N_{2} C11 C12	107.0(3)
C11 = N2 = Cu1	106.9(2)	C_{10} C_{11} C_{12}	113.2(3)
C15 N2 H1N	100.9(2)	$N_2 C_{11} H_{11A}$	107.3
C_{11} N2 H1N	102(3)	C_{10} C_{11} H_{11A}	107.3
C_{11} N_2 H_{1N}	102(3)	C_{10} C_{11} H_{11A}	107.3
$Cu_1 - N_2 - MN$	102(3) 122(2)	C12 - C11 - C12	107.3
02 - C1 - C1	123.3(3) 120.4(2)	$C_{11} = C_{12} = C_{13}$	111.1 (4)
02-C1-C2	120.4(3)	C12 - C12 - H12A	109.4
01 - 01 - 02	116.2 (3)	C13—C12—H12A	109.4
C1 - C2 - H2A	109.5	C11—C12—H12B	109.4
C1—C2—H2B	109.5	C13—C12—H12B	109.4
H2A—C2—H2B	109.5	H12A—C12—H12B	108.0
C1—C2—H2C	109.5	C14—C13—C12	111.0 (3)
H2A—C2—H2C	109.5	C14—C13—H13A	109.4
H2B—C2—H2C	109.5	C12—C13—H13A	109.4
O3—C3—C8	124.0 (3)	C14—C13—H13B	109.4

O3—C3—C4	118.4 (4)	C12—C13—H13B	109.4
C8—C3—C4	117.6 (3)	H13A—C13—H13B	108.0
C5—C4—C3	121.0 (4)	C13—C14—C15	112.9 (3)
C5—C4—H4A	119.5	C13—C14—H14A	109.0
C3—C4—H4A	119.5	C15—C14—H14A	109.0
C4—C5—C6	121.3 (4)	C13—C14—H14B	109.0
C4—C5—H5A	119.4	C15—C14—H14B	109.0
C6—C5—H5A	119.4	H14A—C14—H14B	107.8
C7—C6—C5	118.7 (4)	N2-C15-C14	112.4 (3)
С7—С6—Н6А	120.6	N2—C15—H15A	109.1
С5—С6—Н6А	120.6	C14—C15—H15A	109.1
C6—C7—C8	122.0 (5)	N2—C15—H15B	109.1
С6—С7—Н7А	119.0	C14—C15—H15B	109.1
С8—С7—Н7А	119.0	H15A—C15—H15B	107.9
C7—C8—C3	119.4 (4)	H1W1—O1W—H1W2	118 (6)
O3—Cu1—O1—C1	89.0 (2)	C4—C3—C8—C7	1.6 (5)
N2—Cu1—O1—C1	-86.1 (2)	O3—C3—C8—C9	3.1 (6)
O1—Cu1—O3—C3	161.2 (3)	C4—C3—C8—C9	-175.8 (3)
N1—Cu1—O3—C3	-19.3 (3)	C10—N1—C9—C8	-178.6 (3)
O3—Cu1—N1—C9	15.0 (3)	Cu1—N1—C9—C8	-5.0 (5)
N2—Cu1—N1—C9	-169.8 (3)	C7—C8—C9—N1	174.9 (4)
O3—Cu1—N1—C10	-171.1 (3)	C3—C8—C9—N1	-7.7 (6)
N2—Cu1—N1—C10	4.1 (2)	C9—N1—C10—C11	-165.7 (3)
O1—Cu1—N2—C15	22.8 (3)	Cu1—N1—C10—C11	20.0 (4)
N1—Cu1—N2—C15	-157.0 (3)	C15—N2—C11—C10	179.6 (3)
N1—Cu1—N2—C11	-27.3 (2)	Cu1—N2—C11—C10	44.6 (3)
Cu1—O1—C1—O2	-3.8 (4)	C15—N2—C11—C12	-54.0 (5)
Cu1—O1—C1—C2	174.7 (3)	Cu1—N2—C11—C12	171.0 (3)
Cu1—O3—C3—C8	13.7 (5)	N1-C10-C11-N2	-42.4 (4)
Cu1—O3—C3—C4	-167.5 (3)	N1-C10-C11-C12	-168.6 (3)
O3—C3—C4—C5	178.3 (4)	N2-C11-C12-C13	53.5 (5)
C8—C3—C4—C5	-2.8 (6)	C10-C11-C12-C13	176.8 (3)
C3—C4—C5—C6	1.6 (8)	C11—C12—C13—C14	-52.1 (5)
C4—C5—C6—C7	0.9 (8)	C12—C13—C14—C15	52.5 (5)
C5—C6—C7—C8	-2.1 (8)	C11—N2—C15—C14	52.9 (4)
C6—C7—C8—C3	0.8 (7)	Cu1—N2—C15—C14	-179.5 (2)
C6—C7—C8—C9	178.3 (4)	C13—C14—C15—N2	-53.4 (5)
O3—C3—C8—C7	-179.5 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H··· A
$O1W$ — $H1W2\cdots O2^{i}$	0.79 (6)	2.06 (6)	2.845 (5)	173 (6)
O1 <i>W</i> —H1 <i>W</i> 1···O3 ⁱⁱ	0.81 (8)	2.24 (9)	2.970 (6)	151 (8)
N2— $H1N$ ···O1 W ⁱⁱⁱ	1.00 (5)	2.09 (5)	3.047 (5)	159 (4)

Symmetry codes: (i) -x+2, -y+1, -z+1; (ii) x, y, z-1; (iii) -x+1, -y+1, -z+1.