Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

1-(5-Bromo-1-benzofuran-2-yl)ethanone

Hoong-Kun Fun,^a*‡Ching Kheng Quah^a§ and Hatem A. Abdel-Aziz^b

^aX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, PO Box 2457, Riyadh 11451, Saudi Arabia Correspondence e-mail: hkfun@usm.my

Received 30 April 2012; accepted 3 May 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.024; wR factor = 0.058; data-to-parameter ratio = 28.0.

The title compound, $C_{10}H_7BrO_2$, is approximately planar (r.m.s. deviation = 0.057 Å for the 13 non-H atoms). In the crystal, molecules are linked *via* $C-H\cdots O$ hydrogen bonds into C(5) chains propagating in [100].

Related literature

For general background to and the biological activity of benzofuran derivatives, see: Abdel-Aziz *et al.* (2009); Abdel-Aziz & Mekawey (2009); Bhovi *et al.* (2009); Abdel-Wahab *et al.* (2009); Csaba *et al.* (2003); Bevinakatti & Badiger (1982). For reference bond lengths, see: Allen *et al.* (1987). For the stability of the temperature controller used in the data collection, see Cosier & Glazer (1986).

Experimental

Crystal data

C10H7BrO2
$M_r = 239.07$
Orthorhombic, Pbca
a = 10.8301 (2) Å
b = 7.4630 (1) Å
c = 21.7213 (3) Å

 $V = 1755.62 (5) Å^{3}$ Z = 8 Mo K\alpha radiation \mu = 4.64 mm^{-1} T = 100 K 0.26 \times 0.19 \times 0.18 mm

Data collection

```
Bruker SMART APEXII DUO
CCD diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2009)
T_{min} = 0.377, T_{max} = 0.482
```

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.024$	119 parameters
$wR(F^2) = 0.058$	H-atom parameters constrained
S = 1.04	$\Delta \rho_{\rm max} = 0.47 \ {\rm e} \ {\rm \AA}^{-3}$
3331 reflections	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

43601 measured reflections

 $R_{\rm int} = 0.038$

3331 independent reflections

2689 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C7-H7A\cdots O2^{i}$	0.95	2.45	3.3495 (16)	158
Symmetry code: (i) x	$-\frac{1}{2}, y, -z + \frac{1}{2}.$			

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

The authors thank Universiti Sains Malaysia for the Research University Grant (No. 1001/PFIZIK/811160) and the Deanship of Scientific Research and the Research Center, College of Pharmacy, King Saud University.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6772).

References

- Abdel-Aziz, H. A. & Mekawey, A. A. I. (2009). Eur. J. Med. Chem. 44, 3985–3997.
- Abdel-Aziz, H. A., Mekawey, A. A. I. & Dawood, K. M. (2009). Eur. J. Med. Chem. 44, 3637–3644.
- Abdel-Wahab, B. F., Abdel-Aziz, H. A. & Ahmed, E. M. (2009). Monatsh. Chem. 140, 601–605.
- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Bevinakatti, H. S. & Badiger, V. V. (1982). J. Heterocycl. Chem. 19, 69-72.

Bhovi, V. K., Bodke, Y. D., Swamy, B. E. K., Biradar, S. & Umesh, S. (2009). Phosphorus Sulfur Silicon Relat. Elem. 185, 110–116.

- Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cosier, J. & Glazer, A. M. (1986). J. Appl. Cryst. 19, 105-107.
- Csaba, P., Monica, T., Cornelia, M., Paula, M., Lajos, N., Pal, K., Adriana, M., Florin-Dan, I. & Laszlo, P. (2003). *Tetrahedron Asymmetry*, 14, 1495–1501.
 Sheldrick, G. M. (2008). *Acta Cryst.* A64, 112–122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

[‡] Thomson Reuters ResearcherID: A-3561-2009.

[§] Thomson Reuters ResearcherID: A-5525-2009.

supporting information

Acta Cryst. (2012). E68, o1682 [doi:10.1107/S160053681201985X]

1-(5-Bromo-1-benzofuran-2-yl)ethanone

Hoong-Kun Fun, Ching Kheng Quah and Hatem A. Abdel-Aziz

S1. Comment

Benzofuran derivatives have useful biological activities, such as anticonvulsant, anti-infammatory, antitumor and antihistaminic activities. They were also found to be useful as antifungal, anthelmintic and antihyper-glycemic agents (Abdel-Aziz *et al.*, 2009; Abdel-Aziz & Mekawey, 2009; Bhovi *et al.*, 2009). Due to their considerable biological activities and in continuation of our interests in the chemistry and biological activities of benzofurans (Abdel-Aziz *et al.*, 2009; Abdel-Aziz & Mekawey, 2009; Abdel-Wahab *et al.*, 2009), the title compound (I) was synthesized to study the structure activity relationships with other benzofurans.

The title compound, Fig. 1, is approximately planar (r.m.s. deviation = 0.057 Å for the 13 non-H atoms). Bond lengths (Allen *et al.*, 1987) and angles are within normal ranges.

In the crystal (Fig.2), molecules are linked via C7-H7A···O2 hydrogen bonds (Table 1) into chains propagating in [100].

S2. Experimental

The title compound was prepared by heating of 5-bromo-salicylaldehyde with chloroacetone in the presence of potassium hydroxide in methanol for 2 h (Csaba *et al.*, 2003; Bevinakatti & Badiger, 1982). Colourless blocks were obtained by slow evaporation from EtOH/DMF solution.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model with C-H = 0.95 or 0.98 Å and $U_{iso}(H) = 1.2$ or 1.5 $U_{eq}(C)$. A rotating-group model was applied for the methyl group.

Figure 1

The molecular structure of the title compound showing 50% probability displacement ellipsoids for non-H atoms.

Figure 2

The crystal structure of the title compound, viewed along the *b* axis. H atoms not involved in hydrogen bonds (dashed lines) have been omitted for clarity.

1-(5-Bromo-1-benzofuran-2-yl)ethanone

Crystal data	
$C_{10}H_7BrO_2$ $M_r = 239.07$ Orthorhombic, <i>Pbca</i> Hall symbol: -P 2ac 2ab a = 10.8301 (2) Å	F(000) = 944 $D_x = 1.809 \text{ Mg m}^{-3}$ Mo $K\alpha$ radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9929 reflections $\theta = 2.7-33.1^\circ$
b = 7.4630 (1) Å c = 21.7213 (3) Å $V = 1755.62 (5) \text{ Å}^{3}$ Z = 8	$\mu = 4.64 \text{ mm}^{-1}$ T = 100 K Block, colourless $0.26 \times 0.19 \times 0.18 \text{ mm}$
Data collection	
Bruker SMART APEXII DUO CCD diffractometer	Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2009)

(*SADABS*; Bruker, 2009) $T_{\text{min}} = 0.377$, $T_{\text{max}} = 0.482$ 43601 measured reflections 3331 independent reflections 2689 reflections with $I > 2\sigma(I)$

Graphite monochromator

 φ and ω scans

Radiation source: fine-focus sealed tube

$R_{\rm int} = 0.038$	$k = -11 \rightarrow 10$
$\theta_{\text{max}} = 33.1^{\circ}, \theta_{\text{min}} = 1.9^{\circ}$	$l = -33 \rightarrow 33$
$h = -16 \rightarrow 16$	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.024$	Hydrogen site location: inferred from
$wR(F^2) = 0.058$	neighbouring sites
S = 1.04	H-atom parameters constrained
3331 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0251P)^2 + 1.0553P]$
119 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} = 0.002$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.47 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Br1	0.176439 (12)	0.162250 (19)	0.544115 (6)	0.01904 (5)	
01	0.36814 (9)	-0.10002 (14)	0.30247 (4)	0.01671 (18)	
O2	0.36732 (9)	-0.25959 (15)	0.18927 (5)	0.0228 (2)	
C1	0.33614 (11)	-0.03183 (18)	0.35866 (6)	0.0153 (2)	
C2	0.41792 (12)	0.03133 (19)	0.40293 (6)	0.0177 (3)	
H2A	0.5045	0.0339	0.3961	0.021*	
C3	0.36627 (13)	0.09040 (19)	0.45760 (6)	0.0176 (2)	
H3A	0.4182	0.1340	0.4895	0.021*	
C4	0.23784 (12)	0.08646 (19)	0.46632 (6)	0.0163 (2)	
C5	0.15642 (12)	0.02766 (19)	0.42185 (6)	0.0169 (2)	
H5A	0.0697	0.0287	0.4285	0.020*	
C6	0.20783 (12)	-0.03389 (18)	0.36629 (6)	0.0151 (2)	
C7	0.15886 (12)	-0.10978 (19)	0.31084 (6)	0.0165 (2)	
H7A	0.0743	-0.1294	0.3013	0.020*	
C8	0.25797 (12)	-0.14821 (19)	0.27452 (6)	0.0161 (2)	
C9	0.26702 (12)	-0.23368 (19)	0.21372 (6)	0.0171 (2)	
C10	0.14699 (13)	-0.2835 (2)	0.18369 (7)	0.0214 (3)	
H10D	0.1630	-0.3645	0.1491	0.032*	
H10A	0.1059	-0.1750	0.1686	0.032*	
H10B	0.0937	-0.3436	0.2138	0.032*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

supporting information

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Brl	0.02043 (7)	0.02101 (8)	0.01568 (7)	0.00053 (5)	0.00383 (5)	0.00000 (5)
01	0.0123 (4)	0.0231 (5)	0.0147 (4)	-0.0003 (4)	0.0008 (3)	-0.0005 (4)
O2	0.0171 (4)	0.0314 (6)	0.0200 (5)	0.0005 (4)	0.0031 (4)	-0.0025 (4)
C1	0.0133 (5)	0.0173 (6)	0.0152 (5)	0.0004 (4)	0.0014 (4)	0.0025 (5)
C2	0.0133 (5)	0.0216 (7)	0.0180 (6)	0.0002 (5)	-0.0002(5)	0.0007 (5)
C3	0.0157 (5)	0.0190 (6)	0.0183 (6)	0.0003 (5)	-0.0021 (5)	0.0011 (5)
C4	0.0179 (6)	0.0168 (6)	0.0141 (5)	0.0006 (5)	0.0029 (4)	0.0020 (5)
C5	0.0144 (6)	0.0182 (6)	0.0182 (6)	-0.0003(5)	0.0019 (4)	0.0018 (5)
C6	0.0136 (5)	0.0168 (6)	0.0149 (5)	-0.0002(5)	0.0008 (4)	0.0028 (5)
C7	0.0134 (5)	0.0192 (6)	0.0170 (6)	-0.0004(5)	-0.0008 (4)	0.0022 (5)
C8	0.0132 (5)	0.0183 (6)	0.0167 (5)	-0.0005 (5)	-0.0008 (4)	0.0031 (5)
C9	0.0169 (6)	0.0178 (6)	0.0167 (6)	0.0002 (5)	-0.0003 (5)	0.0028 (5)
C10	0.0176 (6)	0.0277 (7)	0.0187 (6)	0.0001 (6)	-0.0028 (5)	-0.0001 (6)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Br1—C4	1.9020 (13)	C5—C6	1.4062 (18)
O1—C1	1.3669 (16)	C5—H5A	0.9500
O1—C8	1.3862 (16)	C6—C7	1.4327 (19)
O2—C9	1.2245 (17)	C7—C8	1.3626 (18)
C1—C2	1.3898 (18)	C7—H7A	0.9500
C1—C6	1.3995 (18)	C8—C9	1.4699 (19)
C2—C3	1.3847 (19)	C9—C10	1.5013 (19)
C2—H2A	0.9500	C10—H10D	0.9800
C3—C4	1.4041 (19)	C10—H10A	0.9800
С3—НЗА	0.9500	C10—H10B	0.9800
C4—C5	1.3795 (19)		
C1—O1—C8	105.63 (10)	C1—C6—C7	105.80 (11)
O1—C1—C2	125.63 (11)	C5—C6—C7	134.76 (12)
O1—C1—C6	110.70 (11)	C8—C7—C6	106.16 (11)
C2—C1—C6	123.67 (12)	С8—С7—Н7А	126.9
C3—C2—C1	116.36 (12)	С6—С7—Н7А	126.9
C3—C2—H2A	121.8	C7—C8—O1	111.71 (12)
C1—C2—H2A	121.8	С7—С8—С9	131.61 (12)
C2—C3—C4	120.61 (13)	O1—C8—C9	116.66 (11)
С2—С3—НЗА	119.7	O2—C9—C8	121.15 (12)
С4—С3—Н3А	119.7	O2—C9—C10	122.72 (13)
C5—C4—C3	123.05 (12)	C8—C9—C10	116.12 (12)
C5-C4-Br1	119.55 (10)	C9—C10—H10D	109.5
C3—C4—Br1	117.38 (10)	C9—C10—H10A	109.5
C4—C5—C6	116.86 (12)	H10D-C10-H10A	109.5
C4—C5—H5A	121.6	C9—C10—H10B	109.5
С6—С5—Н5А	121.6	H10D-C10-H10B	109.5
C1—C6—C5	119.42 (12)	H10A-C10-H10B	109.5

C8—O1—C1—C2	179.08 (13)	C4—C5—C6—C1	-0.3 (2)
C8—O1—C1—C6	-0.81 (15)	C4—C5—C6—C7	177.41 (15)
O1—C1—C2—C3	-178.27 (13)	C1—C6—C7—C8	0.26 (15)
C6—C1—C2—C3	1.6 (2)	C5—C6—C7—C8	-177.71 (15)
C1—C2—C3—C4	-0.5 (2)	C6—C7—C8—O1	-0.78 (16)
C2—C3—C4—C5	-1.0 (2)	C6—C7—C8—C9	177.28 (14)
C2-C3-C4-Br1	177.76 (11)	C1C8C7	1.00 (15)
C3—C4—C5—C6	1.4 (2)	C1C8C9	-177.38 (12)
Br1-C4-C5-C6	-177.32 (10)	С7—С8—С9—О2	-178.33 (15)
O1-C1-C6-C5	178.69 (12)	O1—C8—C9—O2	-0.3 (2)
C2-C1-C6-C5	-1.2 (2)	C7—C8—C9—C10	2.6 (2)
O1—C1—C6—C7	0.35 (15)	O1—C8—C9—C10	-179.41 (12)
C2—C1—C6—C7	-179.53 (13)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	<i>D</i> —H··· <i>A</i>
C7— $H7A$ ···O2 ⁱ	0.95	2.45	3.3495 (16)	158

Symmetry code: (i) x-1/2, y, -z+1/2.