

V = 1623.29 (11) Å³

 $0.74 \times 0.25 \times 0.06$ mm

10358 measured reflections 2703 independent reflections

2058 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

Cu $K\alpha$ radiation

 $\mu = 0.91 \text{ mm}^-$

T = 296 K

 $R_{\rm int}=0.046$

refinement $\Delta \rho_{\text{max}} = 0.25 \text{ e } \text{\AA}^{-3}$

 $\Delta \rho_{\rm min} = -0.28 \text{ e } \text{\AA}^{-3}$

Z = 4

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Methyl 2-{6-[(1-methoxy-1-oxopropan-2yl)aminocarbonyl]pyridine-2carboxamido}propanoate

Mohamed A. Al-Omar,^{a,b} Abdel-Galil E. Amr,^{b,c} Hazem A. Ghabbour,^a Tze Shyang Chia^d and Hoong-Kun Fun^d*‡

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ^bDrug Exploration & Development Chair (DEDC), College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ^cApplied Organic Chemistry Department, National Research Center, Dokki 12622, Cairo, Egypt, and ^dX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 6 May 2012; accepted 16 May 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.053; wR factor = 0.192; data-to-parameter ratio = 11.8.

In the title compound, $C_{15}H_{19}N_3O_6$, the amide planes are inclined at dihedral angles of 0.8 (6) and 12.1 (3)° with respect to the central pyridine ring. The mean planes of the corresponding methyl acetate groups form dihedral angles of 41.76 (13) and 86.48 (15)°, respectively with the mean plane of pyridine ring. A pair of weak intramolecular N-H···N hydrogen bonds generate an S(5)S(5) ring motif in the molecule. In the crystal, molecules are linked by N-H···O hydrogen bonds into [001] chains. The chains are cross-linked by C-H···O hydrogen bonds into layers lying parallel to *bc* plane. The crystal packing also features a C-H··· π interaction.

Related literature

For the synthesis and biological activity screening of some dipicolinic acid bis-L-amino acid hydrazide derivatives and their corresponding acids, see: Abou-Ghalia & Amr (2004); Al-Salahi *et al.* (2010); Al-Omar & Amr (2010); Attia *et al.* (2000). For the biological activity of 2,6-disubstituted pyridine derivatives, see: Amr (2005); Abou-Ghalia *et al.* (2003); Amr, Sayed & Abdulla (2005); Amr *et al.* (2006); Hammam *et al.* (2003). For hydrogen-bond motifs, see: Bernstein *et al.* (1995).

Experimental

Crystal data $C_{15}H_{19}N_3O_6$ $M_r = 337.33$ Monoclinic, $P2_1/c$ a = 8.9735 (3) Å b = 20.7073 (8) Å c = 10.4048 (5) Å $\beta = 122.901$ (3)°

Data collection

```
Bruker SMART APEXII CCD
```

diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\min} = 0.551, T_{\max} = 0.947$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.053$	
$wR(F^2) = 0.192$	
S = 1.04	
2703 reflections	
229 parameters	

Table 1Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the N1/C1-C5 ring.

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N3−H1 <i>N</i> 3···N1	0.85 (3)	2.23 (3)	2.676 (3)	113 (2)
$N3-H1N3\cdots O4^{i}$	0.85(2)	2.35 (2)	3.080 (2)	145 (2)
$N2 - H1N2 \cdot \cdot \cdot N1$	0.84 (3)	2.32 (3)	2.685 (3)	107 (3)
$N2-H1N2\cdots O4^{i}$	0.83(3)	2.55 (3)	3.290 (3)	149 (2)
$C9-H9B\cdots O2^{ii}$	0.96	2.41	3.329 (3)	159
$C15 - H15B \cdots Cg1^{iii}$	0.96	2.78	3.544 (4)	137
Symmetry codes: (i $x + 1, -y + \frac{1}{2}, z - \frac{1}{2}$.	i) $x, -y + \frac{3}{2}, $	$z - \frac{1}{2};$ (ii)	-x+1, -y+1,	-z+2; (iii)

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

MAO, AEA and HAG thank the Deanship of Scientific Research at King Saud University for funding through the research group project No. RGP-VPP-099. HKF and TSC

[‡] Thomson Reuters ResearcherID: A-3561-2009.

thank Universiti Sains Malaysia (USM) for the Research University Grant (1001/PFIZIK/811160). TSC also thanks the Malaysian Government and USM for the award of a research fellowship.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6780).

References

- Abou-Ghalia, M. H. & Amr, A. E. (2004). Amino Acids, 26, 283-289.
- Abou-Ghalia, M. H., Amr, A. E. & Abdulla, M. M. (2003). Z. Naturforsch. Teil B, **58**, 903–910.
- Al-Omar, M. A. & Amr, A. E. (2010). Molecules, 15, 4711-4721.

- Al-Salahi, R. A., Al-Omar, M. A. & Amr, A. E. (2010). Molecules, 15, 6588– 6597.
- Amr, A. E. (2005). Z. Naturforsch. Teil B, 60, 990-998.
- Amr, A. E., Abdel-Latif, N. A. & Abdulla, M. M. (2006). *Bioorg. Med. Chem.* 14, 373–384.
- Amr, A. E., Sayed, H. H. & Abdulla, M. M. (2005). Arch. Pharm. Chem. Life Sci. 338, 433–440.
- Attia, A., Abdel-Salam, O. I., Amr, A. E., Stibor, I. & Budesinsky, M. (2000). Egypt. J. Chem. 43, 187–201.
- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2009). SADABS, APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Hammam, A. G., Fahmy, A. F. M., Amr, A. E. & Mohamed, A. M. (2003). *Indian J. Chem. Sect. B*, 42, 1985–1993.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o1837-o1838 [doi:10.1107/S1600536812022258]

Methyl 2-{6-[(1-methoxy-1-oxopropan-2-yl)aminocarbonyl]pyridine-2carboxamido}propanoate

Mohamed A. Al-Omar, Abdel-Galil E. Amr, Hazem A. Ghabbour, Tze Shyang Chia and Hoong-Kun Fun

S1. Comment

In our previous work (Abou-Ghalia & Amr, 2004; Al-Salahi *et al.*, 2010; Al-Omar & Amr, 2010), we have reported the synthesis and biological activity screening of some dipicolinic acid bis-*L*-amino acid hydrazide derivatives and their corresponding acids (Attia *et al.*, 2000). In view of the significance of 2,6-disubstituted pyridine derivatives as biologically active congeners (Amr, 2005; Abou-Ghalia, Amr & Abdulla, 2003; Amr, Sayed & Abdulla, 2005; Amr *et al.*, 2006; Hammam *et al.*, 2003), we report herein the synthesis and crystal structure of the title compound.

The asymmetric unit of the title compound is shown in Fig. 1. The amide planes (O1/N2/C6 & O4/N3/C11) are inclined at dihedral angles of 0.8 (6) and 12.1 (3)°, respectively, with respect to the central pyridine ring (N1/C1–C5). The mean planes of the methyl acetate groups (O2/O3/C7–C9 with maximum deviation = 0.007 (2) Å at atom O3 & O5/O6/C12–C14 with maximum deviation = 0.011 (2) Å at atom O6) form dihedral angles of 41.76 (13) and 86.48 (15)°, respectively with the mean plane of pyridine ring. Weak intramolecular N2—H1N2…N1 and N3—H1N3…N1 hydrogen bonds (Table 1) generate an S(5)S(5) ring motif (Bernstein *et al.*, 1995) in the molecule.

In the crystal (Fig. 2), molecules are linked by intermolecular N3—H1N3···O4, N2—H1N2···O4 and C9—H9B···O2 hydrogen bonds (Table 1) into two-dimensional networks parallel to *bc* plane. The crystal packing is further stabilized by C—H··· π interaction (Table 1), involving *Cg*1 which is the centroid of N1/C1–C5 ring.

S2. Experimental

To a cold mixture (-15 °C) of 2,6-pyridine dicarboxylic acid (0.167 g, 1 mmol) in cold dry tetrahydrofuran (100 ml) and ethyl chloroformate (0.216 g, 2 mmol), triethylamine (0.202 g, 2 mmol) was added with stirring. After 10 min, D-alanyl methyl ester (0.206 g, 2 mmol) was then added. The reaction mixture was stirred for 3 h at -15 °C and then 12 h at r.t. The triethylamine hydrochloride formed was filtered off and the solvent was evaporated under reduced pressure. The residue obtained was dissolved in 150 ml dichloromethane, washed with water, 1 N hydrochloric acid, 1 N sodium bicarbonate and finally with water and dried over anhydrous calcium chloride. The solvent was evaporated under reduced pressure to dryness and the obtained solid was crystallized from dichloromethane to give colourless plates of the title compound.

S3. Refinement

The atoms H1N2 and H1N3 were located in a difference fourier map and refined freely [N—H = 0.83 (3) and 0.85 (2) Å]. The remaining H atoms were positioned geometrically [C—H = 0.93, 0.96 and 0.98 Å] and refined using a riding model with $U_{iso}(H) = 1.2$ or $1.5U_{eq}(C)$. A rotating group model was applied to the methyl groups.

Figure 1

The molecular structure of the title compound with 30% probability displacement ellipsoids. The dashed lines represent the weak intramolecular N—H···N hydrogen bonds.

Figure 2

The crystal packing of the title compound. The dashed lines represent the hydrogen bonds. For clarity sake, hydrogen atoms not involved in hydrogen bonding have been omitted.

Methyl 2-{6-[(1-methoxy-1-oxopropan-2-yl)aminocarbonyl]pyridine-2- carboxamido}propanoate

Crystal data	
$C_{15}H_{19}N_3O_6$	$V = 1623.29 (11) \text{ Å}^3$
$M_r = 337.33$	Z = 4
Monoclinic, $P2_1/c$	F(000) = 712
Hall symbol: -P 2ybc	$D_{\rm x} = 1.380 {\rm ~Mg} {\rm ~m}^{-3}$
a = 8.9735 (3) Å	Cu <i>K</i> α radiation, $\lambda = 1.54178$ Å
b = 20.7073 (8) Å	Cell parameters from 1828 reflections
c = 10.4048 (5) Å	$\theta = 5.5 - 70.4^{\circ}$
$\beta = 122.901 \ (3)^{\circ}$	$\mu = 0.91 \text{ mm}^{-1}$

T = 296 KPlate, colourless

Data collection

Bruker SMART APEXII CCD diffractometer	10358 measured reflections 2703 independent reflections
Radiation source: fine-focus sealed tube	2058 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.046$
φ and ω scans	$\theta_{\rm max} = 65.0^\circ, \theta_{\rm min} = 5.5^\circ$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(SADABS; Bruker, 2009)	$k = -24 \rightarrow 24$
$T_{\min} = 0.551, \ T_{\max} = 0.947$	$l = -11 \rightarrow 9$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fo
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from
$wR(F^2) = 0.192$	neighbouring sites
S = 1.04	H atoms treated by a mixture of independe

S = 1.04H atom2703 reflectionsand d229 parametersw = 1/[0 restraintswhenPrimary atom site location: structure-invariant $(\Delta/\sigma)_{max}$ direct methods $\Delta \rho_{max}$

$0.74 \times 0.25 \times 0.06 \text{ mm}$

Secondary atom site location: difference Fourier map Hydrogen site location: inferred from neighbouring sites H atoms treated by a mixture of independent and constrained refinement $w = 1/[\sigma^2(F_o^2) + (0.1344P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.25$ e Å⁻³ $\Delta\rho_{min} = -0.28$ e Å⁻³

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.1466 (3)	0.53103 (10)	0.8205 (2)	0.0711 (6)	
O2	0.4090 (3)	0.56823 (9)	0.89076 (19)	0.0641 (5)	
03	0.2864 (3)	0.49181 (10)	0.7100 (2)	0.0710 (6)	
O4	0.2803 (2)	0.77285 (8)	1.37663 (16)	0.0578 (5)	
05	0.6292 (4)	0.83396 (18)	1.1329 (3)	0.1239 (11)	
06	0.3640 (4)	0.87058 (11)	1.0701 (2)	0.0823 (7)	
N1	0.0899 (2)	0.66141 (9)	1.07033 (18)	0.0438 (5)	
N2	0.0839 (3)	0.58945 (11)	0.8529 (2)	0.0602 (6)	
N3	0.3295 (3)	0.75674 (9)	1.1876 (2)	0.0497 (5)	
C1	0.0965 (3)	0.69752 (10)	1.1805 (2)	0.0449 (5)	
C2	-0.0180 (4)	0.68863 (13)	1.2288 (3)	0.0584 (7)	
H2A	-0.0101	0.7145	1.3054	0.070*	
C3	-0.1448 (4)	0.64055 (14)	1.1610 (3)	0.0638 (7)	

H3A	-0.2241	0.6337	1.1910	0.077*
C4	-0.1521 (4)	0.60292 (13)	1.0484 (3)	0.0572 (6)
H4A	-0.2358	0.5701	1.0016	0.069*
C5	-0.0334 (3)	0.61483 (11)	1.0065 (2)	0.0471 (5)
C6	-0.0374 (3)	0.57458 (12)	0.8840 (2)	0.0530 (6)
C7	0.0902 (4)	0.55753 (13)	0.7325 (3)	0.0607 (7)
H7A	0.0229	0.5172	0.7074	0.073*
C8	0.2796 (4)	0.54102 (12)	0.7893 (3)	0.0550 (6)
C9	0.4596 (4)	0.46969 (16)	0.7517 (3)	0.0766 (8)
H9A	0.4468	0.4353	0.6845	0.115*
H9B	0.5236	0.4543	0.8553	0.115*
H9C	0.5236	0.5047	0.7430	0.115*
C10	0.0058 (4)	0.59893 (17)	0.5880 (3)	0.0788 (9)
H10A	-0.1141	0.6092	0.5555	0.118*
H10B	0.0058	0.5755	0.5083	0.118*
H10C	0.0726	0.6381	0.6093	0.118*
C11	0.2444 (3)	0.74632 (10)	1.2579 (2)	0.0439 (5)
C12	0.4982 (3)	0.79021 (13)	1.2598 (3)	0.0566 (6)
H12A	0.5071	0.8179	1.3401	0.068*
C13	0.5066 (5)	0.83318 (16)	1.1474 (3)	0.0723 (9)
C14	0.3623 (7)	0.91492 (19)	0.9625 (4)	0.1168 (16)
H14A	0.2584	0.9416	0.9187	0.175*
H14B	0.3610	0.8911	0.8828	0.175*
H14C	0.4665	0.9416	1.0144	0.175*
C15	0.6504 (4)	0.74250 (17)	1.3363 (4)	0.0899 (10)
H15A	0.6515	0.7215	1.4191	0.135*
H15B	0.7605	0.7650	1.3753	0.135*
H15C	0.6356	0.7107	1.2630	0.135*
H1N3	0.289 (3)	0.7353 (11)	1.105 (3)	0.044 (6)*
H1N2	0.151 (4)	0.6210 (14)	0.896 (3)	0.063 (8)*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0754 (13)	0.0729 (12)	0.0837 (11)	-0.0269 (10)	0.0553 (11)	-0.0275 (9)
O2	0.0620 (12)	0.0660 (11)	0.0641 (9)	-0.0096 (9)	0.0342 (9)	-0.0117 (8)
O3	0.0754 (14)	0.0750 (12)	0.0845 (12)	-0.0149 (10)	0.0576 (11)	-0.0296 (9)
O4	0.0738 (12)	0.0660 (10)	0.0528 (8)	-0.0078 (9)	0.0469 (9)	-0.0110 (7)
O5	0.115 (2)	0.176 (3)	0.136 (2)	-0.051 (2)	0.1048 (19)	-0.031 (2)
O6	0.1178 (18)	0.0758 (13)	0.0865 (12)	-0.0121 (13)	0.0770 (13)	0.0060 (10)
N1	0.0479 (11)	0.0482 (10)	0.0445 (9)	0.0006 (8)	0.0310 (9)	0.0015 (7)
N2	0.0646 (14)	0.0696 (14)	0.0651 (11)	-0.0223 (12)	0.0473 (11)	-0.0253 (10)
N3	0.0573 (13)	0.0580 (11)	0.0470 (9)	-0.0132 (9)	0.0369 (10)	-0.0131 (8)
C1	0.0506 (13)	0.0491 (12)	0.0440 (9)	0.0040 (10)	0.0315 (10)	0.0047 (8)
C2	0.0720 (17)	0.0656 (15)	0.0631 (12)	-0.0023 (13)	0.0533 (13)	-0.0044 (10)
C3	0.0662 (16)	0.0735 (17)	0.0811 (15)	-0.0105 (14)	0.0591 (14)	-0.0040 (12)
C4	0.0602 (16)	0.0566 (14)	0.0705 (14)	-0.0088 (12)	0.0457 (13)	-0.0010 (10)
C5	0.0490 (13)	0.0486 (12)	0.0503 (10)	0.0000 (10)	0.0312 (11)	0.0019 (9)

supporting information

C6	0.0542 (15)	0.0541 (13)	0.0569 (11)	-0.0060 (11)	0.0343 (12)	-0.0062 (10)
C7	0.0639 (16)	0.0681 (16)	0.0653 (13)	-0.0184 (13)	0.0450 (13)	-0.0261 (11)
C8	0.0679 (17)	0.0549 (13)	0.0589 (12)	-0.0104 (13)	0.0452 (13)	-0.0090 (10)
C9	0.085 (2)	0.083 (2)	0.0836 (17)	0.0065 (17)	0.0600 (17)	-0.0092 (14)
C10	0.072 (2)	0.105 (2)	0.0569 (13)	-0.0048 (18)	0.0335 (15)	-0.0183 (14)
C11	0.0519 (13)	0.0489 (12)	0.0430 (10)	0.0039 (10)	0.0337 (10)	0.0022 (8)
C12	0.0583 (15)	0.0647 (15)	0.0617 (12)	-0.0148 (12)	0.0422 (12)	-0.0206 (10)
C13	0.086 (2)	0.084 (2)	0.0764 (16)	-0.0386 (18)	0.0634 (17)	-0.0317 (15)
C14	0.197 (5)	0.094 (2)	0.095 (2)	-0.044 (3)	0.103 (3)	-0.0047 (18)
C15	0.0597 (19)	0.085 (2)	0.122 (2)	-0.0032 (16)	0.0471 (18)	-0.0272 (19)

Geometric parameters (Å, °)

01—C6	1.227 (3)	C4—C5	1.375 (3)	
O2—C8	1.204 (3)	C4—H4A	0.9300	
O3—C8	1.334 (3)	C5—C6	1.507 (3)	
О3—С9	1.442 (4)	C7—C8	1.504 (4)	
O4—C11	1.225 (2)	C7—C10	1.527 (4)	
O5—C13	1.189 (4)	C7—H7A	0.9800	
O6—C13	1.329 (4)	С9—Н9А	0.9600	
O6—C14	1.441 (3)	С9—Н9В	0.9600	
N1C5	1.340 (3)	С9—Н9С	0.9600	
N1—C1	1.343 (3)	C10—H10A	0.9600	
N2—C6	1.329 (3)	C10—H10B	0.9600	
N2—C7	1.445 (3)	C10—H10C	0.9600	
N2—H1N2	0.83 (3)	C12—C13	1.504 (4)	
N3—C11	1.331 (3)	C12—C15	1.514 (4)	
N3—C12	1.449 (3)	C12—H12A	0.9800	
N3—H1N3	0.85 (2)	C14—H14A	0.9600	
C1—C2	1.379 (3)	C14—H14B	0.9600	
C1C11	1.507 (3)	C14—H14C	0.9600	
C2—C3	1.383 (4)	C15—H15A	0.9600	
C2—H2A	0.9300	C15—H15B	0.9600	
C3—C4	1.378 (3)	C15—H15C	0.9600	
С3—НЗА	0.9300			
C8—O3—C9	117.4 (2)	O3—C9—H9A	109.5	
C13—O6—C14	116.2 (3)	O3—C9—H9B	109.5	
C5—N1—C1	117.75 (19)	H9A—C9—H9B	109.5	
C6—N2—C7	121.9 (2)	O3—C9—H9C	109.5	
C6—N2—H1N2	119 (2)	Н9А—С9—Н9С	109.5	
C7—N2—H1N2	118 (2)	H9B—C9—H9C	109.5	
C11—N3—C12	122.81 (17)	C7—C10—H10A	109.5	
C11—N3—H1N3	114.2 (17)	C7-C10-H10B	109.5	
C12—N3—H1N3	121.7 (17)	H10A—C10—H10B	109.5	
N1-C1-C2	122.7 (2)	C7—C10—H10C	109.5	
N1-C1-C11	116.56 (19)	H10A—C10—H10C	109.5	
C2-C1-C11	120.61 (19)	H10B—C10—H10C	109.5	

$C1 - C^2 - C^3$	1187(2)	04—C11—N3	1245(2)
C1 - C2 - H2A	120.7	04-C11-C1	1208(2)
$C_3 - C_2 - H_2 A$	120.7	N_3 —C11—C1	120.0(2) 114 65 (17)
C4-C3-C2	119 1 (2)	N3-C12-C13	111.0(2)
C4-C3-H3A	120.4	N3-C12-C15	110.5(2)
$C_2 - C_3 - H_3 A$	120.1	C_{13} C_{12} C_{15}	110.5(2) 1125(3)
$C_2 = C_3 = H_3 X$	120.4 118 7 (2)	N_{3} C_{12} H_{12}	107.5
C_{5} C_{4} H_{4}	120.6	C13 - C12 - H12A	107.5
$C_3 = C_4 = H_4 \Lambda$	120.0	$C_{15} = C_{12} = H_{12A}$	107.5
C_{3} C_{4} C_{5} C_{4}	120.0 123.0(2)	05 C13 06	107.5 124.6(3)
N1_C5_C6	125.0(2) 116.8(2)	05 - C13 - C12	124.0(3) 123.2(4)
N1 = C5 = C6	110.0(2) 120.1(2)	05 - C13 - C12	123.2(4)
C4 - C5 - C0	120.1(2)	06 - C14 - U144	112.2 (2)
O1 - C6 - N2	124.0(2) 120.5(2)	O_{0} C_{14} H_{14}	109.5
01 - 00 - 03	120.3(2)		109.5
N2 - C0 - C3	115.5 (2)	H14A - C14 - H14B	109.5
$N_2 - C_7 - C_8$	109.3 (2)		109.5
N2-C7-C10	111.4 (2)	H14A—C14—H14C	109.5
	111.4 (2)	H14B—C14—H14C	109.5
N2—C/—H/A	108.2	С12—С15—Н15А	109.5
C8—C/—H/A	108.2	С12—С15—Н15В	109.5
С10—С7—Н7А	108.2	H15A—C15—H15B	109.5
O2—C8—O3	123.6 (2)	C12—C15—H15C	109.5
O2—C8—C7	125.8 (2)	H15A—C15—H15C	109.5
O3—C8—C7	110.6 (2)	H15B—C15—H15C	109.5
C5N1C1C2	-0.4(3)	C9C8C7	-1795(2)
$C_5 = N_1 = C_1 = C_2$	175 80 (18)	$N_{2} = C_{7} = C_{8} = C_{7}$	-250(4)
$N_1 = C_1 = C_1^2$	1/5.00(10)	$C_{10} = C_7 = C_8 = O_2$	25.0(4)
$C_1 = C_1 = C_2 = C_3$	-1760(2)	$N_{2} = C_{7} = C_{8} = O_{2}$	98.0(3)
C1 $C2$ $C3$ $C4$	170.0(2)	$C_{10} = C_7 = C_8 = C_3$	-80.5(3)
$C_1 = C_2 = C_3 = C_4$	-0.4(4)	$C_{10} = C_{10} = C_{10} = C_{10} = C_{10}$	13.6(4)
$C_2 = C_3 = C_4 = C_3$	0.4(4)	$C_{12} = N_3 = C_{11} = C_4$	-165.8(2)
C1 N1 C5 C6	-170.55(10)	$N_1 = C_1 = C_1 = C_1$	-166.60(10)
$C_1 = N_1 = C_2 = C_0$	1/9.55(19)	$C_{2} = C_{1} = C_{1} = 04$	100.09(19)
$C_3 = C_4 = C_5 = C_6$	0.1(4)	$V_2 = C_1 = C_{11} = 04$	9.5(3)
C_{3} C_{4} C_{5} C_{0}	1/9.9(2)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12.0(3)
C7 N2 C6 C5	4.1(4)	$C_2 - C_1 - C_1 - N_3$	-1/1.0(2)
$C_{-N2} = C_{0} = C_{3}$	-1/0.3(2)	C11 = N3 = C12 = C13	-141.0(2)
N1 - C5 - C6 - O1	180.0(2)	$C11 - N_3 - C12 - C13$	92.8 (3)
C4 - C5 - C6 - O1	0.1(4)	C14 - 06 - C13 - 05	-0.3(4)
$\frac{1}{10} - \frac{1}{10} $	0.3(3)	$U_{14} = U_{0} = U_{13} = U_{12}$	1/8.2(2)
C4 - C5 - C6 - IN2	-1/9.5(2)	103 - 012 - 013 - 05	-131.9 (3)
$U_0 - N_2 - U_1 - U_8$	-136.0(3)	15 - 012 - 013 - 05	-/.5 (4)
$C_0 = N_2 = C_1 = C_1 = C_1 = C_2 $	100.4 (3)	N3-U12-U13-U6	49.5 (3)
C9—O3—C8—O2	1.4 (4)	C15—C12—C13—O6	173.9 (2)

Hydrogen-bond geometry (Å, °)

Cg1	is the	centroid	of the	N1/C1-	-C5 ring.
-----	--------	----------	--------	--------	-----------

<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
0.85 (3)	2.23 (3)	2.676 (3)	113 (2)
0.85 (2)	2.35 (2)	3.080 (2)	145 (2)
0.84 (3)	2.32 (3)	2.685 (3)	107 (3)
0.83 (3)	2.55 (3)	3.290 (3)	149 (2)
0.96	2.41	3.329 (3)	159
0.96	2.78	3.544 (4)	137
	<i>D</i> —H 0.85 (3) 0.85 (2) 0.84 (3) 0.83 (3) 0.96 0.96	D—H H···A 0.85 (3) 2.23 (3) 0.85 (2) 2.35 (2) 0.84 (3) 2.32 (3) 0.83 (3) 2.55 (3) 0.96 2.41 0.96 2.78	$\begin{array}{c cccccc} \hline D &H & H & D & D &A \\ \hline 0.85 (3) & 2.23 (3) & 2.676 (3) \\ 0.85 (2) & 2.35 (2) & 3.080 (2) \\ 0.84 (3) & 2.32 (3) & 2.685 (3) \\ 0.83 (3) & 2.55 (3) & 3.290 (3) \\ 0.96 & 2.41 & 3.329 (3) \\ 0.96 & 2.78 & 3.544 (4) \end{array}$

Symmetry codes: (i) x, -y+3/2, z-1/2; (ii) -x+1, -y+1, -z+2; (iii) x+1, -y+1/2, z-1/2.