# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

## 2-[(E)-3,4-Dimethoxybenzylidene]hvdrazinecarboxamide

## M. Nawaz Tahir,<sup>a</sup>\* M. Naveed Umar,<sup>b</sup> Akbar Ali<sup>b</sup> and Hazoor Ahmad Shad<sup>c</sup>

<sup>a</sup>University of Sargodha, Department of Physics, Sargodha, Pakistan, <sup>b</sup>Department of Chemistry, University of Malakand, Pakistan, and Department of Chemistry, Government Post Graduate College, Gojra, Punjab, Pakistan Correspondence e-mail: dmntahir\_uos@yahoo.com

Received 7 May 2012; accepted 8 May 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.043; wR factor = 0.121; data-to-parameter ratio = 14.4.

In the title compound,  $C_{10}H_{13}N_3O_3$ , the 3,4-dimethoxybenzylidene and hydrazinecarboxamide groups are oriented at a dihedral angle of 53.82 (6)° and an intramolecular  $N-H \cdots N$ hydrogen bond generates an S(5) ring motif. In the crystal, molecules are linked by N-H···O hydrogen bonds into sheets propagating in ( $\overline{2}01$ ), which feature  $R_1^2(5)$ ,  $R_2^2(8)$  and  $R_{2}^{4}(14)$  loops.

#### **Related literature**

For related structures, see: Fun et al. (2011); Liang et al. (2007); For graph-set notation, see: Bernstein et al. (1995).



#### **Experimental**

Crystal data C10H13N3O3  $M_r = 223.23$ Monoclinic, C2/c a = 22.2300 (7) Å b = 7.6367 (3) Å c = 15.6482 (6) Å  $\beta = 126.234 \ (1)^{\circ}$ 

 $V = 2142.76 (14) \text{ Å}^3$ Z = 8Mo  $K\alpha$  radiation  $\mu = 0.10 \text{ mm}^{-1}$ T = 296 K $0.25 \times 0.18 \times 0.15 \text{ mm}$ 



#### Data collection

Bruker Kappa APEXII CCD

diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005)  $T_{\min} = 0.975, T_{\max} = 0.985$ 

#### Refinement

| $R[F^2 > 2\sigma(F^2)] = 0.043$ | 147 parameters                                           |
|---------------------------------|----------------------------------------------------------|
| $wR(F^2) = 0.121$               | H-atom parameters constrained                            |
| S = 1.01                        | $\Delta \rho_{\rm max} = 0.16 \text{ e} \text{ Å}^{-3}$  |
| 2115 reflections                | $\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$ |

7933 measured reflections

 $R_{\rm int} = 0.040$ 

2115 independent reflections

1389 reflections with  $I > 2\sigma(I)$ 

#### Table 1

Hydrogen-bond geometry (Å, °).

| $D - H \cdots A$                      | $D-{\rm H}$ | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |
|---------------------------------------|-------------|-------------------------|--------------|--------------------------------------|
| $N2-H2A\cdots O3^{i}$                 | 0.86        | 2.15                    | 2.970 (2)    | 159                                  |
| $N3-H3A\cdots O3^{ii}$                | 0.86        | 2.19                    | 3.044 (2)    | 170                                  |
| N3−H3 <i>B</i> ···N1                  | 0.86        | 2.30                    | 2.657 (2)    | 105                                  |
| $N3-H3B\cdotsO1^{iii}$                | 0.86        | 2.59                    | 3.019 (2)    | 112                                  |
| $N3 - H3B \cdot \cdot \cdot O2^{iii}$ | 0.86        | 2.30                    | 3.119 (2)    | 160                                  |
|                                       |             |                         |              |                                      |

Symmetry codes: (i) -x, -y, -z; (ii) -x, -y + 1, -z; (iii)  $-x + \frac{1}{2}, -y + \frac{1}{2}, -z + 1$ .

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

The authors acknowledge the provision of funds for the purchase of a diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha. Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6783).

#### References

Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555-1573.

Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Fun, H.-K., Yeap, C. S., Malladi, S. & Isloor, A. M. (2011). Acta Cryst. E67, 01786
- Liang, Z.-P., Li, J., Wang, H.-L. & Wang, H.-Q. (2007). Acta Cryst. E63, o2939. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

# supporting information

Acta Cryst. (2012). E68, o1724 [doi:10.1107/S1600536812020739]

# 2-[(*E*)-3,4-Dimethoxybenzylidene]hydrazinecarboxamide

## M. Nawaz Tahir, M. Naveed Umar, Akbar Ali and Hazoor Ahmad Shad

## S1. Comment

The title compound (I), (Fig. 1) has been synthesized as a derivative.

The crystal structures of (E)-1-(4-methoxybenzylidene)semicarbazide (Liang *et al.*, 2007) and (E)-2-(4-hydroxy-3-methoxybenzylidene) hydrazinecarboxamide (Fun *et al.*, 2011) have been published which are related to the title compound (I).

In (I), the parts of 3,4-dimethoxybenzaldehyde and hydrazinecarboxamide A (C1—C9/O1/O2) and B (N1/N2/C10/N3/O3), are almost planar with r. m. s. deviation of 0.0770 and 0.0159 Å, respectively. The dihedral angle between A/B is 53.82 (6)°. There exist intramolecular H–bonding of N—H…N type (Table 1, Fig. 1) and form S(5) ring motif (Bernstein *et al.*, 1995). Each molecule is interlinked with three molecules due to H-bondings of N—H…O type. There exist  $R_1^2(5)$ ,  $R_2^2(8)$  and  $R_2^4(14)$  ring motifs (Table 1, Fig. 2). The molecules are interliked in the form of two-dimensional polymeric sheets in the plane ( $\overline{201}$ ) and with base vectors [100] and [102].

## **S2. Experimental**

Equimolar quantities of 3,4-dimethoxybenzaldehyde and hydrazinecarboxamide were refluxed in methanol for 45 min resulting in yellow solution. The solution was kept at room temperature which affoarded yellow prisms after 48 h.

#### **S3. Refinement**

The H-atoms were positioned geometrically (C–H = 0.93–0.96 Å and N—H = 0.86 Å) and refined as riding with  $U_{iso}(H) = x U_{eq}(C, N)$ , where x = 1.5 for methyl and x = 1.2 for all other H-atoms.



## Figure 1

View of the title compound with displacement ellipsoids drawn at the 50% probability level. The dotted lines indicate the intra-molecular hydrogen bond.



## Figure 2

Partial packnig diagram showing molecules interlinked to form polymeric sheets with various ring motifs.

#### 2-[(E)-3,4-Dimethoxybenzylidene]hydrazinecarboxamide

Crystal data

C<sub>10</sub>H<sub>13</sub>N<sub>3</sub>O<sub>3</sub>  $M_r = 223.23$ Monoclinic, C2/c Hall symbol: -C 2yc a = 22.2300 (7) Å b = 7.6367 (3) Å c = 15.6482 (6) Å  $\beta = 126.234$  (1)° V = 2142.76 (14) Å<sup>3</sup> Z = 8

#### Data collection

| Bruker Kappa APEXII CCD<br>diffractometer         | 7933 measured reflections<br>2115 independent reflections                 |
|---------------------------------------------------|---------------------------------------------------------------------------|
| Radiation source: fine-focus sealed tube          | 1389 reflections with $I > 2\sigma(I)$                                    |
| Graphite monochromator                            | $R_{\rm int} = 0.040$                                                     |
| Detector resolution: 8.00 pixels mm <sup>-1</sup> | $\theta_{\text{max}} = 26.0^{\circ}, \ \theta_{\text{min}} = 2.3^{\circ}$ |
| ωscans                                            | $h = -26 \rightarrow 27$                                                  |
| Absorption correction: multi-scan                 | $k = -9 \rightarrow 9$                                                    |
| (SADABS; Bruker, 2005)                            | $l = -19 \rightarrow 19$                                                  |
| $T_{\min} = 0.975, \ T_{\max} = 0.985$            |                                                                           |
| Refinement                                        |                                                                           |
| Refinement on $F^2$                               | Secondary atom site location: difference Fourier                          |
| Least-squares matrix: full                        | map                                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.043$                   | Hydrogen site location: inferred from                                     |
| $wR(F^2) = 0.121$                                 | neighbouring sites                                                        |
| S = 1.01                                          | H-atom parameters constrained                                             |
| 2115 reflections                                  | $w = 1/[\sigma^2(F_0^2) + (0.0592P)^2 + 0.0283P]$                         |
| 147 parameters                                    | where $P = (F_0^2 + 2F_c^2)/3$                                            |

F(000) = 944

 $\theta = 2.3 - 26.0^{\circ}$  $\mu = 0.10 \text{ mm}^{-1}$ 

Prism, yellow

 $0.25 \times 0.18 \times 0.15 \text{ mm}$ 

T = 296 K

 $D_{\rm x} = 1.384 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 1389 reflections

# direct methods

Primary atom site location: structure-invariant

0 restraints

*Special details* **Geometry**. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

 $(\Delta/\sigma)_{\rm max} < 0.001$  $\Delta\rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$ 

 $\Delta \rho_{\rm min} = -0.20 \ {\rm e} \ {\rm \AA}^{-3}$ 

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(Å^2)$ 

| x            | у                                                                             | Ζ                                                                                                                                                                                                                                | $U_{ m iso}$ */ $U_{ m eq}$                                                                                                                                                                                                    |                                                                                                                                                                                                                                                         |
|--------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.30582 (7)  | -0.13305 (19)                                                                 | 0.72476 (10)                                                                                                                                                                                                                     | 0.0464 (5)                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                         |
| 0.34785 (7)  | 0.03543 (19)                                                                  | 0.62646 (10)                                                                                                                                                                                                                     | 0.0454 (5)                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                         |
| -0.01303 (7) | 0.24827 (17)                                                                  | -0.02345 (10)                                                                                                                                                                                                                    | 0.0447 (5)                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                         |
| 0.10093 (8)  | 0.0967 (2)                                                                    | 0.23838 (12)                                                                                                                                                                                                                     | 0.0404 (5)                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                         |
| 0.04892 (8)  | 0.0982 (2)                                                                    | 0.12929 (12)                                                                                                                                                                                                                     | 0.0421 (5)                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                         |
|              | x<br>0.30582 (7)<br>0.34785 (7)<br>-0.01303 (7)<br>0.10093 (8)<br>0.04892 (8) | x         y           0.30582 (7)         -0.13305 (19)           0.34785 (7)         0.03543 (19)           -0.01303 (7)         0.24827 (17)           0.10093 (8)         0.0967 (2)           0.04892 (8)         0.0982 (2) | xyz $0.30582$ (7) $-0.13305$ (19) $0.72476$ (10) $0.34785$ (7) $0.03543$ (19) $0.62646$ (10) $-0.01303$ (7) $0.24827$ (17) $-0.02345$ (10) $0.10093$ (8) $0.0967$ (2) $0.23838$ (12) $0.04892$ (8) $0.0982$ (2) $0.12929$ (12) | xyz $U_{iso}^*/U_{eq}$ 0.30582 (7)-0.13305 (19)0.72476 (10)0.0464 (5)0.34785 (7)0.03543 (19)0.62646 (10)0.0454 (5)-0.01303 (7)0.24827 (17)-0.02345 (10)0.0447 (5)0.10093 (8)0.0967 (2)0.23838 (12)0.0404 (5)0.04892 (8)0.0982 (2)0.12929 (12)0.0421 (5) |

| N3  | 0.06302 (9)  | 0.3952 (2)  | 0.13090 (13) | 0.0445 (6) |
|-----|--------------|-------------|--------------|------------|
| C1  | 0.15297 (10) | -0.0591 (2) | 0.40077 (15) | 0.0347 (6) |
| C2  | 0.22548 (10) | 0.0085 (2)  | 0.45703 (15) | 0.0356 (6) |
| C3  | 0.27503 (10) | -0.0179 (2) | 0.56479 (14) | 0.0331 (6) |
| C4  | 0.25221 (10) | -0.1097 (2) | 0.61917 (15) | 0.0345 (6) |
| C5  | 0.18023 (10) | -0.1725 (3) | 0.56366 (15) | 0.0394 (7) |
| C6  | 0.13153 (10) | -0.1495 (3) | 0.45538 (15) | 0.0397 (7) |
| C7  | 0.28984 (13) | -0.2490 (3) | 0.78007 (16) | 0.0527 (8) |
| C8  | 0.37782 (11) | 0.1099 (3)  | 0.57544 (17) | 0.0490 (8) |
| C9  | 0.10014 (10) | -0.0369 (3) | 0.28603 (15) | 0.0400 (7) |
| C10 | 0.03155 (9)  | 0.2502 (3)  | 0.07501 (15) | 0.0347 (6) |
| H2  | 0.24028      | 0.07157     | 0.42152      | 0.0427*    |
| H2A | 0.02764      | 0.00235     | 0.09601      | 0.0505*    |
| H3A | 0.05296      | 0.49443     | 0.09922      | 0.0534*    |
| H3B | 0.09351      | 0.38993     | 0.19885      | 0.0534*    |
| Н5  | 0.16442      | -0.23070    | 0.59936      | 0.0473*    |
| H6  | 0.08359      | -0.19543    | 0.41857      | 0.0476*    |
| H7A | 0.24962      | -0.20238    | 0.77979      | 0.0791*    |
| H7B | 0.33332      | -0.26156    | 0.85185      | 0.0791*    |
| H7C | 0.27580      | -0.36131    | 0.74591      | 0.0791*    |
| H8A | 0.35195      | 0.21675     | 0.54077      | 0.0735*    |
| H8B | 0.37181      | 0.02896     | 0.52397      | 0.0735*    |
| H8C | 0.42987      | 0.13423     | 0.62723      | 0.0735*    |
| H9  | 0.06472      | -0.12360    | 0.24658      | 0.0479*    |
|     |              |             |              |            |

Atomic displacement parameters  $(Å^2)$ 

|     | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$     | $U^{13}$    | $U^{23}$     |
|-----|-------------|-------------|-------------|--------------|-------------|--------------|
| 01  | 0.0482 (8)  | 0.0532 (9)  | 0.0289 (8)  | -0.0080 (7)  | 0.0179 (7)  | 0.0017 (7)   |
| O2  | 0.0369 (8)  | 0.0576 (9)  | 0.0338 (8)  | -0.0152 (7)  | 0.0165 (7)  | -0.0050 (7)  |
| O3  | 0.0471 (8)  | 0.0416 (9)  | 0.0264 (7)  | 0.0006 (6)   | 0.0113 (7)  | -0.0004 (6)  |
| N1  | 0.0408 (9)  | 0.0384 (10) | 0.0272 (9)  | 0.0008 (7)   | 0.0120 (8)  | -0.0009 (7)  |
| N2  | 0.0448 (10) | 0.0355 (9)  | 0.0263 (9)  | -0.0042 (8)  | 0.0102 (8)  | -0.0018 (7)  |
| N3  | 0.0476 (10) | 0.0351 (10) | 0.0320 (10) | -0.0030 (8)  | 0.0132 (8)  | -0.0010 (7)  |
| C1  | 0.0362 (10) | 0.0307 (10) | 0.0330 (11) | 0.0031 (8)   | 0.0181 (9)  | -0.0009 (8)  |
| C2  | 0.0401 (11) | 0.0327 (11) | 0.0345 (11) | -0.0023 (8)  | 0.0224 (9)  | -0.0013 (8)  |
| C3  | 0.0321 (10) | 0.0330 (10) | 0.0303 (11) | -0.0042 (8)  | 0.0163 (9)  | -0.0062 (8)  |
| C4  | 0.0374 (10) | 0.0335 (10) | 0.0304 (10) | 0.0001 (8)   | 0.0188 (9)  | -0.0022 (8)  |
| C5  | 0.0417 (11) | 0.0418 (12) | 0.0394 (12) | -0.0001 (9)  | 0.0266 (10) | 0.0031 (9)   |
| C6  | 0.0307 (10) | 0.0406 (12) | 0.0421 (12) | 0.0005 (9)   | 0.0184 (9)  | 0.0015 (9)   |
| C7  | 0.0604 (14) | 0.0619 (16) | 0.0364 (12) | -0.0022 (11) | 0.0289 (11) | 0.0071 (11)  |
| C8  | 0.0462 (12) | 0.0524 (14) | 0.0524 (14) | -0.0126 (10) | 0.0313 (12) | -0.0047 (11) |
| C9  | 0.0350 (11) | 0.0397 (12) | 0.0337 (11) | -0.0015 (9)  | 0.0140 (10) | -0.0014 (9)  |
| C10 | 0.0289 (10) | 0.0391 (11) | 0.0294 (10) | -0.0001 (8)  | 0.0136 (9)  | -0.0010 (9)  |
|     |             |             |             |              |             |              |

Geometric parameters (Å, °)

| 01—C4        | 1.362 (2)    | C2—C3       | 1.379 (3)    |
|--------------|--------------|-------------|--------------|
| O1—C7        | 1.422 (3)    | C3—C4       | 1.408 (3)    |
| O2—C3        | 1.368 (3)    | C4—C5       | 1.379 (3)    |
| O2—C8        | 1.426 (3)    | C5—C6       | 1.380 (3)    |
| O3—C10       | 1.245 (2)    | C2—H2       | 0.9300       |
| N1—N2        | 1.385 (2)    | С5—Н5       | 0.9300       |
| N1—C9        | 1.270 (3)    | С6—Н6       | 0.9300       |
| N2—C10       | 1.353 (3)    | С7—Н7А      | 0.9600       |
| N3—C10       | 1.326 (3)    | С7—Н7В      | 0.9600       |
| N2—H2A       | 0.8600       | С7—Н7С      | 0.9600       |
| N3—H3A       | 0.8600       | C8—H8A      | 0.9600       |
| N3—H3B       | 0.8600       | C8—H8B      | 0.9600       |
| C1—C9        | 1.463 (3)    | C8—H8C      | 0.9600       |
| C1—C2        | 1.401 (3)    | С9—Н9       | 0.9300       |
| C1—C6        | 1.384 (3)    |             |              |
|              |              |             |              |
| C4—O1—C7     | 117.75 (18)  | N2          | 117.33 (17)  |
| C3—O2—C8     | 118.26 (15)  | O3—C10—N2   | 119.32 (19)  |
| N2—N1—C9     | 116.05 (17)  | C1—C2—H2    | 120.00       |
| N1—N2—C10    | 120.10 (15)  | С3—С2—Н2    | 120.00       |
| N1—N2—H2A    | 120.00       | C4—C5—H5    | 120.00       |
| C10—N2—H2A   | 120.00       | C6—C5—H5    | 120.00       |
| C10—N3—H3A   | 120.00       | C1—C6—H6    | 120.00       |
| C10—N3—H3B   | 120.00       | С5—С6—Н6    | 120.00       |
| H3A—N3—H3B   | 120.00       | O1—C7—H7A   | 109.00       |
| C2—C1—C6     | 118.95 (18)  | O1—C7—H7B   | 109.00       |
| C2—C1—C9     | 121.3 (2)    | O1—C7—H7C   | 109.00       |
| C6—C1—C9     | 119.7 (2)    | H7A—C7—H7B  | 109.00       |
| C1—C2—C3     | 120.4 (2)    | H7A—C7—H7C  | 109.00       |
| C2—C3—C4     | 119.9 (2)    | H7B—C7—H7C  | 109.00       |
| O2—C3—C4     | 114.88 (16)  | O2—C8—H8A   | 109.00       |
| O2—C3—C2     | 125.2 (2)    | O2—C8—H8B   | 109.00       |
| O1—C4—C5     | 125.2 (2)    | O2—C8—H8C   | 109.00       |
| O1—C4—C3     | 115.4 (2)    | H8A—C8—H8B  | 109.00       |
| C3—C4—C5     | 119.39 (18)  | H8A—C8—H8C  | 109.00       |
| C4—C5—C6     | 120.3 (2)    | H8B—C8—H8C  | 109.00       |
| C1—C6—C5     | 121.0 (2)    | N1—C9—H9    | 119.00       |
| N1—C9—C1     | 122.29 (19)  | С1—С9—Н9    | 119.00       |
| O3—C10—N3    | 123.4 (2)    |             |              |
| C7—O1—C4—C3  | -169.75 (18) | C2—C1—C9—N1 | -31.7 (3)    |
| C7—O1—C4—C5  | 8.3 (3)      | C6—C1—C9—N1 | 148.8 (2)    |
| C8—O2—C3—C2  | -6.2 (3)     | C1—C2—C3—O2 | 176.97 (18)  |
| C8—O2—C3—C4  | 172.38 (17)  | C1—C2—C3—C4 | -1.5 (3)     |
| C9—N1—N2—C10 | 162.2 (2)    | O2—C3—C4—O1 | -0.4 (2)     |
| N2—N1—C9—C1  | 178.4 (2)    | O2—C3—C4—C5 | -178.58 (18) |
|              | × /          |             | · /          |

| N1—N2—C10—O3 | 177.1 (2)    | C2—C3—C4—O1 | 178.23 (17) |
|--------------|--------------|-------------|-------------|
| N1—N2—C10—N3 | -3.6 (3)     | C2—C3—C4—C5 | 0.1 (3)     |
| C6—C1—C2—C3  | 1.3 (3)      | O1—C4—C5—C6 | -176.4 (2)  |
| C9—C1—C2—C3  | -178.29 (19) | C3—C4—C5—C6 | 1.6 (3)     |
| C2-C1-C6-C5  | 0.4 (3)      | C4—C5—C6—C1 | -1.9 (3)    |
| C9—C1—C6—C5  | 180.0 (2)    |             |             |

## Hydrogen-bond geometry (Å, °)

| D—H···A                             | D—H  | Н…А  | D···· $A$ | D—H···A |
|-------------------------------------|------|------|-----------|---------|
| N2—H2A····O3 <sup>i</sup>           | 0.86 | 2.15 | 2.970 (2) | 159     |
| N3—H3 <i>A</i> ···O3 <sup>ii</sup>  | 0.86 | 2.19 | 3.044 (2) | 170     |
| N3—H3 <i>B</i> …N1                  | 0.86 | 2.30 | 2.657 (2) | 105     |
| N3—H3 <i>B</i> …O1 <sup>iii</sup>   | 0.86 | 2.59 | 3.019 (2) | 112     |
| N3—H3 <i>B</i> ···O2 <sup>iii</sup> | 0.86 | 2.30 | 3.119 (2) | 160     |

Symmetry codes: (i) -x, -y, -z; (ii) -x, -y+1, -z; (iii) -x+1/2, -y+1/2, -z+1.