

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2,2'-[(E,E)-cis-(Cyclohexane-1,4-diyl)bis-(nitrilomethanylylidene)]diphenol

Shaaban K. Mohamed,^a Mehmet Akkurt,^b* Muhammad N. Tahir^c and Antar A. Abdelhamid^a

^aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^bDepartment of Physics, Faculty of Sciences, Ercives University, 38039 Kayseri, Turkey, and ^cUniversity of Sargodha, Department of Physics, Sargodha, Pakistan

Correspondence e-mail: akkurt@ercives.edu.tr

Received 21 May 2012; accepted 22 May 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.004 Å; R factor = 0.050; wR factor = 0.140; data-to-parameter ratio = 15.7.

In the title compound, C₂₀H₂₂N₂O₂, the asymmetric unit contains two independent half-molecules, which are both completed by crystallographic inversion symmetry. The cyclohexane rings of both molecules adopt chair conformations; the N atoms are in equatorial orientations in one molecule and in axial orientations in the other. Both molecules feature two intramolecular O-H···N hydrogen bonds, which generate S(6) rings.

Related literature

For background to Schiff bases as ligands, see: Li & Zhang (2004).

 $C_{20}H_{22}N_2O_2$ $M_r = 322.40$

Monoclinic, $P2_1/n$ a = 16.2979 (11) Å organic compounds

reflections

b = 6.1103 (4) Å Mo $K\alpha$ radiation $\mu = 0.08 \text{ mm}^{-3}$ c = 18.2336 (12) Å $\beta = 104.975 \ (4)^{\circ}$ T = 296 KV = 1754.1 (2) Å³ $0.32 \times 0.28 \times 0.25 \text{ mm}$

Data collection

Z = 4

Bruker Kappa APEXII CCD	12904 measured reflections
diffractometer	3428 independent reflections
Absorption correction: multi-scan	1641 reflections with $I > 2\sigma(I)$
(SADABS; Bruker, 2005)	$R_{\rm int} = 0.041$
$T_{\min} = 0.975, T_{\max} = 0.980$	

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	219 parameters
$wR(F^2) = 0.140$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.16 \ {\rm e} \ {\rm \AA}^{-3}$
3428 reflections	$\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$01 - H1 \cdots N1$	0.82	1.85	2.579 (2)	148
$02 - H2A \cdots N2$	0.82	1.86	2.593 (3)	148

Data collection: APEX2 (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLATON (Spek, 2009); software used to prepare material for publication: WinGX (Farrugia, 1999) and PLATON.

This project was sponsored by the General Association of Scholarships in Egypt. The University of Sargodha is gratefully acknowledged for The X-ray diffraction measurements and the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6813).

References

Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA. Bruker (2007). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA. Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Li, Z.-X. & Zhang, X.-L. (2004). Acta Cryst. E60, m1017-m1019.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o1905 [doi:10.1107/S1600536812023367]

2,2'-[(E,E)-cis-(Cyclohexane-1,4-diyl)bis(nitrilomethanylylidene)]diphenol

Shaaban K. Mohamed, Mehmet Akkurt, Muhammad N. Tahir and Antar A. Abdelhamid

S1. Comment

Schiff base compounds have been reported as excelent substrates in the development of coordination chemistry (e.g. Li & Zhang, 2004), In this study we report the synthesis and crystal structure of the title compound (I).

As shown in Fig. 1, there are two independent half molecules A (with C1) and B (with C11) in the asymmetric unit of the title compound. They are centrosymmetric and the centres of symmetry are lied on the centroids of their cyclohexane rings. The cyclohexane rings of them adopt chair conformations Molecular conformation of the title compound is stabilized by intramolecular O—H···N hydrogen bonds, generating an S(6) ring motif (Table 1, Fig. 2).

S2. Experimental

The title compound arose as a bi-product from heating a reaction mixture of 114 mg (1 mmol) cyclohexane-1,4-diamine, 112 mg (1 mmol) cyclohexane-1,3-dione and 122 mg (1 mmol) salicylaldehyde in 50 ml e thanol under reflux for 6 h. The reaction mixture was concentrated under vacuum then left to cool at ambient temperature. The obtained solid was collected by Buckner funnel, washed with water then ethanol, dried in desiccator and crystallized from ethanol (m.p. 451 K). Yellow prisms were grown from ethanol solution by slow evaporation over two days.

S3. Refinement

All H atoms were positioned geometrically and allowed to ride on their parent atoms, with O—H = 0.82 Å and C—H = 0.93 Å (aromatic), 0.97 Å (methylene) and 0.98 Å (methine), with $U_{iso}(H) = 1.5U_{eq}(O)$ for OH groups and $U_{iso}(H) = 1.2U_{eq}(C)$ for others.

The molecular structure of the title compound, showing 30% probability ellipsoids.

Figure 2

The crystal packing of the title compound, viewing along the *b* axis.

2,2'-[(E,E)-cis-(Cyclohexane-1,4- diyl)bis(nitrilomethanylylidene)]diphenol

Crystal data

 $C_{20}H_{22}N_2O_2$ $M_r = 322.40$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 16.2979 (11) Å b = 6.1103 (4) Å c = 18.2336 (12) Å $\beta = 104.975 (4)^{\circ}$ $V = 1754.1 (2) \text{ Å}^3$ Z = 4

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator Detector resolution: 0.81 pixels mm⁻¹ F(000) = 688 $D_x = 1.221 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 355 reflections $\theta = 3.5-18^{\circ}$ $\mu = 0.08 \text{ mm}^{-1}$ T = 296 KPrism, light yellow $0.32 \times 0.28 \times 0.25 \text{ mm}$

 ω scans Absorption correction: multi-scan (*SADABS*; Bruker, 2005) $T_{\min} = 0.975, T_{\max} = 0.980$ 12904 measured reflections

$h = -20 \rightarrow 17$
$k = -7 \rightarrow 7$
$l = -22 \rightarrow 22$
Secondary atom site location: difference Fourier
map
Hydrogen site location: inferred from
neighbouring sites
H-atom parameters constrained
$w = 1/[\sigma^2(F_o^2) + (0.0527P)^2 + 0.1881P]$
where $P = (F_o^2 + 2F_c^2)/3$
$(\Delta/\sigma)_{\rm max} < 0.001$
$\Delta \rho_{\rm max} = 0.16 \text{ e } \text{\AA}^{-3}$
$\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}*/U_{ m eq}$
01	0.09064 (11)	-0.2099 (2)	0.21955 (9)	0.0798 (7)
N1	0.07675 (13)	0.0983 (3)	0.12044 (10)	0.0689 (8)
C1	0.13461 (14)	-0.0662 (4)	0.27110 (13)	0.0590 (9)
C2	0.16439 (15)	-0.1325 (4)	0.34525 (13)	0.0737 (10)
C3	0.20939 (17)	0.0070 (6)	0.39911 (15)	0.0845 (11)
C4	0.22627 (17)	0.2171 (6)	0.37967 (16)	0.0878 (14)
C5	0.19641 (15)	0.2847 (4)	0.30586 (15)	0.0732 (10)
C6	0.15061 (13)	0.1469 (4)	0.25003 (12)	0.0540 (8)
C7	0.11732 (14)	0.2225 (4)	0.17308 (13)	0.0629 (9)
C8	0.0412 (2)	0.1898 (4)	0.04433 (14)	0.0798 (12)
C9	0.07984 (17)	0.0747 (5)	-0.01193 (15)	0.0893 (13)
C10	-0.05416 (19)	0.1620 (5)	0.02264 (14)	0.0895 (13)
O2	0.24999 (12)	-0.0079 (3)	0.60105 (10)	0.0906 (8)
N2	0.15493 (13)	0.3363 (3)	0.59279 (11)	0.0689 (8)
C11	0.30811 (17)	0.0985 (4)	0.65534 (13)	0.0658 (10)
C12	0.3858 (2)	-0.0030 (4)	0.68695 (16)	0.0789 (11)
C13	0.44577 (18)	0.1016 (5)	0.74179 (17)	0.0835 (12)
C14	0.43165 (18)	0.3068 (5)	0.76653 (15)	0.0827 (12)
C15	0.35547 (17)	0.4075 (4)	0.73567 (14)	0.0726 (10)
C16	0.29237 (15)	0.3078 (4)	0.67939 (13)	0.0594 (9)
C17	0.21310 (16)	0.4199 (4)	0.64521 (13)	0.0639 (9)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C18	0.07848 (17)	0.4641 (4)	0.56020 (12)	0.0707 (10)
C19	0.08057 (16)	0.5442 (5)	0.48189 (14)	0.0877 (11)
C20	0.00025 (17)	0.3308 (5)	0.55562 (15)	0.0893 (11)
H1	0.07470	-0.14950	0.17810	0.0960*
H2	0.15370	-0.27440	0.35880	0.0880*
Н3	0.22880	-0.03980	0.44920	0.1020*
H4	0.25760	0.31200	0.41620	0.1050*
Н5	0.20730	0.42720	0.29300	0.0880*
H7	0.12590	0.36770	0.16170	0.0760*
H8	0.05480	0.34610	0.04490	0.0960*
H9A	0.06250	0.14910	-0.06050	0.1070*
H9B	0.14120	0.08380	0.00550	0.1070*
H10A	-0.07710	0.22480	0.06200	0.1070*
H10B	-0.07820	0.24110	-0.02410	0.1070*
H2A	0.20730	0.06790	0.58720	0.1090*
H12	0.39670	-0.14170	0.67070	0.0950*
H13	0.49730	0.03250	0.76290	0.1000*
H14	0.47330	0.37660	0.80380	0.0990*
H15	0.34570	0.54600	0.75280	0.0870*
H17	0.20470	0.55910	0.66260	0.0770*
H18	0.07770	0.59130	0.59280	0.0850*
H19A	0.08650	0.42010	0.45050	0.1050*
H19B	0.12940	0.63890	0.48620	0.1050*
H20A	-0.00150	0.28800	0.60640	0.1070*
H20B	0.00280	0.19850	0.52690	0.1070*

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.1064 (14)	0.0639 (10)	0.0648 (11)	-0.0200 (10)	0.0146 (10)	0.0018 (8)
N1	0.0927 (15)	0.0592 (12)	0.0533 (12)	-0.0029 (11)	0.0160 (10)	0.0030 (10)
C1	0.0618 (15)	0.0655 (16)	0.0526 (14)	-0.0007 (13)	0.0202 (11)	-0.0056 (12)
C2	0.0842 (19)	0.0826 (18)	0.0583 (16)	0.0068 (15)	0.0257 (13)	0.0046 (14)
C3	0.084 (2)	0.114 (2)	0.0565 (17)	0.0167 (18)	0.0201 (14)	-0.0041 (17)
C4	0.0716 (19)	0.114 (3)	0.073 (2)	-0.0034 (17)	0.0099 (15)	-0.0310 (18)
C5	0.0669 (17)	0.0738 (17)	0.0834 (19)	-0.0097 (13)	0.0274 (14)	-0.0203 (15)
C6	0.0537 (14)	0.0567 (14)	0.0558 (14)	-0.0014 (11)	0.0217 (11)	-0.0057 (12)
C7	0.0736 (17)	0.0543 (14)	0.0672 (16)	-0.0008 (12)	0.0296 (13)	0.0013 (13)
C8	0.120 (3)	0.0562 (15)	0.0589 (16)	0.0001 (16)	0.0152 (16)	0.0100 (13)
C9	0.083 (2)	0.120 (3)	0.0661 (18)	-0.0034 (18)	0.0212 (14)	0.0239 (17)
C10	0.107 (3)	0.100 (2)	0.0625 (17)	0.0366 (19)	0.0238 (16)	-0.0014 (15)
O2	0.1192 (16)	0.0754 (12)	0.0774 (13)	0.0202 (11)	0.0259 (11)	-0.0102 (10)
N2	0.0781 (15)	0.0755 (14)	0.0541 (12)	0.0147 (12)	0.0189 (10)	0.0012 (11)
C11	0.085 (2)	0.0656 (17)	0.0548 (15)	0.0085 (15)	0.0327 (14)	0.0045 (13)
C12	0.101 (2)	0.0716 (18)	0.0787 (19)	0.0263 (18)	0.0497 (17)	0.0179 (15)
C13	0.073 (2)	0.104 (2)	0.084 (2)	0.0205 (18)	0.0391 (17)	0.0301 (18)
C14	0.067 (2)	0.097 (2)	0.088 (2)	-0.0028 (17)	0.0271 (15)	0.0135 (17)
C15	0.0768 (19)	0.0668 (16)	0.0809 (18)	-0.0025 (15)	0.0324 (15)	0.0048 (14)

supporting information

C16	0.0693 (17)	0.0588 (15)	0.0594 (15)	0.0058 (13)	0.0335 (13)	0.0077 (12)
C17	0.0772 (18)	0.0605 (15)	0.0622 (16)	0.0092 (14)	0.0328 (13)	0.0061 (13)
C18	0.0829 (19)	0.0775 (17)	0.0530 (15)	0.0188 (16)	0.0202 (12)	0.0007 (13)
C19	0.0816 (19)	0.109 (2)	0.0774 (19)	0.0142 (17)	0.0296 (14)	0.0299 (16)
C20	0.089 (2)	0.104 (2)	0.0797 (19)	0.0131 (19)	0.0304 (15)	0.0309 (16)

Geometric parameters (Å, °)

01—C1	1.349 (3)	С9—Н9А	0.9700	
01—H1	0.8200	C9—H9B	0.9700	
O2—C11	1.347 (3)	C10—H10B	0.9700	
O2—H2A	0.8200	C10—H10A	0.9700	
N1—C7	1.267 (3)	C11—C16	1.397 (3)	
N1—C8	1.469 (3)	C11—C12	1.394 (4)	
N2-C18	1.460 (3)	C12—C13	1.363 (4)	
N2-C17	1.267 (3)	C13—C14	1.372 (4)	
C1—C6	1.401 (3)	C14—C15	1.370 (4)	
C1—C2	1.374 (3)	C15—C16	1.392 (4)	
С2—С3	1.363 (4)	C16—C17	1.453 (4)	
C3—C4	1.378 (5)	C18—C20	1.497 (4)	
C4—C5	1.371 (4)	C18—C19	1.518 (3)	
С5—С6	1.382 (3)	C19—C20 ⁱⁱ	1.523 (4)	
С6—С7	1.443 (3)	C12—H12	0.9300	
C8—C10	1.511 (5)	C13—H13	0.9300	
С8—С9	1.509 (4)	C14—H14	0.9300	
C9-C10 ⁱ	1.504 (4)	C15—H15	0.9300	
С2—Н2	0.9300	C17—H17	0.9300	
С3—Н3	0.9300	C18—H18	0.9800	
C4—H4	0.9300	C19—H19A	0.9700	
С5—Н5	0.9300	C19—H19B	0.9700	
С7—Н7	0.9300	C20—H20A	0.9700	
С8—Н8	0.9800	C20—H20B	0.9700	
C1—01—H1	109.00	H10A—C10—H10B	108.00	
C11—O2—H2A	109.00	C8—C10—H10A	109.00	
C7—N1—C8	119.3 (2)	O2—C11—C12	118.7 (2)	
C17—N2—C18	119.0 (2)	C12—C11—C16	119.9 (2)	
O1—C1—C2	118.9 (2)	O2—C11—C16	121.4 (2)	
C2—C1—C6	120.0 (2)	C11—C12—C13	119.8 (2)	
01—C1—C6	121.1 (2)	C12—C13—C14	121.4 (3)	
C1—C2—C3	120.8 (2)	C13—C14—C15	119.1 (3)	
C2—C3—C4	120.2 (3)	C14—C15—C16	121.7 (2)	
C3—C4—C5	119.3 (3)	C11—C16—C15	118.1 (2)	
C4—C5—C6	121.8 (3)	C11—C16—C17	120.8 (2)	
C1—C6—C5	117.9 (2)	C15—C16—C17	121.1 (2)	
C1—C6—C7	120.9 (2)	N2-C17-C16	122.9 (2)	
С5—С6—С7	121.1 (2)	N2-C18-C19	109.3 (2)	
N1—C7—C6	122.4 (2)	N2-C18-C20	110.9 (2)	

N1-C8-C10	109.4 (2)	C19—C18—C20	110.4 (2)
C9—C8—C10	110.6 (2)	C18—C19—C20 ⁱⁱ	110.9 (2)
N1—C8—C9	109.4 (2)	C18—C20—C19 ⁱⁱ	112.2 (2)
C8-C9-C10 ⁱ	112.7 (2)	C11—C12—H12	120.00
C8—C10—C9 ⁱ	112.0 (2)	C13—C12—H12	120.00
C1—C2—H2	120.00	С12—С13—Н13	119.00
С3—С2—Н2	120.00	C14—C13—H13	119.00
С4—С3—Н3	120.00	C13—C14—H14	120.00
С2—С3—Н3	120.00	C15—C14—H14	120.00
C3—C4—H4	120.00	C14—C15—H15	119.00
C5—C4—H4	120.00	C16—C15—H15	119.00
С6—С5—Н5	119.00	N2-C17-H17	119.00
C4—C5—H5	119.00	$C_{16} - C_{17} - H_{17}$	119.00
С6—С7—Н7	119.00	N2-C18-H18	109.00
N1-C7-H7	119.00	C_{19} C_{18} H_{18}	109.00
C9-C8-H8	109.00	C_{20} C_{18} H_{18}	109.00
C10-C8-H8	109.00	C_{18} C_{19} H_{19A}	109.00
N1_C8_H8	109.00	C_{18} C_{19} H_{19B}	109.00
$C_8 = C_9 = H_0 B$	109.00	$H_{10A} = C_{10} = H_{10B}$	109.00
	109.00	$\begin{array}{c} 1119A - C19 - 1119B \\ C20^{ii} C10 H10A \end{array}$	108.00
$C10^{i}$ C0 H0B	109.00	$C_{20} = C_{19} = H_{19}R$	109.00
	109.00	$C_{20} = C_{19} = H_{20A}$	109.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.00	$C_{18} = C_{20} = H_{20}R$	109.00
$C_{10} - C_{9} - H_{9}A$	109.00		109.00
	109.00	$H_20A - C_20 - H_20B$	108.00
C9 - C10 - H10A	109.00	$C19^{H} - C20 - H20A$	109.00
C9	109.00	C19"C20H20B	109.00
C8—N1—C7—C6	177.0 (2)	N1-C8-C10-C9 ⁱ	-67.2 (3)
C7—N1—C8—C9	119.4 (3)	C9—C8—C10—C9 ⁱ	53.4 (3)
C7—N1—C8—C10	-119.3 (3)	$C8-C9-C10^{i}-C8^{i}$	54.6 (3)
C18—N2—C17—C16	-178.1 (2)	O2-C11-C12-C13	179.8 (3)
C17—N2—C18—C19	105.8 (3)	C16-C11-C12-C13	0.7 (4)
C17—N2—C18—C20	-132.2 (2)	O2-C11-C16-C15	-179.9 (2)
O1—C1—C2—C3	179.7 (2)	O2-C11-C16-C17	-1.4 (4)
C6—C1—C2—C3	0.2 (4)	C12-C11-C16-C15	-0.9 (4)
O1—C1—C6—C5	-179.7 (2)	C12-C11-C16-C17	177.7 (2)
C2-C1-C6-C7	-177.7 (2)	C11—C12—C13—C14	-0.4 (5)
O1—C1—C6—C7	2.8 (3)	C12—C13—C14—C15	0.4 (4)
C2-C1-C6-C5	-0.2 (3)	C13—C14—C15—C16	-0.6 (4)
C1—C2—C3—C4	-0.5 (4)	C14—C15—C16—C11	0.8 (4)
C2—C3—C4—C5	0.8 (4)	C14—C15—C16—C17	-177.7 (2)
C3—C4—C5—C6	-0.8 (4)	C11—C16—C17—N2	0.0 (4)
C4—C5—C6—C1	0.5 (4)	C15—C16—C17—N2	178.5 (2)
C4—C5—C6—C7	178.0 (2)	N2-C18-C19-C20 ⁱⁱ	177.3 (2)
C1C6C7N1	-4.2 (4)	C20-C18-C19-C20 ⁱⁱ	55.0 (3)
C5-C6-C7-N1	178.4 (2)	N2-C18-C20-C19 ⁱⁱ	-177.1 (2)

C10-C8-C9-C10 ⁱ	-53.8 (3)	C19—C18—C20—C19 ⁱⁱ	-55.7 (3)
N1-C8-C9-C10 ⁱ	66.8 (3)	C18—C19—C20 ⁱⁱ —C18 ⁱⁱ	-56.0 (3)

Symmetry codes: (i) -x, -y, -z; (ii) -x, -y+1, -z+1.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
01—H1…N1	0.82	1.85	2.579 (2)	148
O2—H2A···N2	0.82	1.86	2.593 (3)	148