metal-organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

[2-({Benzyl[2-(benzyl{5-methyl-2-oxido-3-[(pyridin-2-ylmethyl)iminomethyl]benzyl}amino)ethyl]azaniumyl}methyl)-4-methyl-6-[(pyridin-2-ylmethyl)iminomethyl]phenolato]nickel(II) perchlorate methanol disolvate

Ming Liu,^a Jia-Wei Mao^b and Zhi-Quan Pan^{a*}

^aKey Laboratory for Green Chemical Process of the Ministry of Education, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China, and ^bCollege of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, People's Republic of China

Correspondence e-mail: zhiqpan@163.com

Received 24 May 2012; accepted 27 May 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; R factor = 0.037; wR factor = 0.165; data-to-parameter ratio = 14.3.

In the solvated title complex, $[Ni(C_{46}H_{47}N_6O_2)]ClO_4 \cdot 2CH_4O$, the coordination sphere around the Ni^{II} ion can be described as distorted *cis*-NiO₂N₄ octahedral defined by two phenolate O atoms and four N atoms from the hexadentate ligand. An intramolecular bifurcated N-H···(N,O) hydrogen bond helps to establish the conformation of the complex molecule. In the crystal, the components are connected by $O-H \cdots O$ and $C-H \cdots O$ hydrogen bonds.

Related literature

For related complexes, see: Choi et al. (1999); Golchoubian et al. (2007a,b, 2010, 2012); Pan et al. (2011). For the preparation of the ligand, see: Ding et al. (2012).

Experimental

Crystal data

[Ni(C46H47N6O2)]ClO4·2CH4O $\gamma = 95.310 \ (1)^{\circ}$ V = 2279.0 (2) Å³ $M_r = 938.14$ Triclinic, $P\overline{1}$ Z = 2a = 11.2875 (6) Å Mo $K\alpha$ radiation b = 13.0874 (7) Å $\mu = 0.55 \text{ mm}^{-1}$ c = 16.3325 (9) Å T = 100 K $\alpha = 93.902 (1)^{\circ}$ $0.16 \times 0.12 \times 0.10 \text{ mm}$ $\beta = 107.537 (1)^{\circ}$

Data collection

Bruker APEXII CCD
diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2000)
$T_{\min} = 0.918, T_{\max} = 0.948$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.037$	H atoms treated by a mixture of
$wR(F^2) = 0.165$	independent and constrained
S = 1.15	refinement
8368 reflections	$\Delta \rho_{\rm max} = 0.65 \ {\rm e} \ {\rm \AA}^{-3}$
586 parameters	$\Delta \rho_{\rm min} = -0.57 \text{ e } \text{\AA}^{-3}$

13755 measured reflections

 $R_{\rm int} = 0.016$

8368 independent reflections

7377 reflections with $I > 2\sigma(I)$

Table 1

Selected bond lengths (Å).

Ni1-N5	2.022(2)	Ni1-N1	2.135(2)
Ni1-N2	2.024 (2)	Ni1-O1	2.0277 (16) 2.0543 (16)
Ni1-N6	2.123 (2)	Ni1-O2	

Table 2			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N4-H4A···O2	0.81 (3)	2.21 (3)	2.829 (3)	134 (3)
$N4 - H4A \cdots N3$	0.81(3)	2.35 (3)	2.809 (3)	117 (2)
$C45 - H45 \cdots O8^{i}$	0.95	2.52	3.417 (3)	156
$C41 - H41A \cdots O6$	0.99	2.34	3.276 (3)	157
C31-H31···O8 ⁱⁱ	0.95	2.43	3.365 (3)	167
C30−H30···O5 ⁱⁱ	0.95	2.58	3.524 (3)	171
C28-H28···O6 ⁱⁱⁱ	0.95	2.56	3.503 (3)	173
$C7 - H7 \cdot \cdot \cdot O6^{i}$	0.95	2.60	3.289 (3)	130
$C4-H4\cdots O4^{iv}$	0.95	2.49	3.405 (3)	163
$O8-H8\cdots O3^{v}$	0.84	1.91	2.748 (3)	176
$O3-H3A\cdots O1^{vi}$	0.84	1.91	2.723 (3)	164

Symmetry codes: (i) x + 1, y, z; (ii) x + 1, y - 1, z; (iii) -x + 2, -y, -z + 1; (iv) -x + 2, -y + 1, -z + 1; (v) -x, -y + 1, -z; (vi) x - 1, y, z.

Data collection: APEX2 (Bruker, 2000); cell refinement: SAINT (Bruker, 2000); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This work was supported financially by the National Natural Science Foundation of China (grant No. 20971102), the Foundation for Midlife and Youth Talent Project of Hubei Province, China (grant No. Q20111507).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6819).

References

- Bruker (2000). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Choi, K. Y., Chun, K. M. & Suh, I. H. (1999). Polyhedron, 18, 2811–2820.
- Ding, C., Chen, Y.-F., Liu, M., Song, H.-T., Zhou, H. & Pan, Z.-Q. (2012). Chin. J. Inorg. Chem. 28, 801–808.
- Golchoubian, H., Baktash, E. & Welter, R. (2007*a*). *Inorg. Chem. Commun.* **10**, 1035–1039.
- Golchoubian, H., Baktash, E. & Welter, R. (2007b). Inorg. Chem. Commun. 10, 120-124.
- Golchoubian, H., Mardani, H. R., Bruno, G. & Rudbari, H. A. (2012). *Inorg. Chim. Acta*, **383**, 250–256.
- Golchoubian, H., Rostami, L. & Kariuki, B. (2010). *Polyhedron*, **29**, 1525–1533.
- Pan, Z.-Q., Ding, K., Zhou, H., Cheng, Q.-R., Chen, Y.-F. & Huang, Q.-M. (2011). *Polyhedron*, **30**, 2268–2274.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, m860-m861 [doi:10.1107/S1600536812024191]

[2-({Benzyl[2-(benzyl{5-methyl-2-oxido-3-[(pyridin-2-ylmethyl)iminomethyl]benzyl}amino)ethyl]azaniumyl}methyl)-4-methyl-6-[(pyridin-2-ylmethyl)iminomethyl]phenolato]nickel(II) perchlorate methanol disolvate

Ming Liu, Jia-Wei Mao and Zhi-Quan Pan

S1. Comment

Recently, study of Schiff base complexes with macrocycle ligands has been given considerable attention because of their interesting biochemical properties (Choi *et al.*, 1999; Golchoubian *et al.*, 2007*a,b*; Golchoubian *et al.*, 2010; Golchoubian *et al.*, 2012). In this paper, we report on the the synthesis and crystal structure of the title compound, a new nickel(II) complex obtained by the reaction of 3,3'-(ethane-1,2-diylbis(benzylazanediyl)bis(methylene) bis(2-hydroxy-5-methylbenzaldehyde)(L^1) and 2-(Aminomethyl) pyridine (L^2) in the presence of Ni(ClO₄)₂.6H₂O.The coordination geometry for central Ni^{II} atom can be described as distorted octahedral and the basal bond distances around the Ni atom are in the range of 2.022-2.135 Å (Fig.1, Tab. 1), and the distances of amino N to Ni are shorter than those of pyridine N to Ni.

S2. Experimental

The ligand L¹ was prepared according to the literature method (Ding *et al.*, 2012). L² (0.0432 g, 0.40 mmol) dissolved in sbsolute methanol (10 ml) was added dropwise to a solution of L¹ (0.1072 g, 0.20 mmol). The mixture was stirred for 6h and then an absolute methanol solution of Ni(ClO₄)₂.6H₂O (0.0731 g, 0.20 mmol) was added dropwise. The mixture was stirred at room temperature for 8 h and filtered. Orange blocks were obtained by evaporation of the filtrate at room temperature for three weeks.

S3. Refinement

All C-bound H atoms were placed in calculated positions with 0.93–0.97 Å, and included in the refinement in the ridingmodel approximation, with U(H) set to $1.2-1.5U_{eq}(C)$.

Figure 1

Molecular structure of the title compound. Displacement ellipsoids are drawn at the 30% probability level. H atoms have been omitted for clarity.

[2-({Benzyl[2-(benzyl{5-methyl-2-oxido-3-[(pyridin-2-

ylmethyl)iminomethyl]benzyl}amino)ethyl]azaniumyl}methyl)-4-methyl- 6-[(pyridin-2ylmethyl)iminomethyl]phenolato]nickel(II) perchlorate methanol disolvate

Crystal data	
[Ni(C ₄₆ H ₄₇ N ₆ O ₂)]ClO ₄ ·2CH ₄ O $M_r = 938.14$ Triclinic, $P\overline{1}$ a = 11.2875 (6) Å b = 13.0874 (7) Å c = 16.3325 (9) Å a = 93.902 (1)° $\beta = 107.537$ (1)° $\gamma = 95.310$ (1)° V = 2279.0 (2) Å ³	Z = 2 F(000) = 988 $D_x = 1.367 \text{ Mg m}^{-3}$ Mo Ka radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9531 reflections $\theta = 2.2-31.7^{\circ}$ $\mu = 0.55 \text{ mm}^{-1}$ T = 100 K Block, orange $0.16 \times 0.12 \times 0.10 \text{ mm}$
Data collection	
Bruker APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator φ and ω scans	Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2000) $T_{min} = 0.918$, $T_{max} = 0.948$ 13755 measured reflections 8368 independent reflections 7377 reflections with $I > 2\sigma(I)$

$R_{\rm int} = 0.016$	$k = -15 \rightarrow 12$
$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 1.3^{\circ}$	$l = -19 \rightarrow 19$
$h = -12 \rightarrow 13$	

Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.037$	Hydrogen site location: inferred from
$wR(F^2) = 0.165$	neighbouring sites
S = 1.15	H atoms treated by a mixture of independent
8368 reflections	and constrained refinement
586 parameters	$w = 1/[\sigma^2(F_o^2) + (0.1196P)^2 + 0.2909P]$
0 restraints	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.004$
direct methods	$\Delta \rho_{\rm max} = 0.65 \text{ e } \text{\AA}^{-3}$
	$\Delta ho_{ m min} = -0.57 \ m e \ m \AA^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2$ sigma(F^2) is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
Ni1	1.00784 (2)	0.23501 (2)	0.303149 (17)	0.01176 (13)	
C1	0.9500 (2)	0.33199 (18)	0.46596 (16)	0.0171 (5)	
H1	0.8651	0.3067	0.4363	0.021*	
C2	0.9795 (2)	0.37976 (19)	0.54881 (17)	0.0213 (5)	
H2	0.9163	0.3869	0.5756	0.026*	
C3	1.1036 (3)	0.4172 (2)	0.59222 (17)	0.0230 (6)	
H3	1.1270	0.4505	0.6492	0.028*	
C4	1.1926 (2)	0.40475 (19)	0.55063 (16)	0.0191 (5)	
H4	1.2781	0.4297	0.5790	0.023*	
C5	1.1564 (2)	0.35590 (18)	0.46758 (15)	0.0157 (5)	
C6	1.2490 (2)	0.34329 (19)	0.41852 (15)	0.0169 (5)	
H6A	1.2703	0.4100	0.3982	0.020*	
H6B	1.3268	0.3225	0.4574	0.020*	
C7	1.2743 (2)	0.21904 (18)	0.31576 (15)	0.0145 (5)	
H7	1.3611	0.2390	0.3436	0.017*	
C8	1.2389 (2)	0.13883 (17)	0.24411 (15)	0.0134 (5)	
C9	1.3367 (2)	0.08859 (19)	0.22811 (16)	0.0168 (5)	
H9	1.4205	0.1128	0.2614	0.020*	
C10	1.3157 (2)	0.00611 (19)	0.16641 (16)	0.0182 (5)	
C11	1.1905 (2)	-0.03080 (18)	0.12067 (15)	0.0165 (5)	
H11	1.1734	-0.0894	0.0794	0.020*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C12	1.0913 (2)	0.01575 (18)	0.13388 (14)	0.0143 (5)
C13	1.1126 (2)	0.10685 (18)	0.19223 (14)	0.0141 (5)
C14	1.4211 (3)	-0.0465 (2)	0.14902 (18)	0.0263 (6)
H14A	1.5016	-0.0084	0.1833	0.039*
H14B	1.4133	-0.0479	0.0875	0.039*
H14C	1.4164	-0.1173	0.1650	0.039*
C15	0.9571 (2)	-0.03342 (18)	0.09406 (14)	0.0157 (5)
H15A	0.9022	0.0196	0.0714	0.019*
H15B	0.9511	-0.0857	0.0458	0.019*
C16	0.7835 (2)	-0.08818(19)	0.15335 (15)	0.0161 (5)
H16A	0.7544	-0.0215	0.1361	0.019*
H16B	0.7728	-0.0971	0.2105	0.019*
C17	0.7720 0.7005 (2)	-0.17363(19)	0.08890 (16)	0.0171(5)
C18	0.7005(2) 0.6706(2)	-0.1667(2)	0.00000 (10) 0.00026 (17)	0.0171(5) 0.0247(6)
H18	0.6968	-0.1048	-0.0199	0.030*
C19	0.6928 (3)	-0.2491(3)	-0.05936(19)	0.0346(7)
H10	0.5848	-0.2436	-0.1195	0.042*
C20	0.5627 (3)	-0.3376(2)	-0.0310(2)	0.042
U20	0.5027 (5)	-0.3035	-0.0715	0.0330(7)
C21	0.5103	-0.3461(2)	0.0713	0.045°
U21	0.5614	-0.401(2)	0.0309 (2)	0.0333(7)
C22	0.5014	-0.2633(2)	0.0703 0.11642 (18)	0.045°
022	0.0378 (2)	-0.2033(2)	0.11045 (16)	0.0232(0)
П22 С22	0.0731	-0.2089	0.1703	0.030°
C25	0.9709(2)	-0.17928 (18)	0.18041 (14)	0.0142(5)
H23A	1.0501	-0.1//8	0.1639	0.017*
H23B	0.9119	-0.23/3	0.1441	0.01/*
C24	0.9957(2)	-0.19542 (17)	0.2/522 (14)	0.0141 (5)
H24A	0.9155	-0.2063	0.2881	0.017*
H24B	1.0396	-0.25/3	0.2884	0.01/*
C25	1.2124 (2)	-0.09/51 (18)	0.33744 (15)	0.0142 (5)
H25A	1.2226	-0.0927	0.2797	0.017*
H25B	1.2578	-0.0344	0.3747	0.01/*
C26	1.2696 (2)	-0.19011 (18)	0.37490 (14)	0.0130 (5)
C27	1.3107 (2)	-0.19528 (19)	0.46436 (15)	0.0158 (5)
H27	1.3026	-0.1397	0.5021	0.019*
C28	1.3631 (2)	-0.2814 (2)	0.49803 (16)	0.0187 (5)
H28	1.3897	-0.2851	0.5586	0.022*
C29	1.3766 (2)	-0.3624 (2)	0.44274 (17)	0.0198 (5)
H29	1.4121	-0.4214	0.4655	0.024*
C30	1.3380 (2)	-0.3563 (2)	0.35439 (17)	0.0207 (5)
H30	1.3483	-0.4111	0.3168	0.025*
C31	1.2845 (2)	-0.27092 (19)	0.32042 (15)	0.0172 (5)
H31	1.2580	-0.2677	0.2597	0.021*
C32	1.0519 (2)	-0.08714 (18)	0.41611 (14)	0.0136 (5)
H32A	1.0554	-0.1529	0.4429	0.016*
H32B	1.1173	-0.0351	0.4552	0.016*
C33	0.9263 (2)	-0.05175 (18)	0.40261 (14)	0.0139 (5)
C34	0.9098 (2)	0.04446 (18)	0.36746 (14)	0.0126 (5)

C35	0.7850(2)	0.07242 (18)	0.34375 (14)	0.0127 (5)
C36	0.6904 (2)	0.00995 (18)	0.36406 (15)	0.0151 (5)
H36	0.6088	0.0307	0.3494	0.018*
C37	0.7102 (2)	-0.0785 (2)	0.40363 (16)	0.0188 (5)
C38	0.8306 (2)	-0.11052 (19)	0.42039 (15)	0.0158 (5)
H38	0.8462	-0.1739	0.4444	0.019*
C39	0.6089(3)	-0.1415 (2)	0.4280(2)	0.0320(7)
H39A	0.6327	-0.1407	0.4909	0.048*
H39B	0.5984	-0.2127	0.4019	0.048*
H39C	0.5299	-0.1119	0.4070	0.048*
C40	0.7457 (2)	0.15415 (18)	0.29014 (15)	0.0142 (5)
H40	0.6592	0.1622	0.2725	0.017*
C41	0.7587 (2)	0.2837 (2)	0.19932 (17)	0.0208 (5)
H41A	0.6863	0.3092	0.2132	0.025*
H41B	0.7273	0.2435	0.1419	0.025*
C42	0.8506 (2)	0.37440 (18)	0.19686 (15)	0.0160 (5)
C43	0.8096 (2)	0.45523 (19)	0.14941 (17)	0.0213 (5)
H43	0.7228	0.4576	0.1223	0.026*
C44	0.8968 (3)	0.5321 (2)	0.14216 (17)	0.0243 (6)
H44	0.8708	0.5878	0.1094	0.029*
C45	1.0227 (3)	0.5273 (2)	0.18317 (17)	0.0247 (6)
H45	1.0845	0.5793	0.1788	0.030*
C46	1.0565 (2)	0.44504 (19)	0.23069 (16)	0.0194 (5)
H46	1.1427	0.4419	0.2593	0.023*
C47	0.0874 (3)	0.3074 (2)	0.05663 (19)	0.0343 (7)
H47A	0.0787	0.3767	0.0380	0.051*
H47B	0.1256	0.2682	0.0201	0.051*
H47C	0.1407	0.3128	0.1169	0.051*
C48	0.2841 (4)	0.6376 (3)	0.0905 (2)	0.0536 (10)
H48A	0.3329	0.6732	0.0581	0.080*
H48B	0.2415	0.5719	0.0577	0.080*
H48C	0.3402	0.6243	0.1465	0.080*
C11	0.50194 (5)	0.42157 (4)	0.28405 (4)	0.01736 (16)
N1	1.03570 (18)	0.31955 (15)	0.42526 (13)	0.0145 (4)
N2	1.19670 (18)	0.26522 (15)	0.34448 (12)	0.0137 (4)
N3	0.91831 (18)	-0.08255 (15)	0.16252 (12)	0.0145 (4)
N4	1.07460 (18)	-0.10230 (16)	0.32941 (12)	0.0129 (4)
H4A	1.047 (3)	-0.053 (2)	0.3067 (18)	0.016*
N5	0.81864 (18)	0.21704 (15)	0.26433 (13)	0.0153 (4)
N6	0.97235 (18)	0.36934 (15)	0.23810(13)	0.0144 (4)
01	1.01817 (15)	0.15622 (13)	0.19471 (10)	0.0147 (3)
02	1.00587 (14)	0.09689 (12)	0.35570 (10)	0.0130 (3)
03	-0.03307 (19)	0.25596 (17)	0.04924 (13)	0.0338 (5)
H3A	-0.0264	0.2158	0.0880	0.051*
04	0.51719 (17)	0.45978 (15)	0.37212 (12)	0.0253 (4)
05	0.37375 (18)	0.42248 (16)	0.23252 (13)	0.0309 (5)
06	0.53263 (17)	0.31694 (14)	0.28219 (12)	0.0232 (4)
07	0.5843 (2)	0.48434 (16)	0.25082 (14)	0.0343 (5)

supporting information

08	0.19526 (19)	0.69926 (16)	0.10333 (12)	0.0293 (4)
H8	0.1481	0.7116	0.0553	0.044*

Atomic displacement parameters $(Å^2)$

	U^{11}	U ²²	U ³³	U ¹²	<i>U</i> ¹³	U ²³
Ni1	0.00991 (19)	0.01058 (19)	0.01500 (19)	0.00069 (12)	0.00415 (13)	0.00207 (12)
C1	0.0166 (12)	0.0138 (11)	0.0225 (12)	0.0019 (9)	0.0078 (10)	0.0043 (9)
C2	0.0287 (14)	0.0149 (12)	0.0249 (13)	0.0045 (10)	0.0142 (11)	0.0041 (10)
C3	0.0333 (15)	0.0163 (12)	0.0189 (12)	0.0009 (11)	0.0082 (11)	-0.0007 (10)
C4	0.0199 (12)	0.0148 (12)	0.0197 (12)	0.0006 (10)	0.0029 (10)	-0.0007 (9)
C5	0.0159 (12)	0.0105 (11)	0.0211 (12)	0.0016 (9)	0.0060 (10)	0.0033 (9)
C6	0.0144 (11)	0.0161 (12)	0.0187 (12)	-0.0022 (9)	0.0045 (9)	-0.0007 (9)
C7	0.0129 (11)	0.0127 (11)	0.0171 (11)	-0.0019 (9)	0.0040 (9)	0.0044 (9)
C8	0.0144 (11)	0.0118 (11)	0.0150 (11)	0.0011 (9)	0.0061 (9)	0.0023 (9)
C9	0.0129 (11)	0.0192 (12)	0.0207 (12)	0.0036 (9)	0.0066 (9)	0.0089 (10)
C10	0.0203 (13)	0.0205 (12)	0.0181 (12)	0.0060 (10)	0.0104 (10)	0.0070 (10)
C11	0.0251 (13)	0.0142 (11)	0.0134 (11)	0.0043 (10)	0.0094 (10)	0.0032 (9)
C12	0.0156 (12)	0.0149 (11)	0.0128 (11)	0.0031 (9)	0.0038 (9)	0.0062 (9)
C13	0.0161 (12)	0.0139 (11)	0.0140 (11)	0.0017 (9)	0.0060 (9)	0.0066 (9)
C14	0.0263 (14)	0.0285 (15)	0.0268 (14)	0.0094 (12)	0.0114 (11)	-0.0010 (11)
C15	0.0191 (12)	0.0153 (11)	0.0111 (11)	0.0013 (9)	0.0026 (9)	0.0011 (9)
C16	0.0153 (11)	0.0174 (12)	0.0151 (11)	0.0031 (9)	0.0036 (9)	0.0010 (9)
C17	0.0112 (11)	0.0189 (12)	0.0200 (12)	0.0026 (9)	0.0029 (9)	0.0007 (10)
C18	0.0189 (13)	0.0309 (15)	0.0203 (13)	-0.0066 (11)	0.0034 (10)	0.0020 (11)
C19	0.0232 (15)	0.0479 (19)	0.0261 (15)	-0.0091 (13)	0.0044 (12)	-0.0080 (13)
C20	0.0218 (14)	0.0304 (16)	0.0445 (18)	-0.0028 (12)	0.0011 (13)	-0.0147 (13)
C21	0.0168 (13)	0.0218 (14)	0.062 (2)	-0.0021 (11)	0.0038 (13)	0.0095 (14)
C22	0.0150 (12)	0.0275 (14)	0.0314 (14)	0.0011 (11)	0.0031 (11)	0.0110 (11)
C23	0.0144 (11)	0.0134 (11)	0.0140 (11)	0.0017 (9)	0.0035 (9)	0.0008 (9)
C24	0.0131 (11)	0.0145 (12)	0.0139 (11)	0.0008 (9)	0.0030 (9)	0.0021 (9)
C25	0.0103 (11)	0.0163 (12)	0.0167 (11)	0.0002 (9)	0.0050 (9)	0.0043 (9)
C26	0.0095 (10)	0.0148 (11)	0.0142 (11)	-0.0001 (9)	0.0035 (9)	0.0012 (9)
C27	0.0121 (11)	0.0190 (12)	0.0164 (11)	0.0026 (9)	0.0045 (9)	0.0013 (9)
C28	0.0120 (11)	0.0248 (13)	0.0192 (12)	0.0039 (10)	0.0033 (9)	0.0074 (10)
C29	0.0131 (12)	0.0178 (12)	0.0262 (13)	0.0021 (10)	0.0023 (10)	0.0044 (10)
C30	0.0171 (12)	0.0169 (12)	0.0256 (13)	0.0043 (10)	0.0030 (10)	-0.0024 (10)
C31	0.0141 (11)	0.0223 (13)	0.0136 (11)	0.0037 (10)	0.0018 (9)	-0.0005 (9)
C32	0.0167 (12)	0.0137 (11)	0.0101 (10)	-0.0005 (9)	0.0048 (9)	0.0002 (8)
C33	0.0131 (11)	0.0168 (12)	0.0093 (10)	-0.0014 (9)	0.0016 (9)	-0.0019 (9)
C34	0.0121 (11)	0.0146 (11)	0.0103 (10)	-0.0018 (9)	0.0039 (8)	-0.0012 (8)
C35	0.0129 (11)	0.0131 (11)	0.0118 (10)	-0.0007 (9)	0.0044 (9)	-0.0008 (9)
C36	0.0090 (11)	0.0196 (12)	0.0150 (11)	-0.0023 (9)	0.0029 (9)	-0.0013 (9)
C37	0.0149 (12)	0.0216 (13)	0.0196 (12)	-0.0013 (10)	0.0053 (10)	0.0048 (10)
C38	0.0169 (12)	0.0159 (12)	0.0145 (11)	0.0015 (9)	0.0041 (9)	0.0057 (9)
C39	0.0195 (14)	0.0338 (16)	0.0476 (18)	0.0034 (12)	0.0135 (13)	0.0230 (14)
C40	0.0103 (11)	0.0140 (11)	0.0173 (11)	0.0015 (9)	0.0035 (9)	-0.0016 (9)
C41	0.0158 (12)	0.0189 (13)	0.0264 (13)	0.0005 (10)	0.0037(10)	0.0077(10)

supporting information

C42	0.0183 (12)	0.0135 (11)	0.0184 (12)	0.0046 (9)	0.0080 (10)	0.0030 (9)
C43	0.0222 (13)	0.0175 (12)	0.0249 (13)	0.0064 (10)	0.0063 (10)	0.0059 (10)
C44	0.0356 (15)	0.0143 (12)	0.0235 (13)	0.0054 (11)	0.0080 (11)	0.0072 (10)
C45	0.0318 (15)	0.0176 (13)	0.0242 (13)	-0.0052 (11)	0.0102 (11)	0.0036 (10)
C46	0.0204 (13)	0.0166 (12)	0.0189 (12)	-0.0029 (10)	0.0046 (10)	-0.0005 (10)
C47	0.0465 (19)	0.0332 (16)	0.0260 (14)	0.0032 (14)	0.0161 (13)	0.0029 (12)
C48	0.058 (2)	0.076 (3)	0.0326 (17)	0.038 (2)	0.0137 (16)	0.0063 (17)
C11	0.0176 (3)	0.0162 (3)	0.0180 (3)	0.0022 (2)	0.0050 (2)	0.0016 (2)
N1	0.0155 (10)	0.0105 (9)	0.0174 (10)	0.0002 (8)	0.0048 (8)	0.0025 (8)
N2	0.0145 (10)	0.0109 (9)	0.0153 (9)	-0.0005 (8)	0.0044 (8)	0.0016 (8)
N3	0.0142 (10)	0.0144 (10)	0.0147 (9)	0.0039 (8)	0.0035 (8)	0.0023 (8)
N4	0.0118 (10)	0.0152 (10)	0.0124 (9)	0.0033 (8)	0.0035 (8)	0.0048 (8)
N5	0.0150 (10)	0.0140 (10)	0.0170 (10)	0.0016 (8)	0.0053 (8)	0.0017 (8)
N6	0.0165 (10)	0.0119 (10)	0.0169 (10)	0.0037 (8)	0.0073 (8)	0.0026 (8)
01	0.0122 (8)	0.0169 (8)	0.0143 (8)	0.0025 (7)	0.0032 (6)	0.0000 (6)
O2	0.0112 (8)	0.0117 (8)	0.0162 (8)	-0.0007 (6)	0.0053 (6)	0.0010 (6)
03	0.0344 (12)	0.0415 (13)	0.0249 (10)	0.0073 (10)	0.0050 (9)	0.0146 (9)
O4	0.0289 (10)	0.0260 (10)	0.0207 (9)	0.0090 (8)	0.0061 (8)	0.0002 (7)
05	0.0221 (10)	0.0337 (11)	0.0280 (10)	0.0077 (9)	-0.0053 (8)	-0.0030 (8)
06	0.0284 (10)	0.0164 (9)	0.0267 (10)	0.0056 (7)	0.0113 (8)	-0.0009 (7)
07	0.0406 (12)	0.0279 (11)	0.0410 (12)	-0.0022 (9)	0.0234 (10)	0.0088 (9)
08	0.0315 (11)	0.0361 (11)	0.0223 (9)	0.0103 (9)	0.0085 (8)	0.0076 (8)

Geometric parameters (Å, °)

Ni1—N5	2.022 (2)	C25—N4	1.516 (3)
Ni1—N2	2.024 (2)	C25—H25A	0.9900
Ni1—N6	2.123 (2)	С25—Н25В	0.9900
Ni1—N1	2.135 (2)	C26—C31	1.390 (3)
Ni1—O1	2.0277 (16)	C26—C27	1.402 (3)
Ni1—O2	2.0543 (16)	C27—C28	1.391 (3)
C1—N1	1.344 (3)	С27—Н27	0.9500
C1—C2	1.381 (4)	C28—C29	1.394 (4)
C1—H1	0.9500	C28—H28	0.9500
C2—C3	1.390 (4)	C29—C30	1.386 (4)
С2—Н2	0.9500	С29—Н29	0.9500
C3—C4	1.387 (4)	C30—C31	1.389 (4)
С3—Н3	0.9500	С30—Н30	0.9500
C4—C5	1.384 (3)	C31—H31	0.9500
C4—H4	0.9500	C32—C33	1.490 (3)
C5—N1	1.352 (3)	C32—N4	1.517 (3)
C5—C6	1.511 (3)	C32—H32A	0.9900
C6—N2	1.465 (3)	С32—Н32В	0.9900
С6—Н6А	0.9900	C33—C38	1.381 (3)
С6—Н6В	0.9900	C33—C34	1.424 (3)
C7—N2	1.288 (3)	C34—O2	1.300 (3)
С7—С8	1.451 (3)	C34—C35	1.432 (3)
С7—Н7	0.9500	C35—C36	1.417 (3)

C8—C9	1.415 (3)	C35—C40	1.445 (3)
C8—C13	1.429 (3)	C36—C37	1.368 (4)
C9—C10	1.377 (4)	С36—Н36	0.9500
С9—Н9	0.9500	C37 - C38	1 413 (3)
	1.405(3)	C_{37} C_{39}	1.113(3)
	1.405(3)	C_{29} U_{29}	1.515(5)
	1.310 (3)	C30_H30	0.9300
	1.388 (3)	C39—H39A	0.9800
CII—HII	0.9500	С39—Н39В	0.9800
C12—C13	1.429 (3)	С39—Н39С	0.9800
C12—C15	1.516 (3)	C40—N5	1.290 (3)
C13—O1	1.305 (3)	C40—H40	0.9500
C14—H14A	0.9800	C41—N5	1.466 (3)
C14—H14B	0.9800	C41—C42	1.513 (3)
C14—H14C	0.9800	C41—H41A	0.9900
C15—N3	1 482 (3)	C41—H41B	0.9900
C15 H15A	0.0000	C_{12} N6	1.346(3)
C15—III5A	0.9900	C42 = N0	1.340(3)
	0.9900	C42—C43	1.380 (3)
C16—N3	1.477 (3)	C43—C44	1.377 (4)
C16—C17	1.513 (3)	C43—H43	0.9500
C16—H16A	0.9900	C44—C45	1.386 (4)
C16—H16B	0.9900	C44—H44	0.9500
C17—C22	1.382 (4)	C45—C46	1.385 (4)
C17—C18	1.395 (4)	C45—H45	0.9500
C18—C19	1.397 (4)	C46—N6	1.345 (3)
C18—H18	0.9500	C46—H46	0.9500
C19-C20	1 364 (5)	$C47_{-03}$	1.428(4)
$C_{10} = C_{20}$	0.0500	C47 = H47A	0.0800
C19—1119	1,200 (5)	C47 = H47R	0.9800
	1.390 (3)	C47 - H47B	0.9800
C20—H20	0.9500	C4/—H4/C	0.9800
C21—C22	1.402 (4)	C48—O8	1.399 (4)
C21—H21	0.9500	C48—H48A	0.9800
C22—H22	0.9500	C48—H48B	0.9800
C23—N3	1.458 (3)	C48—H48C	0.9800
C23—C24	1.521 (3)	Cl1—O7	1.434 (2)
С23—Н23А	0.9900	Cl1—O5	1.4398 (19)
C23—H23B	0.9900	C11—O6	1.4438 (18)
C24—N4	1 496 (3)	C11—04	1 4442 (19)
C_{24} H24A	0.0000		0.81(3)
$C_2 - H_2 + A$	0.9900	$\begin{array}{c} 111111111111111111111111111111111111$	0.81 (3)
C24—H24B	0.9900		0.8400
C25—C26	1.506 (3)	08—H8	0.8400
N5—Ni1—N2	175.37 (8)	C27—C26—C25	120.9 (2)
N5—Ni1—O1	93.85 (7)	C28—C27—C26	120.3 (2)
N2—Ni1—O1	89.25 (7)	С28—С27—Н27	119.9
N5—Ni1—O2	89.25 (7)	С26—С27—Н27	119.9
N2—Ni1—O2	94 31 (7)	C27—C28—C29	1199(2)
01—Ni1—02	87.81 (6)	C27—C28—H28	120.0
N5 Ni1 N6	70.00 (8)	C_{20} C_{28} H_{28}	120.0
1NJ-1N11-1NU	19.90 (0)	027-020-1120	120.0

N2—Ni1—N6	96.63 (8)	C30—C29—C28	119.7 (2)
O1—Ni1—N6	90.99 (7)	С30—С29—Н29	120.1
O2—Ni1—N6	168.98 (7)	С28—С29—Н29	120.1
N5—Ni1—N1	97.29 (8)	C29—C30—C31	120.5 (2)
N2—Ni1—N1	79.67 (8)	С29—С30—Н30	119.7
O1—Ni1—N1	168.84 (7)	С31—С30—Н30	119.7
O2—Ni1—N1	91.67 (7)	C30—C31—C26	120.2 (2)
N6—Ni1—N1	91.61 (7)	С30—С31—Н31	119.9
N1—C1—C2	123.1 (2)	С26—С31—Н31	119.9
N1—C1—H1	118.4	C33—C32—N4	108.75 (18)
C2—C1—H1	118.4	С33—С32—Н32А	109.9
C1—C2—C3	118.6 (2)	N4—C32—H32A	109.9
C1—C2—H2	120.7	С33—С32—Н32В	109.9
С3—С2—Н2	120.7	N4—C32—H32B	109.9
C4—C3—C2	118.7 (2)	H32A—C32—H32B	108.3
С4—С3—Н3	120.7	C38—C33—C34	122.2 (2)
С2—С3—Н3	120.7	C_{38} — C_{33} — C_{32}	121.9(2)
C5-C4-C3	119.6 (2)	C34—C33—C32	115.9 (2)
C5—C4—H4	120.2	02-C34-C33	118.3 (2)
C3—C4—H4	120.2	02-C34-C35	125.5 (2)
N1-C5-C4	121.8 (2)	C33—C34—C35	116.1 (2)
N1—C5—C6	116.5 (2)	C36—C35—C34	119.3 (2)
C4—C5—C6	121.7 (2)	C36—C35—C40	117.0 (2)
N2—C6—C5	110.61 (19)	C34—C35—C40	123.3 (2)
N2—C6—H6A	109.5	C37—C36—C35	123.6 (2)
С5—С6—Н6А	109.5	С37—С36—Н36	118.2
N2—C6—H6B	109.5	С35—С36—Н36	118.2
С5—С6—Н6В	109.5	C36—C37—C38	117.0 (2)
H6A—C6—H6B	108.1	C36—C37—C39	122.6 (2)
N2—C7—C8	124.9 (2)	C38—C37—C39	120.5 (2)
N2—C7—H7	117.6	C33—C38—C37	121.5 (2)
С8—С7—Н7	117.6	С33—С38—Н38	119.3
C9—C8—C13	119.6 (2)	С37—С38—Н38	119.3
C9—C8—C7	116.8 (2)	С37—С39—Н39А	109.5
C13—C8—C7	123.6 (2)	С37—С39—Н39В	109.5
C10—C9—C8	122.9 (2)	H39A—C39—H39B	109.5
С10—С9—Н9	118.5	С37—С39—Н39С	109.5
С8—С9—Н9	118.5	Н39А—С39—Н39С	109.5
C9—C10—C11	117.3 (2)	H39B—C39—H39C	109.5
C9—C10—C14	122.6 (2)	N5-C40-C35	125.3 (2)
C11—C10—C14	120.1 (2)	N5—C40—H40	117.4
C12—C11—C10	122.0 (2)	C35—C40—H40	117.4
C12—C11—H11	119.0	N5—C41—C42	110.52 (19)
C10—C11—H11	119.0	N5—C41—H41A	109.5
C11—C12—C13	121.0 (2)	C42—C41—H41A	109.5
C11—C12—C15	121.4 (2)	N5—C41—H41B	109.5
C13—C12—C15	117.3 (2)	C42—C41—H41B	109.5
O1—C13—C8	124.0 (2)	H41A—C41—H41B	108.1

01 012 012	110.2 (2)	NG 642 642	100 = (0)
01-013-012	119.3 (2)	N6	122.5 (2)
C8—C13—C12	116.6 (2)	N6	117.1 (2)
C10—C14—H14A	109.5	C43—C42—C41	120.3 (2)
C10—C14—H14B	109.5	C44—C43—C42	118.8 (2)
H14A—C14—H14B	109.5	C44—C43—H43	120.6
C10—C14—H14C	109.5	C42—C43—H43	120.6
H14A—C14—H14C	109.5	C43—C44—C45	119.4 (2)
H14B—C14—H14C	109.5	C43—C44—H44	120.3
N3—C15—C12	107.57 (17)	C45—C44—H44	120.3
N3—C15—H15A	110.2	C46—C45—C44	118.4 (2)
С12—С15—Н15А	110.2	C46—C45—H45	120.8
N3—C15—H15B	110.2	C44—C45—H45	120.8
C12-C15-H15B	110.2	N6-C46-C45	120.0 122.8(2)
H_{15A} C_{15} H_{15B}	108.5	N6-C46-H46	118.6
$N_{2} = C_{16} = C_{17}$	115.5 (2)	C_{45} C_{46} H_{46}	118.6
$N_{2} = C_{16} = U_{16}$	115.5 (2)	C_{43} C_{43} U_{47A}	100.5
	100.4	$O_3 - C_4 - H_4 $	109.5
CI/-CIO-HIGA	108.4	$U_3 - U_4 - H_4 / B$	109.5
N3-C16-H16B	108.4	H4/A - C4/-H4/B	109.5
C17—C16—H16B	108.4	O3—C47—H47C	109.5
H16A—C16—H16B	107.5	H47A—C47—H47C	109.5
C22—C17—C18	118.2 (2)	H47B—C47—H47C	109.5
C22—C17—C16	120.6 (2)	O8—C48—H48A	109.5
C18—C17—C16	121.1 (2)	O8—C48—H48B	109.5
C17—C18—C19	121.2 (3)	H48A—C48—H48B	109.5
C17—C18—H18	119.4	O8—C48—H48C	109.5
C19—C18—H18	119.4	H48A—C48—H48C	109.5
C20—C19—C18	119.8 (3)	H48B—C48—H48C	109.5
С20—С19—Н19	120.1	O7—C11—O5	110.50 (13)
С18—С19—Н19	120.1	07—C11—O6	109.13 (12)
C19 - C20 - C21	120 3 (3)	05-C11-06	109.08(12)
C19 - C20 - H20	119.9	07 - C11 - 04	109.00(12) 109.83(12)
C_{21} C_{20} H_{20}	119.9	05	109.03(12) 109.34(12)
$C_{21} = C_{20} = H_{20}$	110.7(3)	06 Cl1 04	109.34(12) 108.03(11)
$C_{20} = C_{21} = C_{22}$	119.7 (5)	$C_1 = N_1 = C_5$	108.95(11)
$C_{20} = C_{21} = H_{21}$	120.2	CI = NI = 0.5	116.2(2)
C22—C21—H21	120.2	CI-NI-NII	127.39 (16)
C17 - C22 - C21	120.9 (3)	C_{2} NI-NII	114.12 (16)
C17—C22—H22	119.6	C/N2C6	117.5 (2)
C21—C22—H22	119.6	C7—N2—Ni1	126.80 (16)
N3—C23—C24	110.21 (19)	C6—N2—Ni1	115.58 (15)
N3—C23—H23A	109.6	C23—N3—C16	114.08 (19)
C24—C23—H23A	109.6	C23—N3—C15	112.07 (18)
N3—C23—H23B	109.6	C16—N3—C15	115.56 (18)
C24—C23—H23B	109.6	C24—N4—C25	114.26 (18)
H23A—C23—H23B	108.1	C24—N4—C32	111.68 (17)
N4—C24—C23	109.03 (18)	C25—N4—C32	112.75 (17)
N4—C24—H24A	109.9	C24—N4—H4A	106 (2)
C23—C24—H24A	109.9	C25—N4—H4A	109 (2)
N4—C24—H24B	109.9	C32—N4—H4A	102 (2)
		-	· · · · · ·

C22 C24 H24P	100.0	C40 N5 C41	116.0(2)
$\begin{array}{c} C25 \\ \hline \\ C24 \\ \hline \\ C24 \\ \hline \\ D24D \\ \hline \\ C24 \\ \hline \\ C24 \\ \hline \\ D24D \\ \hline \\ C24 \\ \hline C2$	109.9	C40 = N5 = N1	110.9(2)
$\Pi 24A - C24 - \Pi 24D$	100.5	C40—INJ—INII	127.35(17)
C20-C25-N4	112.55 (18)	C41—N5—N11	115.57 (15)
C26—C25—H25A	109.1	C46—N6—C42	118.0 (2)
N4—C25—H25A	109.1	C46—N6—N11	127.74 (17)
C26—C25—H25B	109.1	C42—N6—Ni1	114.22 (15)
N4—C25—H25B	109.1	C13—O1—Ni1	123.48 (14)
H25A—C25—H25B	107.8	C34—O2—Ni1	126.59 (15)
C31—C26—C27	119.3 (2)	С47—О3—НЗА	109.5
C31—C26—C25	119.8 (2)	C48—O8—H8	109.5
N1—C1—C2—C3	0.2 (4)	N5—Ni1—N1—C1	13.0 (2)
C1—C2—C3—C4	-0.1 (4)	N2—Ni1—N1—C1	-170.6(2)
C2—C3—C4—C5	0.0 (4)	01—Ni1—N1—C1	-163.6(3)
C3—C4—C5—N1	0.0 (4)	O2—Ni1—N1—C1	-76.50 (19)
C3—C4—C5—C6	178.2 (2)	N6—Ni1—N1—C1	93.0 (2)
N1-C5-C6-N2	-18.1(3)	N5—Ni1—N1—C5	-173.16(16)
C4—C5—C6—N2	163.7 (2)	N2—Ni1—N1—C5	3.31 (16)
N_{2} C_{7} C_{8} C_{9}	-172.8(2)	01 - Ni1 - N1 - C5	10.2(4)
N_{2} C_{7} C_{8} C_{13}	50(4)	Ω^2 —Ni1—N1—C5	97 39 (16)
$C_{13} = C_{8} = C_{9} = C_{10}$	-29(3)	N6-Ni1-N1-C5	-93 14 (16)
C7 - C8 - C9 - C10	175 1 (2)	C_{8} C_{7} N_{2} C_{6}	1790(2)
C_{8} C_{9} C_{10} C_{11}	-26(3)	$C_8 C_7 N_2 N_1$	3 4 (3)
$C_{8} = C_{9} = C_{10} = C_{14}$	2.0(3)	C_{0} C_{0} C_{0} C_{0} C_{0} C_{0} C_{0}	-155.2(2)
$C_{0} = C_{10} = C_{11} = C_{12}$	1/9.3(2)	C_{5} C_{6} N_{2} N_{1}	-133.3(2)
C_{9} C_{10} C_{11} C_{12} C_{14} C_{10} C_{11} C_{12}	2.0(3)	C_{3} C_{0} N_{2} N_{1} N_{2} C_{7}	20.8(2)
	-1/9.3(2)	$N_{1} = N_{1} = N_{2} = C_{1}$	-148.8 (9)
C10—C11—C12—C13	2.9 (3)	$OI - N_1 I - N_2 - C_7$	-16.6 (2)
C10—C11—C12—C15	-171.0 (2)	02—N11—N2—C7	71.1 (2)
C9—C8—C13—O1	-171.1 (2)	N6—Ni1—N2—C7	-107.5 (2)
C7—C8—C13—O1	11.1 (3)	N1—Ni1—N2—C7	162.1 (2)
C9—C8—C13—C12	8.0 (3)	N5—Ni1—N2—C6	35.5 (10)
C7—C8—C13—C12	-169.7 (2)	O1—Ni1—N2—C6	167.71 (16)
C11—C12—C13—O1	171.0 (2)	O2—Ni1—N2—C6	-104.54 (16)
C15—C12—C13—O1	-14.8 (3)	N6—Ni1—N2—C6	76.80 (16)
C11—C12—C13—C8	-8.2 (3)	N1—Ni1—N2—C6	-13.63 (16)
C15—C12—C13—C8	166.02 (19)	C24—C23—N3—C16	-78.8 (2)
C11—C12—C15—N3	101.9 (2)	C24—C23—N3—C15	147.50 (19)
C13—C12—C15—N3	-72.3 (2)	C17—C16—N3—C23	-53.1 (3)
N3—C16—C17—C22	101.3 (3)	C17—C16—N3—C15	79.0 (3)
N3—C16—C17—C18	-75.1 (3)	C12—C15—N3—C23	-76.3(2)
C22-C17-C18-C19	-2.0(4)	C12-C15-N3-C16	150.7(2)
C_{16} C_{17} C_{18} C_{19}	1745(3)	C^{23} C^{24} N4 C^{25}	-785(2)
C17-C18-C19-C20	13(5)	C_{23} C_{24} N_{4} C_{32}	152.04(19)
C18 - C19 - C20 - C21	-0.3(5)	$C_{26} = C_{25} = N_{4} = C_{24}$	-58 1 (2)
C19 - C20 - C21 - C22	0.0(5)	C_{26} C_{25} N_{4} C_{27}	70.8(2)
$C_{12} = C_{20} = C_{21} = C_{22}$	1.8(4)	$C_{20} = C_{20} = C_{117} = C_{12}$	-710(2)
$C_{10} - C_{17} - C_{22} - C_{21}$	-174.8(2)	$C_{33} = C_{32} = N_4 = C_{24}$	/1.7 (<i>2</i>) 157 81 (18)
$C_{10} = C_{17} = C_{22} = C_{21}$	1/4.0(2)	$C_{33} - C_{32} - 1N_{4} - C_{23}$	137.01(10)
C20-C21-C22-C1/	-0.8 (4)	U33-U40-N3-U41	1/0.5 (2)

N3—C23—C24—N4	-53.6 (2)	C35—C40—N5—Ni1	-9.5 (3)
N4-C25-C26-C31	98.6 (2)	C42-C41-N5-C40	161.6 (2)
N4—C25—C26—C27	-82.7 (3)	C42—C41—N5—Ni1	-18.4 (3)
C31—C26—C27—C28	-1.4 (3)	N2—Ni1—N5—C40	-124.6 (9)
C25—C26—C27—C28	179.9 (2)	O1—Ni1—N5—C40	103.4 (2)
C26—C27—C28—C29	0.9 (4)	O2—Ni1—N5—C40	15.7 (2)
C27—C28—C29—C30	0.2 (4)	N6—Ni1—N5—C40	-166.3 (2)
C28—C29—C30—C31	-0.9 (4)	N1—Ni1—N5—C40	-75.9 (2)
C29—C30—C31—C26	0.3 (4)	N2—Ni1—N5—C41	55.4 (10)
C27—C26—C31—C30	0.8 (4)	O1—Ni1—N5—C41	-76.60 (17)
C25—C26—C31—C30	179.6 (2)	O2—Ni1—N5—C41	-164.35 (17)
N4—C32—C33—C38	115.9 (2)	N6—Ni1—N5—C41	13.72 (17)
N4—C32—C33—C34	-62.0 (2)	N1—Ni1—N5—C41	104.06 (17)
C38—C33—C34—O2	177.4 (2)	C45—C46—N6—C42	0.4 (4)
C32—C33—C34—O2	-4.7 (3)	C45—C46—N6—Ni1	177.01 (19)
C38—C33—C34—C35	-5.8 (3)	C43—C42—N6—C46	-1.6 (3)
C32—C33—C34—C35	172.07 (19)	C41—C42—N6—C46	174.6 (2)
O2—C34—C35—C36	-177.2 (2)	C43—C42—N6—Ni1	-178.64 (19)
C33—C34—C35—C36	6.2 (3)	C41—C42—N6—Ni1	-2.5 (3)
O2—C34—C35—C40	10.9 (4)	N5—Ni1—N6—C46	177.2 (2)
C33—C34—C35—C40	-165.6 (2)	N2—Ni1—N6—C46	0.3 (2)
C34—C35—C36—C37	-1.8 (3)	O1—Ni1—N6—C46	-89.1 (2)
C40—C35—C36—C37	170.6 (2)	O2—Ni1—N6—C46	-172.7 (3)
C35—C36—C37—C38	-3.4 (4)	N1—Ni1—N6—C46	80.0 (2)
C35—C36—C37—C39	177.4 (2)	N5—Ni1—N6—C42	-6.09 (16)
C34—C33—C38—C37	0.7 (4)	N2—Ni1—N6—C42	177.00 (16)
C32—C33—C38—C37	-177.0 (2)	O1—Ni1—N6—C42	87.64 (16)
C36—C37—C38—C33	4.0 (4)	O2—Ni1—N6—C42	4.0 (5)
C39—C37—C38—C33	-176.8 (2)	N1—Ni1—N6—C42	-103.21 (17)
C36—C35—C40—N5	-178.9 (2)	C8—C13—O1—Ni1	-32.7 (3)
C34—C35—C40—N5	-6.8 (4)	C12—C13—O1—Ni1	148.21 (17)
N5-C41-C42-N6	13.3 (3)	N5—Ni1—O1—C13	-152.90 (17)
N5-C41-C42-C43	-170.4 (2)	N2—Ni1—O1—C13	30.54 (17)
N6—C42—C43—C44	1.8 (4)	O2—Ni1—O1—C13	-63.80 (17)
C41—C42—C43—C44	-174.3 (2)	N6—Ni1—O1—C13	127.16 (17)
C42—C43—C44—C45	-0.8 (4)	N1—Ni1—O1—C13	23.7 (4)
C43—C44—C45—C46	-0.3 (4)	C33—C34—O2—Ni1	178.09 (14)
C44—C45—C46—N6	0.5 (4)	C35—C34—O2—Ni1	1.6 (3)
C2-C1-N1-C5	-0.2 (3)	N5—Ni1—O2—C34	-11.76 (18)
C2—C1—N1—Ni1	173.47 (18)	N2—Ni1—O2—C34	165.27 (17)
C4—C5—N1—C1	0.1 (3)	O1-Ni1-O2-C34	-105.65 (17)
C6—C5—N1—C1	-178.2 (2)	N6—Ni1—O2—C34	-21.7 (4)
C4—C5—N1—Ni1	-174.42 (18)	N1—Ni1—O2—C34	85.50 (18)
C6—C5—N1—Ni1	7.4 (3)		

D—H···A	<i>D</i> —Н	H···A	D···A	D—H···A
N4—H4 <i>A</i> …O2	0.81 (3)	2.21 (3)	2.829 (3)	134 (3)
N4—H4 <i>A</i> …N3	0.81 (3)	2.35 (3)	2.809 (3)	117 (2)
C45—H45…O8 ⁱ	0.95	2.52	3.417 (3)	156
C41—H41A···O6	0.99	2.34	3.276 (3)	157
C31—H31…O8 ⁱⁱ	0.95	2.43	3.365 (3)	167
C30—H30…O5 ⁱⁱ	0.95	2.58	3.524 (3)	171
C28—H28…O6 ⁱⁱⁱ	0.95	2.56	3.503 (3)	173
C7—H7…O6 ⁱ	0.95	2.60	3.289 (3)	130
$C4$ — $H4$ ···O 4^{iv}	0.95	2.49	3.405 (3)	163
O8—H8····O3 ^v	0.84	1.91	2.748 (3)	176
O3—H3 <i>A</i> ···O1 ^{vi}	0.84	1.91	2.723 (3)	164

Hydrogen-bond geometry (Å, °)

Symmetry codes: (i) *x*+1, *y*, *z*; (ii) *x*+1, *y*-1, *z*; (iii) *-x*+2, *-y*, *-z*+1; (iv) *-x*+2, *-y*+1, *-z*+1; (v) *-x*, *-y*+1, *-z*; (vi) *x*-1, *y*, *z*.