organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-[(2-Aminophenyl)sulfanyl]-N-(4-methoxyphenyl)acetamide

Shahzad Murtaza,^a M. Nawaz Tahir,^b* Javaria Tariq,^a Aadil Abbas^a and Naghmana Kausar^a

^aDepartment of Chemistry, University of Gujrat, Hafiz Hayat Campus, Gujrat, Pakistan, and ^bDepartment of Physics, University of Sargodha, Sargodha, Pakistan Correspondence e-mail: dmntahir_uos@yahoo.com

Received 26 May 2012; accepted 27 May 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.005 Å; R factor = 0.050; wR factor = 0.121; data-to-parameter ratio = 15.6.

In the title compound, $C_{15}H_{16}N_2O_2S$, the dihedral angle between the 4-methoxyaniline and 2-aminobenzenethiole fragments is 35.60 (9)°. A short intramolecular $N-H\cdots S$ contact leads to an S(5) ring. In the crystal, molecules are consolidated in the form of polymeric chains along [010] as a result of $N-H\cdots O$ hydrogen bonds, which generate $R_3^2(18)$ and $R_4^3(22)$ loops. The polymeric chains are interlinked through $C-H\cdots O$ interaction and complete $R_2^2(8)$ ring motifs.

Related literature

For a related structure, see: Haisa *et al.* (1980). For hydrogenbond motif notation, see: Bernstein *et al.* (1995).

Experimental

Crystal data

 $\begin{array}{l} C_{15}H_{16}N_2O_2S\\ M_r = 288.36\\ \text{Monoclinic, } P2_1/c\\ a = 12.9935 \ (16) \ \text{\AA}\\ b = 4.7990 \ (4) \ \text{\AA}\\ c = 23.433 \ (3) \ \text{\AA}\\ \beta = 95.506 \ (7)^\circ \end{array}$

 $V = 1454.4 (3) Å^{3}$ Z = 4Mo K\alpha radiation $\mu = 0.23 \text{ mm}^{-1}$ T = 296 K $0.25 \times 0.14 \times 0.12 \text{ mm}$

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2005) $T_{min} = 0.965, T_{max} = 0.975$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	182 parameters
$wR(F^2) = 0.121$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.18 \text{ e } \text{\AA}^{-3}$
2845 reflections	$\Delta \rho_{\rm min} = -0.20 \text{ e } \text{\AA}^{-3}$

11532 measured reflections

 $R_{\rm int} = 0.060$

2845 independent reflections

1525 reflections with $I > 2\sigma(I)$

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdot \cdot \cdot A$	$D-\mathrm{H}$	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2B\cdots S1$	0.86	2.60	3.004 (3)	110
$N1 - H1 \cdot \cdot \cdot O2^{1}$	0.86	2.00	2.848 (3)	170
$N2-H2A\cdots O2^{ii}$	0.86	2.38	3.200 (3)	161
C3-H3···O1 ⁱⁱⁱ	0.93	2.47	3.393 (5)	170

Symmetry codes: (i) x, y + 1, z; (ii) $-x + 1, y + \frac{1}{2}, -z + \frac{1}{2}$; (iii) -x, -y + 1, -z.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The authors acknowledge the provision of funds for the purchase of the diffractometer and encouragement by Dr Muhammad Akram Chaudhary, Vice Chancellor, University of Sargodha, Pakistan. The authors also acknowledge the technical support provided by Syed Muhammad Hussain Rizvi of Bana International, Karachi, Pakistan.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6821).

References

- Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
- Bruker (2005). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Haisa, M., Kashino, S., Ueno, T., Shinozaki, N. & Matsuzaki, Y. (1980). Acta Cryst. B36, 2306–2311.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o1968 [doi:10.1107/S1600536812024178]

2-[(2-Aminophenyl)sulfanyl]-N-(4-methoxyphenyl)acetamide

Shahzad Murtaza, M. Nawaz Tahir, Javaria Tariq, Aadil Abbas and Naghmana Kausar

S1. Comment

The title compound (I), (Fig. 1) has been synthesized to check its biological application as antimicrobial agent owing to the concept that amide moiety is an important part of different drugs.

The crystal structure of *N*-(4-methoxyphenyl)acetamide (Haisa *et al.*, 1980) has been published which is related to the title compound (I, Fig. 1).

In (I), the 4-methoxyanilinic and 2-aminobenzenethiolic groups A (C1–C7/N1/O1) and B (C10—C15/N2/S1) are almost planar with r. m. s. deviation of 0.0150 Å and 0.0134 Å, respectively. The dihedral angle between A/B is 35.60 (9)°. The central acetamide moiety C (C8/C9/O2) is of course planar. The dihedral angle between A/C and B/C is 48.43 (10)° and 78.07 (8)°, respectively. There exist S(5) ring motif (Bernstein *et al.*, 1995) due to H-bonding of N—H···S type (Table 1, Fig. 2). The molecules are stabilized in the form of one-dimensional polymeric network due to H-bondings (Table 1, Fig. 2) of N—H···O type. There exist $R_3^2(18)$ and $R_4^3(22)$ ring motifs in the polymeric network when three and four molecules respectively, are connected with each other.

S2. Experimental

2-Aminobenzothiol (0.125 g, 0.5 mmol) was dissolved in anhydrous diethylether (10 ml) and NaH (0.024 g, 1 mmol) was added to it at temperature 273–278 K. A separately prepared solution of 2-chloro-*N*-(4-methoxyphenyl)acetamide (0.1 g, 0.5 mmol) in anhydrous diethylether (10 ml) was added drop wise to above mixture. The mixture was stirred for 4 h and solvent was evaporated to get greyish crystals of (I). m.p. 400 K

S3. Refinement

The H-atoms were positioned geometrically (N—H = 0.86, C–H = 0.93–0.97 Å) and were included in the refinement in the riding model approximation, with $U_{iso}(H) = xU_{eq}(C, N)$, where x = 1.5 for CH₃ and x = 1.2 for other H-atoms.

Figure 1

View of the title compound with displacement ellipsoids drawn at the 50% probability level.

Figure 2

The partial packing, which shows that molecules form polymeric chains with various ring motifs. The H-atoms not involved in H-bondings are omitted for clarity.

2-[(2-Aminophenyl)sulfanyl]-N-(4-methoxyphenyl)acetamide

V = 1454.4 (3) Å ³
Z = 4
F(000) = 608
$D_{\rm x} = 1.317 {\rm ~Mg} {\rm ~m}^{-3}$
Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Cell parameters from 1525 reflections
$\theta = 1.6 - 26.0^{\circ}$
$\mu = 0.23 \text{ mm}^{-1}$

T = 296 KNeedle, gray

Data collection

Bruker Kappa APEXII CCD diffractometer	11532 measured reflections 2845 independent reflections
Radiation source: fine-focus sealed tube	1525 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.060$
Detector resolution: 7.80 pixels mm ⁻¹	$\theta_{\rm max} = 26.0^\circ, \ \theta_{\rm min} = 1.6^\circ$
ω scans	$h = -16 \rightarrow 16$
Absorption correction: multi-scan	$k = -5 \rightarrow 5$
(SADABS; Bruker, 2005)	$l = -27 \rightarrow 28$
$T_{\min} = 0.965, \ T_{\max} = 0.975$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: inferred from
$wR(F^2) = 0.121$	neighbouring sites
S = 1.01	H-atom parameters constrained
2845 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0435P)^2 + 0.1361P]$
182 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.18 \ { m e} \ { m \AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.20 \text{ e} \text{ Å}^{-3}$

 $0.25 \times 0.14 \times 0.12 \text{ mm}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
S1	0.67008 (6)	0.17005 (14)	0.17482 (3)	0.0513 (3)
01	0.06467 (19)	0.2484 (5)	-0.05402 (11)	0.0942 (11)
02	0.48924 (15)	0.0421 (3)	0.09749 (9)	0.0565 (8)
N1	0.43663 (19)	0.4757 (4)	0.07298 (10)	0.0480 (9)
N2	0.5848 (2)	0.4083 (5)	0.27906 (12)	0.0763 (12)
C1	0.3429 (2)	0.4077 (5)	0.03984 (12)	0.0423 (10)
C2	0.2538 (3)	0.5466 (6)	0.04982 (14)	0.0578 (11)
C3	0.1626 (3)	0.4868 (7)	0.01822 (16)	0.0750 (14)
C4	0.1593 (3)	0.2887 (7)	-0.02452 (14)	0.0590 (12)
C5	0.2468 (3)	0.1500 (6)	-0.03442 (13)	0.0569 (11)
C6	0.3386 (2)	0.2099 (6)	-0.00259 (12)	0.0496 (11)
C7	0.0533 (3)	0.0393 (9)	-0.09623 (17)	0.1020 (17)
C8	0.5023 (2)	0.2953 (5)	0.09956 (11)	0.0423 (10)
С9	0.5937 (2)	0.4227 (5)	0.13308 (13)	0.0606 (11)

C10	0.7332 (2)	0.4001 (5)	0.22519 (13)	0.0467 (11)
C11	0.6839 (3)	0.4890 (6)	0.27227 (14)	0.0520 (11)
C12	0.7355 (3)	0.6709 (7)	0.31078 (15)	0.0743 (14)
C13	0.8316 (3)	0.7639 (7)	0.30315 (18)	0.0838 (17)
C14	0.8816 (3)	0.6776 (7)	0.25769 (19)	0.0842 (16)
C15	0.8321 (3)	0.4935 (7)	0.21861 (16)	0.0654 (14)
H1	0.45235	0.64944	0.07614	0.0576*
H2	0.25569	0.68219	0.07826	0.0696*
H2A	0.55421	0.47092	0.30741	0.0916*
H2B	0.55300	0.29502	0.25497	0.0916*
H3	0.10255	0.58008	0.02558	0.0897*
Н5	0.24472	0.01413	-0.06280	0.0680*
H6	0.39837	0.11528	-0.00991	0.0595*
H7A	0.07153	-0.13793	-0.07913	0.1529*
H7B	0.09784	0.07889	-0.12562	0.1529*
H7C	-0.01719	0.03419	-0.11275	0.1529*
H9A	0.57022	0.56384	0.15846	0.0724*
H9B	0.63654	0.51361	0.10692	0.0724*
H12	0.70365	0.73062	0.34250	0.0890*
H13	0.86413	0.88868	0.32937	0.1003*
H14	0.94784	0.74134	0.25299	0.1009*
H15	0.86569	0.43201	0.18764	0.0783*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
S 1	0.0592 (5)	0.0369 (4)	0.0572 (5)	0.0064 (4)	0.0021 (4)	-0.0061 (4)
O1	0.0605 (17)	0.114 (2)	0.103 (2)	0.0024 (14)	-0.0178 (16)	-0.0410 (17)
O2	0.0715 (15)	0.0257 (10)	0.0700 (15)	-0.0040 (9)	-0.0054 (12)	-0.0028 (10)
N1	0.0592 (17)	0.0250 (12)	0.0578 (17)	-0.0080 (11)	-0.0050 (14)	-0.0015 (11)
N2	0.073 (2)	0.086 (2)	0.074 (2)	-0.0108 (16)	0.0276 (17)	-0.0247 (16)
C1	0.054 (2)	0.0314 (15)	0.0412 (18)	-0.0073 (14)	0.0034 (15)	0.0019 (13)
C2	0.065 (2)	0.0463 (18)	0.061 (2)	0.0043 (17)	0.0005 (19)	-0.0163 (16)
C3	0.056 (2)	0.080(2)	0.088 (3)	0.0132 (19)	0.002 (2)	-0.027 (2)
C4	0.050 (2)	0.062 (2)	0.063 (2)	-0.0052 (17)	-0.0051 (18)	-0.0093 (18)
C5	0.062 (2)	0.0558 (19)	0.053 (2)	-0.0040 (17)	0.0063 (18)	-0.0160 (17)
C6	0.0485 (19)	0.0511 (17)	0.0498 (19)	-0.0019 (15)	0.0082 (16)	-0.0111 (16)
C7	0.091 (3)	0.112 (3)	0.097 (3)	-0.015 (3)	-0.022 (2)	-0.035 (3)
C8	0.055 (2)	0.0301 (15)	0.0423 (18)	-0.0035 (14)	0.0069 (15)	-0.0016 (14)
C9	0.073 (2)	0.0386 (17)	0.066 (2)	-0.0118 (15)	-0.0146 (19)	0.0056 (16)
C10	0.0467 (19)	0.0360 (16)	0.056 (2)	0.0069 (13)	-0.0020 (16)	-0.0011 (14)
C11	0.058 (2)	0.0446 (17)	0.052 (2)	0.0073 (16)	-0.0016 (18)	-0.0048 (16)
C12	0.086 (3)	0.074 (2)	0.061 (2)	-0.003 (2)	-0.002 (2)	-0.017 (2)
C13	0.084 (3)	0.072 (3)	0.089 (3)	0.001 (2)	-0.024 (3)	-0.021 (2)
C14	0.054 (2)	0.072 (2)	0.122 (4)	-0.010 (2)	-0.015 (2)	-0.006 (3)
C15	0.051 (2)	0.064 (2)	0.081 (3)	0.0049 (18)	0.005 (2)	-0.003 (2)

Geometric parameters (Å, °)

<u></u> <u></u> <u></u> <u></u> <u></u> <u></u> <u></u>	1.796 (3)	C10—C11	1.395 (4)
S1—C10	1.760 (3)	C11—C12	1.382 (5)
O1—C4	1.365 (5)	C12—C13	1.354 (5)
O1—C7	1.407 (5)	C13—C14	1.364 (6)
O2—C8	1.227 (3)	C14—C15	1.386 (5)
N1—C1	1.418 (4)	C2—H2	0.9300
N1—C8	1.328 (3)	С3—Н3	0.9300
N2—C11	1.369 (5)	С5—Н5	0.9300
N1—H1	0.8600	С6—Н6	0.9300
N2—H2A	0.8600	С7—Н7А	0.9600
N2—H2B	0.8600	С7—Н7В	0.9600
C1—C2	1.375 (4)	С7—Н7С	0.9600
C1—C6	1.372 (4)	С9—Н9А	0.9700
C2—C3	1.366 (5)	С9—Н9В	0.9700
C3—C4	1.379 (5)	C12—H12	0.9300
C4—C5	1.357 (5)	С13—Н13	0.9300
C5—C6	1.375 (5)	C14—H14	0.9300
C8—C9	1.491 (4)	С15—Н15	0.9300
C10—C15	1.384 (5)		
C9—S1—C10	98.01 (12)	C13—C14—C15	119.0 (4)
C4—O1—C7	119.1 (3)	C10-C15-C14	120.7 (3)
C1—N1—C8	125.9 (2)	C1—C2—H2	120.00
C8—N1—H1	117.00	С3—С2—Н2	120.00
C1—N1—H1	117.00	С2—С3—Н3	120.00
C11—N2—H2A	120.00	С4—С3—Н3	120.00
H2A—N2—H2B	120.00	C4—C5—H5	120.00
C11—N2—H2B	120.00	С6—С5—Н5	120.00
N1—C1—C6	122.0 (2)	C1—C6—H6	120.00
N1—C1—C2	119.2 (2)	С5—С6—Н6	120.00
C2—C1—C6	118.8 (3)	O1—C7—H7A	109.00
C1—C2—C3	120.4 (3)	O1—C7—H7B	109.00
C2—C3—C4	120.2 (3)	O1—C7—H7C	109.00
C3—C4—C5	119.6 (3)	H7A—C7—H7B	109.00
O1—C4—C3	115.4 (3)	H7A—C7—H7C	109.00
O1—C4—C5	124.9 (3)	H7B—C7—H7C	109.00
C4—C5—C6	120.2 (3)	S1—C9—H9A	109.00
C1—C6—C5	120.7 (3)	S1—C9—H9B	109.00
O2—C8—N1	123.2 (2)	С8—С9—Н9А	109.00
O2—C8—C9	121.8 (2)	С8—С9—Н9В	109.00
N1—C8—C9	115.0 (2)	H9A—C9—H9B	108.00
S1—C9—C8	112.38 (17)	C11—C12—H12	119.00
S1—C10—C15	120.4 (2)	C13—C12—H12	119.00
C11—C10—C15	119.4 (3)	C12—C13—H13	119.00
S1—C10—C11	120.2 (2)	C14—C13—H13	119.00
N2—C11—C12	120.4 (3)	C13—C14—H14	121.00

C10—C11—C12 N2—C11—C10 C11—C12—C13 C12—C13—C14	118.6 (3) 120.9 (3) 121.2 (3) 121.2 (4)	C15—C14—H14 C10—C15—H15 C14—C15—H15	121.00 120.00 120.00
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c} -158.8 (2) \\ 82.1 (2) \\ -98.1 (3) \\ -176.6 (3) \\ 3.3 (5) \\ 131.0 (3) \\ -50.0 (4) \\ 1.2 (4) \\ -178.2 (2) \\ 179.5 (3) \\ 0.4 (4) \\ -179.4 (3) \\ -0.4 (4) \\ -0.8 (5) \\ -179.0 (3) \end{array}$	$\begin{array}{c} 01 & -C4 & -C5 & -C6 \\ C3 & -C4 & -C5 & -C6 \\ C4 & -C5 & -C6 & -C1 \\ 02 & -C8 & -C9 & -S1 \\ N1 & -C8 & -C9 & -S1 \\ S1 & -C10 & -C11 & -N2 \\ S1 & -C10 & -C11 & -N2 \\ C15 & -C10 & -C11 & -N2 \\ C15 & -C10 & -C11 & -C12 \\ S1 & -C10 & -C15 & -C14 \\ C11 & -C10 & -C15 & -C14 \\ N2 & -C11 & -C12 & -C13 \\ C10 & -C11 & -C12 & -C13 \\ C11 & -C12 & -C13 & -C14 \\ C12 & -C13 & -C14 & -C15 \end{array}$	$\begin{array}{c} 179.1 (3) \\ -1.0 (5) \\ 0.7 (5) \\ -6.7 (3) \\ 172.7 (2) \\ -2.5 (4) \\ -179.6 (2) \\ 177.8 (3) \\ 0.6 (4) \\ 179.1 (3) \\ -1.1 (5) \\ -176.7 (3) \\ 0.5 (5) \\ -1.1 (6) \\ 0.6 (6) \end{array}$
C2—C3—C4—C5	1.1 (5)	C13—C14—C15—C10	0.5 (5)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A
N2—H2 <i>B</i> ···S1	0.86	2.60	3.004 (3)	110
N1—H1···O2 ⁱ	0.86	2.00	2.848 (3)	170
N2—H2A····O2 ⁱⁱ	0.86	2.38	3.200 (3)	161
С3—Н3…О1 ^{ііі}	0.93	2.47	3.393 (5)	170

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*+1, *y*+1/2, –*z*+1/2; (iii) –*x*, –*y*+1, –*z*.