organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

7-Bromo-9-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-3,3-dimethyl-2,3,4,9-tetrahydro-1*H*-xanthen-1-one

Shaaban K. Mohamed,^a Mehmet Akkurt,^b* Antar A. Abdelhamid,^a Phillip E. Fanwick^c and Herman Potgeiter^d

^aChemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, England, ^bDepartment of Physics, Faculty of Sciences, Erciyes University, 38039 Kayseri, Turkey, ^cDepartment of Chemistry, Purdue University, W. Lafayette, IN 47907, USA, and ^dSchool of Research, Enterprise & Innovation, Manchester Metropolitan University, Manchester M1 5GD, England Correspondence e-mail: akkurt@erciyes.edu.tr

Received 25 April 2012; accepted 9 May 2012

Key indicators: single-crystal X-ray study; T = 150 K; mean σ (C–C) = 0.004 Å; R factor = 0.042; wR factor = 0.107; data-to-parameter ratio = 13.5.

In the xanthene ring system of the title compound, $C_{23}H_{25}BrO_4$, the 4*H*-pyran ring is almost planar [maximum deviation = 0.040 (3) Å] and the cyclohexene ring adopts a sofa conformation. The cyclohexene ring attached to the xanthene system is puckered [$Q_T = 0.427$ (3) Å, $\theta = 55.0$ (4) ° and $\varphi = 164.4$ (6) °]. In the crystal, molecules are linked to each other by O-H···O and C-H···O hydrogen bonds.

Related literature

For the biological and pharmaceutical properties of xanthenes, see: Mohamed *et al.* (2012); Hilderbrand & Weissleder (2007); Shchekotikhin & Nikolaeva (2006); Fan *et al.* (2005). For related structures, see: Abdelhamid *et al.* (2011); Mohamed *et al.* (2011); Reddy *et al.* (2009); Çelik *et al.* (2009). For puckering parameters, see: Cremer & Pople (1975).

Experimental

a = 15.6869 (4) a
b = 11.0215 (2)
c = 23.0217 (16)

Data collection

Rigaku RAPID II diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2001) $T_{min} = 0.712, T_{max} = 0.942$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.042 & \text{H atoms treated by a mixture of} \\ wR(F^2) &= 0.107 & \text{independent and constrained} \\ S &= 1.07 & \text{refinement} \\ 3507 \text{ reflections} & \Delta\rho_{\text{max}} &= 0.46 \text{ e } \text{ Å}^{-3} \\ 260 \text{ parameters} & \Delta\rho_{\text{min}} &= -0.49 \text{ e } \text{ Å}^{-3} \\ 1 \text{ restraint} \end{split}$$

 $\mu = 3.04 \text{ mm}^{-1}$ T = 150 K

 $R_{\rm int} = 0.044$

 $0.12 \times 0.08 \times 0.02 \text{ mm}$

17325 measured reflections

3507 independent reflections

2728 reflections with $I > 2\sigma(I)$

Table 1 Hydrogen-bond geometry (Å, $^\circ).$

$D-\mathrm{H}\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$O4-H4O\cdots O2^{i}$ $C8-H8A\cdots O3^{ii}$	0.80 (3) 0.99	1.86 (3) 2.54	2.650 (3) 3.514 (4)	170 (3) 167
	1 . 1 .	••`		

Symmetry codes: (i) $-x - \frac{1}{2}, y + \frac{1}{2}, z$; (ii) -x, -y, -z.

Data collection: *CrystalClear* (Rigaku, 2001); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997) and *PLATON* (Spek, 2009); software used to prepare material for publication: *WinGX* (Farrugia, 1999) and *PLATON*.

The Ministry of Higher Education of Egypt is gratefully acknowledged for their financial support of this study. SKM is grateful to Purdue University, W. Lafayette, IN 47907, USA, for the data collection and to Manchester Metropolitan University for facilitating this project.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5218).

References

- Abdelhamid, A. A., Mohamed, S. K., Allahverdiyev, M. A., Gurbanov, A. V. & Ng, S. W. (2011). Acta Cryst. E67, 0785.
- Çelik, İ., Akkurt, M., Jarrahpour, A., Ebrahimi, E. & Büyükgüngör, O. (2009). Acta Cryst. E65, 02522–02523.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354–1358.
- Fan, X., Hu, X., Zhang, X. & Wang, J. (2005). Can. J. Chem. 83, 16–20.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Hilderbrand, S. A. & Weissleder, R. (2007). *Tetrahedron Lett.* 48, 4383–4385.
 Mohamed, S. K., Abdelhamid, A. A., Khalilov, A. N., Gurbanov, A. V. & Ng, S. W. (2011). *Acta Cryst.* E67, 0850–0851.
- Mohamed, S. K., Abdelhamid, A. A., Moharramov, A. M., Khalilov, A. N., Gurbanov, A. V. & Allahverdiyev, M. A. (2012). J. Chem. Pharm. Res. 4, 955–965.
- Reddy, B. P., Vijayakumar, V., Narasimhamurthy, T., Suresh, J. & Lakshman, P. L. N. (2009). Acta Cryst. E65, 0916.
- Rigaku (2001). CrystalClear. Rigaku Corporation, Tokyo, Japan.
- Shchekotikhin, Y. M. & Nikolaeva, T. G. (2006). Chem. Heterocycl. Compd, 42, 28–33.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o1710 [doi:10.1107/S1600536812021034]

7-Bromo-9-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-3,3-dimethyl-2,3,4,9-tetrahydro-1*H*-xanthen-1-one

Shaaban K. Mohamed, Mehmet Akkurt, Antar A. Abdelhamid, Phillip E. Fanwick and Herman Potgeiter

S1. Comment

Xanthenes are an important class of organic compounds that received considerable attention from many pharmaceuticals and organic chemists. They considered as valuable synthons because of the inherent reactivity of the inbuilt pyran ring. Recently, it has been reported such compounds possess a broad spectrum of biological and pharmaceutical properties such as agricultural bactericide effects, photodynamic therapy, antiviral and anti-inflammatory activities (Hilderbrand & Weissleder 2007; Shchekotikhin, & Nikolaeva 2006; Fan *et al.* 2005).

Following to our recent study (Mohamed *et al.* 2012) on synthesis and structure characterization of tetrahydro xanthenones for biological investigation, herein we report the synthesis and crystal structure of the title compound.

In the title compound (I), (Fig. 1), the 4*H*-pyran ring (O1/C1/C6/C7/C12/C13) of the xanthene ring system (O1/C1–C13) is almost planar with a maximum deviation from the mean plane of 0.040 (3) Å for C13 and the cyclohexene ring (C7–C12) adopts a sofa conformation [puckering parameters (Cremer & Pople, 1975): $Q_T = 0.457$ (3) Å, $\theta = 121.7$ (4) °, $\varphi = 297.3$ (5) °]. The cyclohexene ring (C14–C19) attached to the xanthene system is not planar: the puckering parameters of this ring are $Q_T = 0.427$ (3) Å, $\theta = 55.0$ (4) ° and $\varphi = 164.4$ (6) °. The values of the bond lengths and bond angles are comparable with those of the related structures previously reported (Abdelhamid *et al.*, 2011; Mohamed *et al.*, 2009).

The crystal structure is stabilized by intermolecular O—H···O and C—H···O hydrogen bonds (Table 1 and Fig. 2).

S2. Experimental

The title compound (I) has been prepared from reaction of 1 mmol (201 mg) 5-bromo-2-hydroxybenzaldehyde with 1 mmol (140 mg) dimedone in presence of either (4-aminophenyl)methanol or TRIZMA (tris(hydroxymethyl)aminomethane) as a catalyst in 50 ml e thanol at 351 K. The reaction was monitored by TLC till completion after 4 h then left to cool at ambient temperature. The reaction mixture was concentrated under vacuum and the solid formed product was collected and dried using Buckner funnel then recrystallized from ethanol (82% yield; m.p. 521 K). Pure crystals suitable for X-ray structure analysis were obtained by slow evaporation method using ethanol as a solvent.

S3. Refinement

The hydroxyl H atom was located from a difference Fourier map and refined with a distance restraint of O–H 0.82±0.02. Å. Temperature factor was fixed at 1.5 times the isotropic value of the parent O atom. The hydrogen atoms at C were located geometrically and refined using a riding model with C—H = 0.95 Å (aromatic), 0.98 Å. (methyl), 0.99 Å (methylene) and 1.00 Å (methine), with $U_{iso}(H) = 1.2U_{eq}$ (aromatic, methine, methylene) and $U_{iso}(H) = 1.5U_{eq}$ (methyl).

Figure 1

View of the title molecule with the atom numbering scheme. Displacement ellipsoids for non-H atoms are drawn at the 30% probability level.

Figure 2

The crystal packing of the title compound, viewing along the b axis. Dashed lines show the intermolecular hydrogen bonding interactions. H atoms not involved in hydrogen bonds have been omitted for clarity.

7-Bromo-9-(2-hydroxy-4,4-dimethyl-6-oxocyclohex-1-en-1-yl)-3,3-dimethyl- 2,3,4,9-tetrahydro-1*H*-xanthen-1-one

Crystal data	
$C_{23}H_{25}BrO_4$	F(000) = 1840
$M_r = 445.33$	$D_{\rm x} = 1.486 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, Pbca	Cu K α radiation, $\lambda = 1.54178$ Å
Hall symbol: -P 2ac 2ab	Cell parameters from 18929 reflections
a = 15.6869 (4) Å	$\theta = 1-66^{\circ}$
b = 11.0215 (2) Å	$\mu = 3.04 \text{ mm}^{-1}$
c = 23.0217 (16) Å	T = 150 K
V = 3980.3 (3) Å ³	Needle, yellow
Z = 8	$0.12 \times 0.08 \times 0.02 \text{ mm}$
Data collection	
Rigaku RAPID II	3507 independent reflections
diffractometer	2728 reflections with $I > 2\sigma(I)$
Confocal optics monochromator	$R_{\rm int} = 0.044$
ω scans	$\theta_{\rm max} = 66.6^\circ, \ \theta_{\rm min} = 3.8^\circ$
Absorption correction: multi-scan	$h = -9 \rightarrow 18$
(CrystalClear; Rigaku, 2001)	$k = -13 \rightarrow 10$
$T_{\min} = 0.712, T_{\max} = 0.942$	$l = -27 \rightarrow 24$
17325 measured reflections	

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.042$	Hydrogen site location: inferred from
$wR(F^2) = 0.107$	neighbouring sites
S = 1.07	H atoms treated by a mixture of independent
3507 reflections	and constrained refinement
260 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0414P)^2 + 5.2275P]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} < 0.001$
direct methods	$\Delta ho_{ m max} = 0.46 \ { m e} \ { m \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.49 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles *etc*. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell e.s.d.'s are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement on F^2 for ALL reflections except those flagged by the user for potential systematic errors. Weighted *R*-factors *wR* and all goodnesses of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The observed criterion of $F^2 > \sigma(F^2)$ is used only for calculating *-R*-factor-obs *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.07678 (2)	0.50005 (3)	0.19670(1)	0.0308 (1)
01	0.01721 (13)	0.28166 (19)	-0.03953 (8)	0.0236 (6)
O2	-0.16483 (15)	-0.0333 (2)	0.02080 (10)	0.0333 (8)
03	-0.08661 (14)	0.0562 (2)	0.16973 (10)	0.0344 (8)
O4	-0.20527 (13)	0.3144 (2)	0.03091 (9)	0.0277 (7)
C1	-0.00638 (18)	0.2718 (3)	0.06462 (13)	0.0199 (9)
C2	0.01035 (19)	0.3253 (3)	0.11834 (13)	0.0242 (10)
C3	0.06030 (19)	0.4281 (3)	0.12230 (13)	0.0257 (10)
C4	0.0976 (2)	0.4792 (3)	0.07358 (14)	0.0269 (10)
C5	0.08353 (19)	0.4256 (3)	0.02032 (14)	0.0251 (10)
C6	0.03110 (18)	0.3246 (3)	0.01653 (12)	0.0206 (9)
C7	-0.04024 (18)	0.1897 (3)	-0.04743 (13)	0.0206 (9)
C8	-0.05102 (19)	0.1632 (3)	-0.11080 (12)	0.0229 (9)
C9	-0.13785 (19)	0.1051 (3)	-0.12419 (13)	0.0261 (10)
C10	-0.1512 (2)	0.0005 (3)	-0.08121 (13)	0.0250 (10)
C11	-0.13510 (19)	0.0305 (3)	-0.01845 (13)	0.0242 (9)
C12	-0.07972 (18)	0.1326 (3)	-0.00369 (13)	0.0196 (9)
C13	-0.06495 (18)	0.1619 (3)	0.05977 (12)	0.0198 (9)
C14	-0.14483 (18)	0.1801 (3)	0.09634 (12)	0.0215 (9)
C15	-0.14520 (19)	0.1221 (3)	0.15319 (13)	0.0249 (9)
C16	-0.2167 (2)	0.1536 (3)	0.19457 (13)	0.0294 (10)
C17	-0.30235 (19)	0.1796 (3)	0.16603 (13)	0.0228 (9)
C18	-0.28827 (19)	0.2733 (3)	0.11776 (13)	0.0229 (9)
C19	-0.20994 (19)	0.2527 (3)	0.08139 (13)	0.0211 (9)

C91	-0.1364 (2)	0.0560 (3)	-0.18629 (13)	0.0339 (11)
C92	-0.2094 (2)	0.1994 (3)	-0.11809 (15)	0.0306 (11)
C171	-0.3643 (2)	0.2305 (3)	0.21100 (15)	0.0341 (11)
C172	-0.3390 (2)	0.0633 (3)	0.14004 (15)	0.0315 (11)
H2	-0.01290	0.29060	0.15260	0.0290*
H4	0.13220	0.54960	0.07680	0.0320*
H4O	-0.2481 (16)	0.353 (3)	0.0282 (15)	0.0370*
Н5	0.10960	0.45770	-0.01360	0.0300*
H8A	-0.00510	0.10770	-0.12360	0.0280*
H8B	-0.04550	0.23960	-0.13310	0.0280*
H10A	-0.21060	-0.02860	-0.08500	0.0300*
H10B	-0.11310	-0.06720	-0.09240	0.0300*
H13	-0.03350	0.09150	0.07690	0.0240*
H16A	-0.19950	0.22580	0.21730	0.0350*
H16B	-0.22400	0.08560	0.22220	0.0350*
H17A	-0.37500	0.16920	0.24100	0.0510*
H17B	-0.41820	0.25180	0.19190	0.0510*
H17C	-0.33960	0.30300	0.22890	0.0510*
H17D	-0.34360	0.00140	0.17040	0.0470*
H17E	-0.30120	0.03400	0.10910	0.0470*
H17F	-0.39560	0.07990	0.12390	0.0470*
H18A	-0.33870	0.27310	0.09190	0.0280*
H18B	-0.28440	0.35480	0.13570	0.0280*
H91A	-0.12660	0.12300	-0.21350	0.0510*
H91B	-0.19110	0.01720	-0.19500	0.0510*
H91C	-0.09040	-0.00370	-0.19010	0.0510*
H92A	-0.19830	0.26770	-0.14430	0.0460*
H92B	-0.21150	0.22870	-0.07790	0.0460*
H92C	-0.26410	0.16200	-0.12820	0.0460*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0299 (2)	0.0320 (2)	0.0305 (2)	-0.0014 (2)	-0.0083 (1)	-0.0056(1)
0.0219 (11)	0.0251 (12)	0.0237 (10)	-0.0080 (10)	0.0012 (9)	-0.0007 (9)
0.0342 (13)	0.0301 (13)	0.0356 (13)	-0.0122 (11)	0.0017 (11)	0.0040 (10)
0.0290 (12)	0.0449 (16)	0.0292 (12)	0.0110 (12)	0.0030 (10)	0.0121 (11)
0.0230 (11)	0.0304 (14)	0.0298 (11)	0.0080 (10)	0.0034 (10)	0.0097 (10)
0.0140 (14)	0.0170 (16)	0.0286 (15)	0.0020 (12)	-0.0039 (12)	0.0004 (12)
0.0201 (15)	0.0278 (19)	0.0246 (16)	0.0025 (14)	-0.0041 (13)	0.0000 (13)
0.0203 (15)	0.0274 (19)	0.0294 (16)	0.0031 (14)	-0.0072 (13)	-0.0052 (14)
0.0175 (15)	0.027 (2)	0.0361 (18)	-0.0034 (14)	-0.0038 (13)	0.0018 (14)
0.0194 (15)	0.0262 (19)	0.0298 (16)	-0.0042 (14)	-0.0012 (13)	0.0005 (14)
0.0146 (14)	0.0227 (17)	0.0244 (15)	-0.0016 (13)	-0.0005 (12)	-0.0015 (13)
0.0156 (14)	0.0189 (17)	0.0274 (15)	0.0018 (13)	-0.0022 (12)	-0.0021 (13)
0.0197 (15)	0.0247 (18)	0.0244 (15)	-0.0020 (14)	0.0010 (12)	-0.0014 (13)
0.0212 (15)	0.0275 (19)	0.0295 (16)	-0.0036 (14)	-0.0035 (13)	-0.0022 (14)
0.0208 (16)	0.0229 (18)	0.0312 (17)	-0.0041 (14)	-0.0024 (13)	-0.0030 (13)
	U^{11} 0.0299 (2) 0.0219 (11) 0.0342 (13) 0.0290 (12) 0.0230 (11) 0.0140 (14) 0.0201 (15) 0.0203 (15) 0.0175 (15) 0.0194 (15) 0.0146 (14) 0.0156 (14) 0.0197 (15) 0.0212 (15) 0.0208 (16)	U^{11} U^{22} $0.0299(2)$ $0.0320(2)$ $0.0219(11)$ $0.0251(12)$ $0.0342(13)$ $0.0301(13)$ $0.0290(12)$ $0.0449(16)$ $0.0230(11)$ $0.0304(14)$ $0.0140(14)$ $0.0170(16)$ $0.0201(15)$ $0.0278(19)$ $0.0175(15)$ $0.0274(19)$ $0.0146(14)$ $0.0227(17)$ $0.0146(14)$ $0.0227(17)$ $0.0156(14)$ $0.0247(18)$ $0.0212(15)$ $0.0275(19)$ $0.0208(16)$ $0.0229(18)$	U^{11} U^{22} U^{33} $0.0299(2)$ $0.0320(2)$ $0.0305(2)$ $0.0219(11)$ $0.0251(12)$ $0.0237(10)$ $0.0342(13)$ $0.0301(13)$ $0.0356(13)$ $0.0290(12)$ $0.0449(16)$ $0.0292(12)$ $0.0230(11)$ $0.0304(14)$ $0.0298(11)$ $0.0140(14)$ $0.0170(16)$ $0.0286(15)$ $0.0201(15)$ $0.0278(19)$ $0.0246(16)$ $0.0203(15)$ $0.0274(19)$ $0.0294(16)$ $0.0175(15)$ $0.027(2)$ $0.0361(18)$ $0.0194(15)$ $0.0262(19)$ $0.0298(16)$ $0.0156(14)$ $0.0189(17)$ $0.0274(15)$ $0.0197(15)$ $0.0275(19)$ $0.0295(16)$ $0.0208(16)$ $0.0229(18)$ $0.0312(17)$	U^{11} U^{22} U^{33} U^{12} $0.0299(2)$ $0.0320(2)$ $0.0305(2)$ $-0.0014(2)$ $0.0219(11)$ $0.0251(12)$ $0.0237(10)$ $-0.0080(10)$ $0.0342(13)$ $0.0301(13)$ $0.0356(13)$ $-0.0122(11)$ $0.0290(12)$ $0.0449(16)$ $0.0292(12)$ $0.0110(12)$ $0.0230(11)$ $0.0304(14)$ $0.0298(11)$ $0.0080(10)$ $0.0140(14)$ $0.0170(16)$ $0.0286(15)$ $0.0020(12)$ $0.0201(15)$ $0.0278(19)$ $0.0246(16)$ $0.0025(14)$ $0.0203(15)$ $0.027(2)$ $0.0361(18)$ $-0.0034(14)$ $0.0175(15)$ $0.027(2)$ $0.0361(18)$ $-0.0042(14)$ $0.0146(14)$ $0.0227(17)$ $0.0244(15)$ $-0.0016(13)$ $0.0156(14)$ $0.0189(17)$ $0.0274(15)$ $0.0018(13)$ $0.0197(15)$ $0.0275(19)$ $0.0295(16)$ $-0.0036(14)$ $0.0208(16)$ $0.0229(18)$ $0.0312(17)$ $-0.0041(14)$	U^{11} U^{22} U^{33} U^{12} U^{13} $0.0299(2)$ $0.0320(2)$ $0.0305(2)$ $-0.0014(2)$ $-0.0083(1)$ $0.0219(11)$ $0.0251(12)$ $0.0237(10)$ $-0.0080(10)$ $0.0012(9)$ $0.0342(13)$ $0.0301(13)$ $0.0356(13)$ $-0.0122(11)$ $0.0017(11)$ $0.0290(12)$ $0.0449(16)$ $0.0292(12)$ $0.0110(12)$ $0.0030(10)$ $0.0230(11)$ $0.0304(14)$ $0.0298(11)$ $0.0080(10)$ $0.0034(10)$ $0.0140(14)$ $0.0170(16)$ $0.0286(15)$ $0.0020(12)$ $-0.0039(12)$ $0.0201(15)$ $0.0278(19)$ $0.0246(16)$ $0.0025(14)$ $-0.0041(13)$ $0.0203(15)$ $0.0274(19)$ $0.0294(16)$ $0.0031(14)$ $-0.0072(13)$ $0.0175(15)$ $0.027(2)$ $0.0361(18)$ $-0.0042(14)$ $-0.0012(13)$ $0.0146(14)$ $0.0227(17)$ $0.0244(15)$ $-0.0016(13)$ $-0.0005(12)$ $0.0156(14)$ $0.0189(17)$ $0.0274(15)$ $0.0018(13)$ $-0.0022(12)$ $0.0197(15)$ $0.0247(18)$ $0.0244(15)$ $-0.0036(14)$ $-0.0035(13)$ $0.0212(15)$ $0.0275(19)$ $0.0295(16)$ $-0.0036(14)$ $-0.0035(13)$ $0.0208(16)$ $0.0229(18)$ $0.0312(17)$ $-0.0041(14)$ $-0.0024(13)$

supporting information

C11	0.0196 (15)	0.0231 (18)	0.0299 (16)	-0.0008 (14)	-0.0018 (13)	0.0015 (13)
C12	0.0153 (14)	0.0169 (16)	0.0266 (15)	-0.0001 (12)	0.0009 (12)	0.0002 (12)
C13	0.0157 (14)	0.0202 (17)	0.0235 (15)	0.0012 (13)	-0.0020 (12)	0.0029 (12)
C14	0.0170 (15)	0.0218 (17)	0.0256 (15)	-0.0004 (13)	-0.0034 (12)	0.0032 (13)
C15	0.0212 (15)	0.0271 (18)	0.0264 (16)	0.0006 (15)	-0.0017 (13)	0.0043 (13)
C16	0.0242 (17)	0.039 (2)	0.0250 (16)	0.0009 (16)	0.0011 (13)	0.0027 (14)
C17	0.0196 (15)	0.0239 (18)	0.0248 (15)	0.0030 (13)	0.0020 (13)	0.0031 (13)
C18	0.0201 (15)	0.0237 (18)	0.0250 (16)	0.0023 (14)	0.0002 (13)	0.0018 (13)
C19	0.0219 (15)	0.0185 (16)	0.0229 (15)	-0.0033 (13)	0.0002 (13)	0.0032 (12)
C91	0.038 (2)	0.034 (2)	0.0298 (17)	-0.0031 (18)	-0.0031 (15)	-0.0053 (15)
C92	0.0225 (16)	0.031 (2)	0.0384 (19)	0.0004 (15)	-0.0053 (14)	0.0039 (15)
C171	0.0276 (18)	0.040 (2)	0.0347 (18)	0.0081 (17)	0.0074 (15)	0.0039 (16)
C172	0.0234 (17)	0.031 (2)	0.0400 (19)	-0.0016 (16)	-0.0006 (14)	0.0069 (16)

Geometric parameters (Å, °)

Br1—C3	1.905 (3)	C17—C18	1.533 (4)
O1—C6	1.392 (3)	C17—C172	1.527 (5)
O1—C7	1.368 (4)	C17—C171	1.527 (4)
O2—C11	1.236 (4)	C18—C19	1.504 (4)
O3—C15	1.232 (4)	C2—H2	0.9500
O4—C19	1.349 (4)	C4—H4	0.9500
O4—H4O	0.80 (3)	С5—Н5	0.9500
C1—C6	1.382 (4)	C8—H8A	0.9900
C1—C13	1.524 (4)	C8—H8B	0.9900
C1—C2	1.395 (4)	C10—H10A	0.9900
С2—С3	1.381 (5)	C10—H10B	0.9900
С3—С4	1.385 (4)	C13—H13	1.0000
C4—C5	1.379 (5)	C16—H16A	0.9900
С5—С6	1.387 (4)	C16—H16B	0.9900
C7—C12	1.339 (4)	C18—H18A	0.9900
С7—С8	1.497 (4)	C18—H18B	0.9900
С8—С9	1.536 (4)	C91—H91A	0.9800
С9—С91	1.529 (4)	C91—H91B	0.9800
С9—С92	1.536 (4)	C91—H91C	0.9800
C9—C10	1.534 (4)	C92—H92A	0.9800
C10-C11	1.504 (4)	С92—Н92В	0.9800
C11—C12	1.462 (4)	C92—H92C	0.9800
C12—C13	1.514 (4)	C171—H17A	0.9800
C13—C14	1.523 (4)	C171—H17B	0.9800
C14—C15	1.457 (4)	C171—H17C	0.9800
C14—C19	1.342 (4)	C172—H17D	0.9800
C15—C16	1.512 (4)	C172—H17E	0.9800
C16—C17	1.523 (4)	C172—H17F	0.9800
C6—O1—C7	118.6 (2)	С3—С2—Н2	120.00
С19—О4—Н4О	107 (2)	C3—C4—H4	121.00
C2-C1-C13	120.9 (3)	С5—С4—Н4	121.00

C6-C1-C13	122.2 (3)	C4—C5—H5	120.00
C2—C1—C6	116.9 (3)	C6—C5—H5	120.00
C1—C2—C3	120.8 (3)	C7—C8—H8A	109.00
Br1-C3-C4	120.1 (2)	C7—C8—H8B	109.00
C2—C3—C4	121.3 (3)	C9—C8—H8A	109.00
Br1—C3—C2	118.6 (2)	C9—C8—H8B	109.00
C3—C4—C5	118.6 (3)	H8A—C8—H8B	108.00
C4—C5—C6	119.7 (3)	C9—C10—H10A	108.00
O1—C6—C1	122.2 (3)	C9—C10—H10B	108.00
O1—C6—C5	115.1 (3)	C11-C10-H10A	108.00
C1—C6—C5	122.7 (3)	C11-C10-H10B	108.00
O1—C7—C12	123.6 (3)	H10A—C10—H10B	108.00
C8—C7—C12	126.1 (3)	C1—C13—H13	107.00
O1—C7—C8	110.4 (2)	C12—C13—H13	107.00
С7—С8—С9	112.1 (2)	C14—C13—H13	107.00
C8—C9—C10	107.8 (2)	C15—C16—H16A	108.00
C8—C9—C91	108.8 (2)	C15—C16—H16B	108.00
С10—С9—С91	109.8 (3)	C17—C16—H16A	108.00
С10—С9—С92	110.5 (3)	C17—C16—H16B	109.00
С91—С9—С92	109.6 (3)	H16A—C16—H16B	107.00
С8—С9—С92	110.3 (3)	C17-C18-H18A	109.00
C9-C10-C11	115.6 (3)	C17-C18-H18B	109.00
O2-C11-C10	120.9 (3)	C19-C18-H18A	109.00
C10-C11-C12	119.5 (3)	C19—C18—H18B	109.00
O2—C11—C12	119.5 (3)	H18A—C18—H18B	108.00
C7—C12—C11	117.5 (3)	C9—C91—H91A	109.00
C11—C12—C13	118.7 (3)	C9—C91—H91B	109.00
C7—C12—C13	123.7 (3)	C9—C91—H91C	109.00
C1—C13—C12	109.4 (2)	H91A—C91—H91B	110.00
C1—C13—C14	110.5 (3)	H91A—C91—H91C	109.00
C12—C13—C14	115.8 (2)	H91B—C91—H91C	109.00
C13—C14—C15	116.3 (3)	С9—С92—Н92А	109.00
C13—C14—C19	124.3 (3)	С9—С92—Н92В	109.00
C15—C14—C19	119.3 (3)	С9—С92—Н92С	109.00
O3—C15—C16	119.6 (3)	H92A—C92—H92B	110.00
C14-C15-C16	117.9 (3)	H92A—C92—H92C	109.00
O3—C15—C14	122.3 (3)	H92B—C92—H92C	109.00
C15—C16—C17	115.2 (2)	C17—C171—H17A	109.00
C16—C17—C171	109.8 (2)	C17—C171—H17B	109.00
C16—C17—C172	110.1 (3)	C17—C171—H17C	109.00
C16—C17—C18	108.2 (2)	H17A—C171—H17B	109.00
C18—C17—C172	109.6 (3)	H17A—C171—H17C	109.00
C171—C17—C172	109.5 (3)	H17B—C171—H17C	110.00
C18—C17—C171	109.6 (3)	C17—C172—H17D	109.00
C17—C18—C19	114.8 (3)	С17—С172—Н17Е	109.00
O4—C19—C18	116.6 (3)	C17—C172—H17F	109.00
C14—C19—C18	124.7 (3)	H17D—C172—H17E	109.00
O4—C19—C14	118.7 (3)	H17D—C172—H17F	110.00

C1—C2—H2	120.00	H17E—C172—H17F	109.00
C7—O1—C6—C5	-173.8 (3)	C9—C10—C11—O2	160.4 (3)
C6—O1—C7—C8	175.6 (2)	C9-C10-C11-C12	-23.0 (4)
C7—O1—C6—C1	4.8 (4)	O2—C11—C12—C7	171.7 (3)
C6—O1—C7—C12	-4.8 (4)	O2—C11—C12—C13	-3.8 (4)
C6—C1—C2—C3	1.7 (4)	C10-C11-C12-C7	-5.0 (4)
C13—C1—C2—C3	-177.0 (3)	C10-C11-C12-C13	179.5 (3)
C2-C1-C13-C12	173.4 (3)	C7—C12—C13—C1	5.4 (4)
C2-C1-C13-C14	44.7 (4)	C7—C12—C13—C14	131.1 (3)
C6-C1-C13-C12	-5.3 (4)	C11—C12—C13—C1	-179.4 (3)
C6-C1-C13-C14	-134.0 (3)	C11—C12—C13—C14	-53.7 (4)
C2-C1-C6-O1	-178.1 (3)	C1—C13—C14—C15	-98.9 (3)
C2-C1-C6-C5	0.4 (5)	C1—C13—C14—C19	75.5 (4)
C13—C1—C6—O1	0.6 (5)	C12—C13—C14—C15	135.9 (3)
C13—C1—C6—C5	179.1 (3)	C12-C13-C14-C19	-49.6 (4)
C1-C2-C3-Br1	177.5 (2)	C13—C14—C15—O3	-4.1 (5)
C1—C2—C3—C4	-2.1 (5)	C13—C14—C15—C16	170.6 (3)
Br1—C3—C4—C5	-179.3 (2)	C19—C14—C15—O3	-178.8 (3)
C2—C3—C4—C5	0.4 (5)	C19—C14—C15—C16	-4.1 (4)
C3—C4—C5—C6	1.7 (5)	C13—C14—C19—O4	-0.2 (5)
C4—C5—C6—O1	176.5 (3)	C13—C14—C19—C18	-178.7 (3)
C4—C5—C6—C1	-2.1 (5)	C15—C14—C19—O4	174.1 (3)
O1—C7—C8—C9	-155.2 (3)	C15-C14-C19-C18	-4.4 (5)
C12—C7—C8—C9	25.3 (4)	O3—C15—C16—C17	-151.6 (3)
O1—C7—C12—C11	-175.9 (3)	C14—C15—C16—C17	33.6 (4)
O1—C7—C12—C13	-0.7 (5)	C15—C16—C17—C18	-50.9 (4)
C8—C7—C12—C11	3.5 (5)	C15—C16—C17—C171	-170.5 (3)
C8—C7—C12—C13	178.8 (3)	C15—C16—C17—C172	68.9 (3)
C7—C8—C9—C10	-48.8 (3)	C16—C17—C18—C19	42.1 (3)
C7—C8—C9—C91	-167.8 (3)	C171—C17—C18—C19	161.8 (3)
C7—C8—C9—C92	71.9 (3)	C172—C17—C18—C19	-78.0 (3)
C8—C9—C10—C11	48.9 (3)	C17—C18—C19—O4	165.1 (3)
C91—C9—C10—C11	167.2 (3)	C17—C18—C19—C14	-16.3 (4)
C92—C9—C10—C11	-71.7 (3)		

Hydrogen-bond geometry (Å, °)

<i>D</i> —H··· <i>A</i>	<i>D</i> —Н	H···A	D···A	<i>D</i> —H··· <i>A</i>
04—H4 <i>O</i> ····O2 ⁱ	0.80 (3)	1.86 (3)	2.650 (3)	170 (3)
C8—H8A····O3 ⁱⁱ	0.99	2.54	3.514 (4)	167
С13—Н13…ОЗ	1.00	2.33	2.807 (4)	108

Symmetry codes: (i) -x-1/2, y+1/2, z; (ii) -x, -y, -z.