organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-(Adamantan-1-yl)-4-methyl-1-[(4phenylpiperazin-1-yl)methyl]-1*H*-1,2,4triazole-5(4*H*)-thione dichloromethane hemisolvate

Ali A. El-Emam,^a‡ Mohamed A. Al-Omar,^a Abdul-Malek S. Al-Tamimi,^a Seik Weng Ng^{b,c} and Edward R. T. Tiekink^b*

^aDepartment of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: edward.tiekink@gmail.com

Received 10 May 2012; accepted 11 May 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.004 Å; disorder in solvent or counterion; R factor = 0.045; wR factor = 0.126; data-to-parameter ratio = 15.1.

The asymmetric unit of the title dichloromethane hemisolvate, $C_{24}H_{33}N_5S \cdot 0.5CH_2Cl_2$, comprises an adamantanyl/triazole derivative and half a CH_2Cl_2 molecule of crystallization; the latter is disordered about a twofold axis of symmetry. The piperazine ring has a chair conformation and the two N-bound substituents occupy equatorial positions. The piperazine residue is almost normal to the triazole ring [N-N-C-N torsion angle = -79.9 (3)°] so that to a first approximation, the molecule has an L-shape. Linear supramolecular chains parallel to [001] are formed *via* $C-H \cdot \cdot \cdot S$ interactions. Two such chains are linked into a double chain *via* $C-H \cdot \cdot \cdot Cl$ interactions involving the disordered CH_2Cl_2 molecules of solvation.

Related literature

For the diverse biological activities of adamantane derivatives, see: Al-Deeb *et al.* (2006); Al-Omar *et al.* (2010). For related adamantanyl structural studies, see: El-Emam *et al.* (2012*a,b*). For the preparation of one of the precursor molecules, see: El-Emam & Ibrahim (1991).

V = 9622.3 (3) Å³

Cu $K\alpha$ radiation

 $0.30 \times 0.20 \times 0.10 \ \mathrm{mm}$

18884 measured reflections

4509 independent reflections

4437 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Absolute structure: Flack (1983),

Flack parameter: -0.002 (17)

 $\Delta \rho_{\rm max} = 0.41 \ {\rm e} \ {\rm \AA}^-$

 $\Delta \rho_{\rm min} = -1.00 \text{ e } \text{\AA}^{-3}$

1772 Friedel pairs

 $\mu = 2.38 \text{ mm}^{-1}$

T = 100 K

 $R_{\rm int} = 0.025$

Z = 8

Experimental

Crystal data $2C_{24}H_{33}N_5S\cdot CH_2Cl_2$ $M_r = 932.17$ Orthorhombic, Fdd2 a = 66.8490 (16) Å b = 22.1076 (4) Å c = 6.5109 (1) Å

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan

(CrysAlis PRO; Agilent, 2011) $T_{\min} = 0.752, T_{\max} = 1.000$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$ $wR(F^2) = 0.126$ S = 1.094509 reflections 299 parameters 19 restraints

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$C14-H14A\cdots S1^{i}$ $C16-H16A\cdots Cl1$	0.99 0.99	2.85 2.73	3.803 (3) 3.589 (4)	162 146
2	1			

Symmetry code: (i) x, y, z - 1.

Data collection: *CrysAlis PRO* (Agilent, 2011); cell refinement: *CrysAlis PRO*; data reduction: *CrysAlis PRO*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

The financial support of the Deanship of Scientific Research and the Research Center of the College of Pharmacy, King Saud University is greatly appreciated. We also thank the Ministry of Higher Education (Malaysia) for funding structural studies through the High-Impact Research scheme (UM.C/HIR/MOHE/SC/12).

[‡] Additional correspondence author, e-mail: elemam5@hotmail.com.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HG5226).

References

- Agilent (2011). CrysAlis PRO. Agilent Technologies, Yarnton, England.
- Al-Deeb, O. A., Al-Omar, M. A., El-Brollosy, N. R., Habib, E. E., Ibrahim, T. M. & El-Emam, A. A. (2006). Arzneim. Forsch. Drug. Res. 56, 40–47. Al-Omar, M. A., Al-Abdullah, E. S., Shehata, I. A., Habib, E. E., Ibrahim,
- T. M. & El-Emam, A. A. (2010). Molecules, 15, 2526–2550.

- Brandenburg, K. (2006). *DIAMOND*. Crystal Impact GbR, Bonn, Germany. El-Emam, A. A., Al-Omar, M. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. B. T. (2012a). *Acta* Cryst. Fc. 21766, e1767
- E. R. T. (2012a). Acta Cryst. E68, 01766–01767.
- El-Emam, A. A., Alrashood, K. A., Al-Tamimi, A.-M. S., Ng, S. W. & Tiekink, E. R. T. (2012b). Acta Cryst. E68, 0657–0658.
- El-Emam, A. A. & Ibrahim, T. M. (1991). Arzneim. Forsch. Drug. Res. 41, 1260–1264.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2012). E68, o1772-o1773 [doi:10.1107/S1600536812021393]

3-(Adamantan-1-yl)-4-methyl-1-[(4-phenylpiperazin-1-yl)methyl]-1*H*-1,2,4triazole-5(4*H*)-thione dichloromethane hemisolvate

Ali A. El-Emam, Mohamed A. Al-Omar, Abdul-Malek S. Al-Tamimi, Seik Weng Ng and Edward R. T. Tiekink

S1. Comment

In continuation of our interest in the chemical and pharmacological properties of adamantane derivatives, motivated by their putative biological activities (Al-Deeb *et al.*, 2006; Al-Omar *et al.*, 2010), and as part of on-going structural studies (El-Emam *et al.*, 2012*a*,*b*), we synthesized the title compound (I) as a potential chemotherapeutic agent. Herein, we describe the crystal and molecular structure of (I).

The asymmetric unit of (I), Fig. 1, comprises an adamantanyl/triazole derivative and half a CH_2Cl_2 molecule of crystallization. In the organic molecule, the piperazinyl ring has a chair conformation and the two N-bound substituents occupy equatorial positions. The piperazinyl residue is almost normal to the triazole ring with the N2—N3—C14—N4 torsion angle being -79.9 (3)°. To a first approximation, the molecule has an *L*-shape, as found recently in the 2-hydroxybenzylideneamino derivative (El-Emam *et al.*, 2012*a*).

In the crystal packing, linear supramolecular chains parallel to [001] are formed *via* C—H···S interactions, Table 1. These are linked into a double chain *via* C—H···Cl interactions involving the disordered CH_2Cl_2 molecules of solvation, Fig. 2 and Table 1.

S2. Experimental

A mixture of 3-(1-adamantyl)-4-methyl-4*H*-1,2,4-triazole-5-thiol (499 mg, 2 mmol), prepared according to the literature method (El-Emam & Ibrahim, 1991), 1-phenylpiperazine (325 mg, 2 mmol) and 37% formaldehyde solution (1 ml), in ethanol (8 ml), was heated under reflux for 15 min. when a clear solution was obtained. Stirring was continued for 12 h. at room temperature and the mixture was allowed to stand overnight. Cold water (5 ml) was slowly added and the mixture was stirred for 20 min. The precipitated crude product was filtered, washed with water, dried, and crystallized from ethanol to yield 635 mg (75%) of the title compound as colourless crystals. *M*.pt: 423–425 K. Single crystals suitable for X-ray analysis were obtained by slow evaporation of its CH₂Cl₂:EtOH solution held at room temperature (1:1; 5 ml). ¹H NMR (CDCl₃, 500.13 MHz): δ 1.77–1.84 (m, 6H, adamantane-H), 2.14 (s, 6H, adamantane-H), 2.27 (s, 3H, adamantane-H), 3.05 (s, 4H, piperazine-H), 3.27 (s, 4H, piperazine-H), 3.82 (s, 3H, CH₃), 5.20 (s, 2H, CH₂), 6.85–6.93 (m, 3H, Ar—H), 7.25–7.33 (m, 2H, Ar—H). ¹³C NMR (CDCl₃, 125.76 MHz): δ 27.84, 33.97, 36.31, 39.02 (adamantane-C), 31.58 (CH₃), 49.34, 50.40 (piperazine-C), 69.23 (CH₂), 116.27, 119.86, 129.10, 151.33 (Ar—C), 156.31 (triazole C-5), 169.53 (C=S).

S3. Refinement

The H-atoms were placed in calculated positions [and C—H = 0.95 to 1.00 Å, $U_{iso}(H) = 1.2-1.5U_{eq}(C)$] and were included in the refinement in the riding model approximation. A number of reflections, *i.e.* (8 0 0), (18 2 0), (6 2 0), (10 2

0) and (2 2 0), were omitted from the final cycles of refinement owing to poor agreement. The maximum and minimum residual electron density peaks of 0.41 and 1.00 e Å⁻³, respectively, were located 0.62 Å and 0.63 Å from the Cl1 and Cl2 atoms, respectively.

Figure 1

The molecular structures of the molecules comprising (I) showing the atom-labelling scheme and displacement ellipsoids at the 70% probability level. The CH_2Cl_2 molecule has 50% occupancy, being disordered over a twofold axis.

Figure 2

A view of the linear supramolecular double chain in (I). The C—H \cdots S and C—H \cdots Cl contacts are shown as orange and blue dashed lines, respectively. The CH₂Cl₂ molecule is disordered over two position; both orientations are displayed.

3-(Adamantan-1-yl)-4-methyl-1-[(4-phenylpiperazin-1-yl)methyl]-1*H*- 1,2,4-triazole-5(4*H*)-thione dichloromethane hemisolvate

Crystal	data
---------	------

 $2C_{24}H_{33}N_5S \cdot CH_2Cl_2$ $M_r = 932.17$ Orthorhombic, *Fdd2* Hall symbol: F 2 -2d a = 66.8490 (16) Å b = 22.1076 (4) Å c = 6.5109 (1) Å V = 9622.3 (3) Å³ Z = 8 F(000) = 3984 $D_x = 1.287 \text{ Mg m}^{-3}$ Cu K α radiation, $\lambda = 1.54184 \text{ Å}$ Cell parameters from 10015 reflections $\theta = 2.6-76.4^{\circ}$ $\mu = 2.38 \text{ mm}^{-1}$ T = 100 KPrism, colourless $0.30 \times 0.20 \times 0.10 \text{ mm}$ Data collection

Agilent SuperNova Dual	$T_{\min} = 0.752, \ T_{\max} = 1.000$
diffractometer with an Atlas detector	18884 measured reflections
Radiation source: SuperNova (Cu) X-ray	4509 independent reflections
Source	4437 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.025$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\rm max} = 76.6^\circ, \theta_{\rm min} = 2.6^\circ$
ωscan	$h = -84 \rightarrow 80$
Absorption correction: multi-scan	$k = -25 \rightarrow 27$
(CrysAlis PRO; Agilent, 2011)	$l = -7 \longrightarrow 8$
Refinement	
Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.045$	H-atom parameters constrained
$wR(F^2) = 0.126$	$w = 1/[\sigma^2(F_o^2) + (0.0825P)^2 + 16.7617P]$
S = 1.09	where $P = (F_o^2 + 2F_c^2)/3$
4509 reflections	$(\Delta/\sigma)_{\rm max} = 0.002$
299 parameters	$\Delta \rho_{\rm max} = 0.41 \text{ e } \text{\AA}^{-3}$
19 restraints	$\Delta \rho_{\rm min} = -1.00 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant	Absolute structure: Flack (1983), 1772 Friedel
direct methods	pairs
Secondary atom site location: difference Fourier	Absolute structure parameter: -0.002 (17)
man	

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
S1	0.106131 (8)	0.22602 (2)	0.50061 (10)	0.02473 (15)	
N1	0.09696 (3)	0.34338 (8)	0.4049 (3)	0.0198 (4)	
N2	0.08323 (3)	0.33690 (8)	0.0966 (3)	0.0218 (4)	
N3	0.08877 (3)	0.28044 (8)	0.1693 (3)	0.0219 (4)	
N4	0.06533 (3)	0.20162 (8)	0.0489 (3)	0.0223 (4)	
N5	0.02334 (3)	0.19119 (9)	0.1251 (3)	0.0256 (4)	
C1	0.08658 (3)	0.44216 (9)	0.2235 (3)	0.0183 (4)	
C2	0.07497 (4)	0.45691 (10)	0.0251 (4)	0.0256 (5)	
H2A	0.0818	0.4383	-0.0939	0.031*	
H2B	0.0613	0.4396	0.0337	0.031*	
C3	0.07361 (4)	0.52562 (10)	-0.0064 (5)	0.0262 (5)	
H3	0.0661	0.5343	-0.1362	0.031*	
C4	0.09476 (4)	0.55174 (10)	-0.0222 (4)	0.0252 (5)	
H4A	0.0941	0.5960	-0.0450	0.030*	

U/D	0 1010	0 5333	-0.1400	0.030*
114D	0.1019 0.10617 (4)	0.5555 0.52842 (11)	0.1400	0.030°
0.5	0.10017 (4)	0.55845 (11)	0.1778 (4)	0.0232(3)
H5	0.1199	0.5560	0.1685	0.030*
C6	0.09524 (5)	0.56653 (11)	0.3591 (5)	0.0356 (6)
H6A	0.0945	0.6110	0.3413	0.043*
H6B	0.1026	0.5579	0.4875	0.043*
C7	0.07398 (5)	0.54031 (11)	0.3735 (5)	0.0342 (6)
H7	0.0668	0.5591	0.4924	0.041*
C8	0.07510 (4)	0.47116 (10)	0.4044 (5)	0.0282 (5)
H8A	0.0614	0.4541	0.4118	0.034*
H8B	0.0820	0.4620	0.5352	0.034*
C9	0.10775 (3)	0.46982 (10)	0.2081 (4)	0.0220 (5)
H9A	0.1153	0.4610	0.3351	0.026*
H9B	0.1150	0.4516	0.0909	0.026*
C10	0.06261 (4)	0.55420 (11)	0.1747 (5)	0.0345 (6)
H10A	0.0489	0.5377	0.1834	0.041*
H10B	0.0617	0.5985	0.1550	0.041*
C11	0.08839 (3)	0.37444 (9)	0.2426 (4)	0.0199 (4)
C12	0.09709 (3)	0.28280 (10)	0.3552 (4)	0.0212 (4)
C13	0.10506 (4)	0.36501 (10)	0.5994 (4)	0.0245(5)
H13A	0.1079	0.4084	0.5892	0.037*
H13B	0 1175	0 3432	0.6308	0.037*
H13C	0.0953	0.3580	0.7091	0.037*
C14	0.0955 0.08542(3)	0.22529 (9)	0.7091	0.037 0.0227(5)
H14A	0.08942 (5)	0.22329(9)	-0.0997	0.0227(3)
	0.00390	0.1034	0.0997	0.027
C15	0.0947	0.1934 0.19067 (12)	0.0933	0.027°
	0.03794(4)	0.18907 (15)	0.2340 (3)	0.0343 (0)
HIJA	0.0564	0.2283	0.3293	0.041*
HI5B	0.06//	0.1644	0.3292	0.041*
C16	0.03/9/(4)	0.15/41 (15)	0.2457 (6)	0.0427(8)
HI6A	0.0398	0.1168	0.1842	0.051*
H16B	0.0328	0.1519	0.3870	0.051*
C17	0.03096 (4)	0.20593 (11)	-0.0794 (4)	0.0278 (5)
H17A	0.0212	0.2321	-0.1518	0.033*
H17B	0.0326	0.1683	-0.1602	0.033*
C18	0.05105 (4)	0.23845 (11)	-0.0635 (4)	0.0261 (5)
H18A	0.0563	0.2468	-0.2030	0.031*
H18B	0.0492	0.2776	0.0078	0.031*
C19	0.00324 (4)	0.17111 (11)	0.1365 (4)	0.0281 (5)
C20	-0.01038 (4)	0.17995 (14)	-0.0246 (5)	0.0366 (6)
H20	-0.0061	0.1985	-0.1485	0.044*
C21	-0.03030 (4)	0.16163 (14)	-0.0037 (6)	0.0426 (7)
H21	-0.0393	0.1678	-0.1147	0.051*
C22	-0.03716 (4)	0.13510 (14)	0.1726 (6)	0.0404 (7)
H22	-0.0507	0.1227	0.1841	0.048*
C23	-0.02392 (4)	0.12670 (14)	0.3341 (6)	0.0421 (7)
H23	-0.0285	0.1087	0.4578	0.051*
C24	-0.00399 (4)	0.14421 (14)	0.3179 (5)	0.0365 (6)
	× /	N /	× /	× /

supporting information

H24	0.0048	0.1380	0.4304	0.044*	
Cl1	0.02109 (2)	0.01531 (9)	0.0431 (3)	0.0562 (4)	0.50
Cl2	0.0020 (2)	-0.0144 (4)	-0.3345 (6)	0.143 (3)	0.50
C25	0.00259 (15)	-0.0235 (4)	-0.0659 (17)	0.073 (2)	0.50
H25A	-0.0103	-0.0100	-0.0076	0.088*	0.50
H25B	0.0042	-0.0670	-0.0331	0.088*	0.50

Atomic displacement parameters $(Å^2)$

	U^{11}	<i>U</i> ²²	U ³³	U^{12}	U^{13}	<i>U</i> ²³
S1	0.0326 (3)	0.0149 (2)	0.0267 (3)	0.0043 (2)	0.0009 (2)	0.0027 (2)
N1	0.0249 (9)	0.0129 (8)	0.0214 (10)	0.0011 (6)	-0.0011 (7)	-0.0014 (7)
N2	0.0278 (9)	0.0130 (8)	0.0248 (11)	-0.0014 (7)	0.0005 (8)	0.0021 (8)
N3	0.0324 (10)	0.0115 (8)	0.0218 (10)	-0.0020 (7)	0.0025 (8)	0.0002 (7)
N4	0.0244 (9)	0.0159 (8)	0.0266 (11)	-0.0011 (7)	0.0011 (8)	0.0007 (8)
N5	0.0237 (9)	0.0280 (9)	0.0252 (11)	0.0024 (8)	-0.0004 (8)	0.0046 (9)
C1	0.0202 (9)	0.0136 (9)	0.0212 (12)	0.0006 (7)	0.0027 (8)	0.0024 (8)
C2	0.0285 (11)	0.0162 (10)	0.0323 (14)	0.0006 (8)	-0.0061 (10)	0.0003 (10)
C3	0.0293 (11)	0.0166 (10)	0.0328 (14)	0.0045 (8)	-0.0026 (10)	0.0035 (10)
C4	0.0341 (12)	0.0160 (9)	0.0256 (13)	0.0007 (8)	0.0031 (10)	0.0045 (9)
C5	0.0311 (12)	0.0173 (10)	0.0274 (13)	-0.0061 (8)	-0.0017 (10)	0.0043 (9)
C6	0.0644 (18)	0.0135 (10)	0.0288 (15)	-0.0043 (10)	-0.0054 (13)	-0.0001 (10)
C7	0.0535 (16)	0.0183 (10)	0.0308 (15)	0.0140 (10)	0.0160 (12)	0.0015 (10)
C8	0.0339 (12)	0.0184 (10)	0.0323 (15)	0.0062 (9)	0.0139 (10)	0.0059 (10)
C9	0.0211 (10)	0.0189 (10)	0.0259 (14)	-0.0019 (7)	0.0023 (8)	0.0045 (9)
C10	0.0377 (13)	0.0223 (11)	0.0436 (16)	0.0123 (10)	0.0102 (12)	0.0069 (11)
C11	0.0197 (9)	0.0166 (9)	0.0234 (12)	-0.0002 (7)	0.0010 (8)	0.0011 (9)
C12	0.0250 (10)	0.0136 (9)	0.0252 (12)	-0.0006 (8)	0.0027 (9)	-0.0018 (9)
C13	0.0323 (12)	0.0175 (10)	0.0239 (12)	0.0049 (8)	-0.0056 (10)	-0.0023 (9)
C14	0.0293 (11)	0.0151 (9)	0.0239 (13)	-0.0028 (8)	0.0054 (9)	-0.0037 (9)
C15	0.0240 (11)	0.0448 (14)	0.0348 (15)	-0.0005 (10)	-0.0018 (11)	0.0222 (13)
C16	0.0234 (11)	0.0544 (17)	0.0504 (19)	-0.0021 (11)	-0.0016 (12)	0.0336 (16)
C17	0.0292 (12)	0.0297 (12)	0.0244 (12)	-0.0018 (9)	-0.0028 (9)	0.0004 (10)
C18	0.0327 (12)	0.0231 (10)	0.0224 (12)	-0.0025 (9)	-0.0018 (9)	0.0044 (9)
C19	0.0243 (11)	0.0265 (11)	0.0335 (15)	0.0049 (9)	0.0024 (10)	-0.0044 (10)
C20	0.0304 (12)	0.0439 (14)	0.0356 (17)	0.0019 (11)	-0.0042 (11)	0.0003 (13)
C21	0.0277 (12)	0.0500 (16)	0.0500 (19)	0.0048 (11)	-0.0068 (13)	-0.0122 (15)
C22	0.0241 (12)	0.0406 (15)	0.057 (2)	-0.0005 (10)	0.0028 (12)	-0.0154 (14)
C23	0.0312 (13)	0.0454 (16)	0.0498 (19)	-0.0028 (11)	0.0101 (13)	0.0008 (14)
C24	0.0279 (12)	0.0425 (15)	0.0391 (17)	-0.0006 (10)	0.0028 (11)	0.0028 (13)
C11	0.0308 (7)	0.0813 (11)	0.0563 (11)	0.0133 (7)	-0.0006 (6)	-0.0114 (9)
Cl2	0.150 (5)	0.182 (8)	0.096 (2)	-0.015 (6)	0.001 (3)	-0.007 (3)
C25	0.074 (5)	0.059 (4)	0.086 (6)	0.008 (4)	-0.001 (5)	-0.005 (4)

Geometric parameters (Å, °)

S1—C12	1.684 (2)	C8—H8A	0.9900
N1-C12	1.378 (3)	C8—H8B	0.9900

N1-C11	1.384 (3)	С9—Н9А	0.9900
N1-C13	1.458 (3)	С9—Н9В	0.9900
N2-C11	1.308 (3)	C10—H10A	0.9900
N2—N3	1.386 (2)	C10—H10B	0.9900
N3—C12	1.333 (3)	C13—H13A	0.9800
N3—C14	1.482 (3)	C13—H13B	0.9800
N4—C14	1.442 (3)	C13—H13C	0.9800
N4—C15	1.448 (3)	C14—H14A	0.9900
N4—C18	1.453 (3)	C14—H14B	0.9900
N5-C19	1.417 (3)	C15—C16	1.515 (3)
N5-C16	1.460 (3)	C15—H15A	0.9900
N5-C17	1462(3)	C15—H15B	0.9900
C1-C11	1.102(3) 1.507(3)	C16—H16A	0.9900
C1 - C2	1.507(3) 1 542(3)	C16—H16B	0.9900
C1 - C9	1.542(3) 1 545(3)	C17-C18	1 526 (3)
C1 C8	1.545(3)	C17_H17A	0.0000
$C_1 = C_3$	1.545(3)		0.9900
$C_2 = C_3$	1.550 (5)		0.9900
C2_H2A	0.9900	C_{10} H_{10} H_{10} C_{10} H_{10} H	0.9900
C2—H2B	0.9900	C18—H18B	0.9900
$C_3 = C_{10}$	1.527 (4)	C19 - C20	1.403 (4)
$C_3 - C_4$	1.531 (3)	C19 - C24	1.408 (4)
C3—H3	1.0000	C20—C21	1.398 (4)
C4—C5	1.538 (4)	C20—H20	0.9500
C4—H4A	0.9900	C21—C22	1.368 (5)
C4—H4B	0.9900	C21—H21	0.9500
C5—C6	1.521 (4)	C22—C23	1.386 (5)
C5—C9	1.533 (3)	C22—H22	0.9500
С5—Н5	1.0000	C23—C24	1.392 (4)
C6—C7	1.538 (4)	C23—H23	0.9500
С6—Н6А	0.9900	C24—H24	0.9500
С6—Н6В	0.9900	Cl1—C25	1.664 (10)
C7—C10	1.532 (4)	Cl2—C25	1.761 (12)
С7—С8	1.544 (3)	C25—H25A	0.9900
С7—Н7	1.0000	С25—Н25В	0.9900
C12—N1—C11	107.82 (19)	C3—C10—H10B	109.8
C12—N1—C13	121.3 (2)	C7-C10-H10B	109.8
C11—N1—C13	130.84 (18)	H10A-C10-H10B	108.3
C11—N2—N3	104.64 (19)	N2—C11—N1	110.43 (18)
C12—N3—N2	112.72 (18)	N2—C11—C1	123.3 (2)
C12—N3—C14	126.35 (19)	N1—C11—C1	126.1 (2)
N2—N3—C14	120.92 (19)	N3—C12—N1	104.39 (19)
C14—N4—C15	113.7 (2)	N3—C12—S1	129.11 (17)
C14—N4—C18	113.51 (18)	N1—C12—S1	126.51 (19)
C15—N4—C18	110.06 (19)	N1—C13—H13A	109.5
C19 - N5 - C16	116.5 (2)	N1—C13—H13B	109 5
C19 - N5 - C17	116.6(2)	H13A-C13-H13B	109.5
C_{16} N5 C_{17}	110.0(2) 111.7(2)	N1—C13—H13C	109.5
	111.7 (2)		107.5

C11—C1—C2	108.64 (18)	H13A—C13—H13C	109.5
C11—C1—C9	108.97 (17)	H13B—C13—H13C	109.5
C2-C1-C9	108.83 (19)	N4—C14—N3	115.42 (19)
$C_{11} - C_{1} - C_{8}$	112.89 (18)	N4—C14—H14A	108.4
$C_2 - C_1 - C_8$	107.53 (19)	N3-C14-H14A	108.4
C_{9} C_{1} C_{8}	109.89 (19)	N4—C14—H14B	108.4
C_{3} C_{2} C_{1}	1105.09(19)	N3—C14—H14B	108.4
$C_3 - C_2 - H_2 A$	109.5	$H_{14} - C_{14} - H_{14}B$	107.5
C1 - C2 - H2A	109.5	N4	107.3 110.7(2)
$C_1 = C_2 = H_2 R$	109.5	N4-C15-H15A	109.5
$C_1 = C_2 + H_2 B$	109.5	C_{16} C_{15} H_{15A}	109.5
$H_{2A} = C_2 = H_{2B}$	109.5	N4 C15 H15B	109.5
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	100.1 100.0(2)	$C_{16} = C_{15} = H_{15} B$	109.5
$C_{10} = C_{3} = C_{4}$	109.9(2) 100.5(2)	U15A C15 U15D	109.5
$C_{10} = C_{3} = C_{2}$	109.3(2) 100.12(19)	N5 C16 C15	100.1
$C_4 - C_3 - C_2$	109.15 (18)	$N_{5} = C_{10} = C_{15}$	111.7(2)
C10-C3-H3	109.4		109.3
C4 - C3 - H3	109.4	CIS—CIG—HIGA	109.3
C2—C3—H3	109.4		109.3
C3—C4—C5	109.2 (2)	С15—С16—Н16В	109.3
C3—C4—H4A	109.8	H16A—C16—H16B	107.9
C5—C4—H4A	109.8	N5-C17-C18	110.5 (2)
C3—C4—H4B	109.8	N5—C17—H17A	109.6
C5—C4—H4B	109.8	C18—C17—H17A	109.6
H4A—C4—H4B	108.3	N5—C17—H17B	109.6
C6—C5—C9	109.7 (2)	C18—C17—H17B	109.6
C6—C5—C4	109.9 (2)	H17A—C17—H17B	108.1
C9—C5—C4	109.4 (2)	N4—C18—C17	110.37 (19)
С6—С5—Н5	109.3	N4—C18—H18A	109.6
С9—С5—Н5	109.3	C17—C18—H18A	109.6
С4—С5—Н5	109.3	N4—C18—H18B	109.6
C5—C6—C7	109.7 (2)	C17—C18—H18B	109.6
С5—С6—Н6А	109.7	H18A—C18—H18B	108.1
С7—С6—Н6А	109.7	C20—C19—C24	117.6 (2)
С5—С6—Н6В	109.7	C20—C19—N5	122.2 (3)
С7—С6—Н6В	109.7	C24—C19—N5	120.1 (2)
H6A—C6—H6B	108.2	C21—C20—C19	120.3 (3)
С10—С7—С6	109.4 (2)	C21—C20—H20	119.8
C10—C7—C8	109.4 (2)	С19—С20—Н20	119.8
C6-C7-C8	109.7(2)	$C_{22} = C_{21} = C_{20}$	121.7(3)
C10-C7-H7	109.5	$C_{22} = C_{21} = H_{21}$	119.2
C6-C7-H7	109.5	C_{20} C_{21} H_{21}	119.2
C8-C7-H7	109.5	C_{21} C_{22} C_{23}	118 7 (3)
C7 - C8 - C1	109.5 109.6(2)	$C_{21} = C_{22} = C_{23}$	120.7
C7 - C8 - H8A	109.8	C^{23} C^{22} H^{22}	120.7
C1 - C8 - H8A	109.8	$C_{22} = C_{23} = C_{24}$	120.7 121.1(3)
C7 C8 H8B	100.8	$C_{22} = C_{23} = C_{24}$	121.1 (3)
$C_1 = C_2 = H_{RB}$	102.0	$C_{22} - C_{23} - H_{23}$	119.5
	102.0	$C_{24} = C_{23} = 1123$	1206(2)
11077-00-110D	100.2	023-024-013	120.0(3)

			110 -
C5—C9—C1	109.71 (18)	C23—C24—H24	119.7
С5—С9—Н9А	109.7	C19—C24—H24	119.7
С1—С9—Н9А	109.7	Cl1—C25—Cl2	112.3 (8)
С5—С9—Н9В	109.7	Cl1—C25—H25A	109.1
С1—С9—Н9В	109.7	Cl2—C25—H25A	109.1
Н9А—С9—Н9В	108.2	C11—C25—H25B	109.1
C_{3} $-C_{10}$ $-C_{7}$	109.3(2)	C12—C25—H25B	109.1
$C_3 C_{10} H_{10A}$	109.5 (2)	H25A C25 H25B	107.9
C7_C10_H10A	109.0	1125A—C25—1125B	107.9
С/—С10—Н10А	109.8		
C11—N2—N3—C12	0.2 (2)	C2—C1—C11—N1	-176.7 (2)
C11—N2—N3—C14	-179.6(2)	C9—C1—C11—N1	64.9 (3)
$C_{11} - C_{1} - C_{2} - C_{3}$	-177.29(19)	C8 - C1 - C11 - N1	-57.5(3)
$C_{1}^{0} - C_{1}^{1} - C_{2}^{2} - C_{3}^{3}$	-588(2)	N2 N3 C12 N1	-0.1(2)
C° C^{1} C^{2} C^{3}	50.0(2)	$N_2 = N_3 = C_{12} = N_1$	-170.48(17)
$C_0 - C_1 - C_2 - C_3$	00.2(2)	$N_2 - N_3 - C_{12} - S_1$	-1/9.40(17)
C1 - C2 - C3 - C10	-60.5(3)	C14 - N3 - C12 - S1	0.3(3)
C1—C2—C3—C4	59.9 (3)	C11—N1—C12—N3	0.0 (2)
C10—C3—C4—C5	59.7 (2)	C13—N1—C12—N3	-179.56 (19)
C2—C3—C4—C5	-60.5 (3)	C11—N1—C12—S1	179.40 (17)
C3—C4—C5—C6	-59.3 (2)	C13—N1—C12—S1	-0.2 (3)
C3—C4—C5—C9	61.3 (2)	C15—N4—C14—N3	-54.9 (3)
C9—C5—C6—C7	-60.9(3)	C18—N4—C14—N3	71.9 (3)
C4—C5—C6—C7	59.5 (3)	C12—N3—C14—N4	100.3 (3)
C5—C6—C7—C10	-59.8(3)	N2—N3—C14—N4	-79.9(3)
$C_{5} - C_{6} - C_{7} - C_{8}$	60.2(3)	C14 - N4 - C15 - C16	-1726(2)
C_{10} C_{7} C_{8} C_{1}	61.3(3)	C18 N4 C15 C16	58 8 (3)
$C_{10} = C_{1} = C_{0} = C_{1}$	-58.6(2)	$C_{10} = N_{10} = C_{10} = C_{10}$	-1601(3)
$C_{0} - C_{1} - C_{0} - C_{1}$	-38.0(3)	C19 - N5 - C10 - C15	-109.1(3)
	1/9.8 (2)	C1/-N5-C16-C15	55.5 (3)
C2_C1_C8_C/	-60.4 (3)	N4—C15—C16—N5	-55.6 (3)
C9—C1—C8—C7	57.9 (3)	C19—N5—C17—C18	168.7 (2)
C6—C5—C9—C1	60.0 (3)	C16—N5—C17—C18	-53.8 (3)
C4—C5—C9—C1	-60.6 (3)	C14—N4—C18—C17	171.5 (2)
C11—C1—C9—C5	177.2 (2)	C15—N4—C18—C17	-59.8 (3)
C2-C1-C9-C5	58.9 (2)	N5-C17-C18-N4	57.1 (3)
C8—C1—C9—C5	-58.6 (3)	C16—N5—C19—C20	-152.3(3)
C4—C3—C10—C7	-60.4(3)	C17—N5—C19—C20	-16.8(3)
$C_{2} - C_{3} - C_{10} - C_{7}$	59 5 (3)	C16—N5—C19—C24	31 2 (4)
$C_{6} - C_{7} - C_{10} - C_{3}$	59.9 (3)	C17 - N5 - C19 - C24	1667(2)
C_{0}^{8} C_{7}^{7} C_{10}^{10} C_{3}^{3}	-60.2(3)	C_{17}^{24} C_{19}^{20} C_{21}^{21}	-0.9(4)
$N_{2} = N_{2} = C_{10} = C_{3}$	00.2(3)	$C_{24} = C_{19} = C_{20} = C_{21}$	0.9(4)
$N_2 = N_2 = C_{11} = C_{11}$	-0.1(2)	N_{3} C_{19} C_{20} C_{21}	-1/7.4(2)
N3—N2—CII—CI	1/5.2 (2)	C19 - C20 - C21 - C22	0.4 (5)
C12—N1—C11—N2	0.1 (3)	C20—C21—C22—C23	0.4 (5)
C12—N1—C11—C1	-175.1 (2)	C21—C22—C23—C24	-0.6(5)
C13—N1—C11—C1	4.4 (4)	C22—C23—C24—C19	0.1 (5)
C2-C1-C11-N2	8.7 (3)	C20—C19—C24—C23	0.6 (4)
C9—C1—C11—N2	-109.8 (2)	N5-C19-C24-C23	177.2 (3)
C8—C1—C11—N2	127.9 (2)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	Н…А	D····A	<i>D</i> —H··· <i>A</i>
C14— $H14A$ ···S1 ⁱ	0.99	2.85	3.803 (3)	162
C16—H16A…Cl1	0.99	2.73	3.589 (4)	146

Symmetry code: (i) x, y, z-1.