# organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

# 2-[(Diphenylphosphoryl)(hydroxy)methyl]-5-methoxyphenol

#### Yutian Shao, Chao Yang\* and Wujiong Xia

State Key Laboratory of Urban Water Resource and Environment (SKLUWRE) & Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin, Heilongjiang 150090, People's Republic of China Correspondence e-mail: xyyang@hit.edu.cn

Received 28 April 2012; accepted 8 May 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean  $\sigma$ (C–C) = 0.004 Å; R factor = 0.044; wR factor = 0.114; data-to-parameter ratio = 13.2.

In the title compound,  $C_{20}H_{19}O_4P$ , the dihedral angle between the phenyl rings is  $73.3 (4)^{\circ}$  and the dihedral angles between the benzene ring and the two phenyl rings are 43.0 (3) and 54.3 (1)°. In the crystal,  $O-H \cdots O$  hydrogen bonds and weak  $O-H \cdots O$  interactions are observed, which form a supramolecular sheet parallel to (010).

#### **Related literature**

For  $\alpha$ -hydroxylphosphine oxides, see: Marmor & Seyferth (1969); Toyota et al. (1993); Kazankova et al. (2003); For substrates used in the preparation of  $\alpha$ -carboxylphosphine oxides, see: Fischer et al. (1993) and for substrates used in the preparation of unsymmetrical phosphine oxides, see: Miller et al. (1957).



a = 8.349 (7) Å

b = 17.406 (14) Å

c = 12.639 (10) Å

## **Experimental**

Crystal data  $C_{20}H_{19}O_4P$  $M_r = 354.32$ Monoclinic,  $P2_1/n$ 

| $\beta = 107.863 \ (9)^{\circ}$ |
|---------------------------------|
| $V = 1748 (2) \text{ Å}^3$      |
| Z = 4                           |
| Mo $K\alpha$ radiation          |

#### Data collection

| Bruker SMART CCD APEXII              |
|--------------------------------------|
| diffractometer                       |
| Absorption correction: multi-scan    |
| (SADABS; Bruker, 2004)               |
| $T_{\min} = 0.965, T_{\max} = 0.982$ |

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.044$  $wR(F^2) = 0.114$ S = 1.043017 reflections

Table 1 Hydrogen-bond geometry (Å, °).

| $D - H \cdot \cdot \cdot A$                                             | D-H  | $H \cdot \cdot \cdot A$ | $D \cdots A$ | $D - \mathbf{H} \cdot \cdot \cdot A$ |  |
|-------------------------------------------------------------------------|------|-------------------------|--------------|--------------------------------------|--|
| $O2-H2\cdots O1^{i}$                                                    | 0.82 | 1.81                    | 2.613 (2)    | 168                                  |  |
| O4−H4···O3 <sup>ii</sup>                                                | 0.82 | 2.28                    | 3.046 (3)    | 156                                  |  |
| Summetry codes: (i) $-x + 1 - y - z + 2$ ; (ii) $x - 1 - y + 1 - z - 1$ |      |                         |              |                                      |  |

 $\mu = 0.18 \text{ mm}^{-1}$ T = 296 K

 $R_{\rm int} = 0.043$ 

229 parameters

 $\Delta \rho_{\rm max} = 0.28 \ {\rm e} \ {\rm \AA}^-$ 

 $\Delta \rho_{\rm min} = -0.25 \text{ e } \text{\AA}^{-3}$ 

 $0.20 \times 0.15 \times 0.10 \text{ mm}$ 

8150 measured reflections

3017 independent reflections 2124 reflections with  $I > 2\sigma(I)$ 

H-atom parameters constrained

Symmetry codes: (i) -x + 1, -y, -z + 2; (ii)  $x - \frac{1}{2}$ ,  $-y + \frac{1}{2}$ ,  $z - \frac{1}{2}$ .

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 1999); software used to prepare material for publication: SHELXL97.

The work is supported by the National Natural Science Foundation (Nos 21002018 and 21072038), the Fundamental Research Funds for the Central Universities (No. HIT.BRET2.2010001), WZSTP (No. G20100056), ZJSTP (No. 2011-C23116).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JJ2135).

#### References

Brandenburg, K. (1999). DIAMOND. Crystal Impact GbR, Bonn, Germany. Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Fischer, M., Hickmann, E., Kropp, R., Schroeder, J. & Trentmann, B. (1993). US Patent 5504236.
- Kazankova, M. A., Shulyupin, M. O. & Beletskaya, I. P. (2003). Synlett, pp. 2155-2158.
- Marmor, R. S. & Seyferth, D. (1969). J. Org. Chem. 34, 748-749.
- Miller, R. C., Miller, C. D., Rogers, W. Jr & Hamilton, L. A. (1957). J. Am. Chem. Soc. 79, 424-427.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Toyota, M., Seishi, T. & Fukumoto, K. (1993). Tetrahedron Lett. 34, 5947-5950.



# supporting information

Acta Cryst. (2012). E68, o1708 [doi:10.1107/S1600536812020685]

# 2-[(Diphenylphosphoryl)(hydroxy)methyl]-5-methoxyphenol

# Yutian Shao, Chao Yang and Wujiong Xia

# S1. Comment

 $\alpha$ -hydroxylphosphine oxides are molecules (Marmor *et al.*, 1969; Toyota, *et al.*, 1993; Kazankova *et al.*, 2003) that are used as substrates for the preparation of  $\alpha$ -carboxylphosphine oxides (Fischer, *et al.*, 1993) and unsymmetrical phosphine oxides (Miller *et al.*, 1957). We present herin, the preparation and crystal structure of the title compound, C<sub>20</sub>H<sub>19</sub>O<sub>4</sub>P, (I).

In the title compound (I), the dihedral angle between the two mono-substituted benzene rings is 73.3 (4)° (Fig. 1). The dihedral angle between the tri- substituted benzene ring and two mono-substituted benzene rings is 43.  $0(3)^{\circ}$  and 54.3 (0)°, respectively. O—H…O hydrogen bonds and weak O—H…O intermolecular interactions (Table 1) are observed which form a two-dimensional supramolecular sheet and influence crystal packing (Fig. 2).

# S2. Experimental

The title compound was obtained from the following procedure. To a flame dried round-bottomed flask, 2-hydroxy-4methoxy-benzaldehyde (1.0equiv), potassiumtert-butoxide (1.5equiv) and anhydrous DMF were added under  $N_2$ protection. After the addition of chlorodiphenylphosphine (1.5 equiv. in anhydrous DMF) and stirred overnight at room temperature, water was added to quench the reaction. The product was extracted with  $CH_2Cl_2$ , dried with  $Na_2SO_4$  and concentrated under pressure to give an oil residue, which was purified through a silica gel column to yield the title compound.

# **S3. Refinement**

All H atoms were placed in calculated positions and then refined using the riding model, with atom–H lengths of 0.93Å (CH), 0.98Å or 0.82Å (OH) Isotropic displacement parameters were set to 1.2 (CH) or 1.5 (CH<sub>3</sub>) times  $U_{eq}$  of the parent atom.



## Figure 1

Molecular structure of the title compound showing the atom labeling scheme and 50% probability displacement ellipsoids.



# Figure 2

Packing diagram of the title compound viewed aloing the a axis. Dashed lines represent O—H…O hydrogen bonds and weak O—H…O intermolecular interactions. H atoms not involved in hydrogen bonding are omitted for clarity. [symmetry codes: (i) 1 - x, -y, 2 - z; (ii) x - 1/2, 0.5 - y, z - 0.5; (iii) x + 1/2, 0.5 - y, 0.5 + z].

# 2-[(Diphenylphosphoryl)(hydroxy)methyl]-5-methoxyphenol

#### Crystal data

 $C_{20}H_{19}O_4P$   $M_r = 354.32$ Monoclinic,  $P2_1/n$ Hall symbol: -P 2yn a = 8.349 (7) Å b = 17.406 (14) Å c = 12.639 (10) Å  $\beta = 107.863$  (9)° V = 1748 (2) Å<sup>3</sup> Z = 4

#### Data collection

| Bruker SMART CCD APEXII                         | 8150 measured reflections                                                 |
|-------------------------------------------------|---------------------------------------------------------------------------|
| diffractometer                                  | 3017 independent reflections                                              |
| Radiation source: fine-focus sealed tube        | 2124 reflections with $I > 2\sigma(I)$                                    |
| Graphite monochromator                          | $R_{\rm int} = 0.043$                                                     |
| Detector resolution: 10 pixels mm <sup>-1</sup> | $\theta_{\text{max}} = 25.1^{\circ}, \ \theta_{\text{min}} = 2.1^{\circ}$ |
| $\omega$ scans                                  | $h = -9 \rightarrow 7$                                                    |
| Absorption correction: multi-scan               | $k = -20 \rightarrow 20$                                                  |
| (SADABS; Bruker, 2004)                          | $l = -15 \rightarrow 12$                                                  |
| $T_{\min} = 0.965, \ T_{\max} = 0.982$          |                                                                           |
| Refinement                                      |                                                                           |
| Refinement on $F^2$                             | Secondary atom site location: difference Fourier                          |
| Least-squares matrix: full                      | map                                                                       |
| $R[F^2 > 2\sigma(F^2)] = 0.044$                 | Hydrogen site location: inferred from                                     |
| $wR(F^2) = 0.114$                               | neighbouring sites                                                        |
| S = 1.04                                        | H-atom parameters constrained                                             |
| 3017 reflections                                | $w = 1/[\sigma^2(F_o^2) + (0.0511P)^2 + 0.1885P]$                         |
| 229 parameters                                  | where $P = (F_0^2 + 2F_c^2)/3$                                            |

F(000) = 744

 $\theta = 25.6 - 3.1^{\circ}$  $\mu = 0.18 \text{ mm}^{-1}$ 

Block. colourless

 $0.20 \times 0.15 \times 0.10$  mm

T = 296 K

 $D_{\rm x} = 1.346 {\rm Mg} {\rm m}^{-3}$ 

Mo *K* $\alpha$  radiation,  $\lambda = 0.71073$  Å

Cell parameters from 255 reflections

#### 0 restraints Primary atom site location: structure-invariant direct methods

## Special details

**Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

 $(\Delta/\sigma)_{\rm max} < 0.001$ 

 $\Delta \rho_{\text{max}} = 0.28 \text{ e } \text{\AA}^{-3}$  $\Delta \rho_{\text{min}} = -0.25 \text{ e } \text{\AA}^{-3}$ 

**Refinement**. Refinement of  $F^2$  against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on  $F^2$ , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative  $F^2$ . The threshold expression of  $F^2 > \sigma(F^2)$  is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on  $F^2$  are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

| Fractional atomic coordinates and i | isotropic or equivalent | isotropic displacement | parameters (Ų) |
|-------------------------------------|-------------------------|------------------------|----------------|
|-------------------------------------|-------------------------|------------------------|----------------|

| x           | у                                                      | Ζ                                                                                                                                                                        | $U_{ m iso}$ */ $U_{ m eq}$                                                                                                                                                                                                                                     |                                                                                                                                                                                  |
|-------------|--------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 0.18172 (8) | 0.11354 (3)                                            | 0.82003 (5)                                                                                                                                                              | 0.0358 (2)                                                                                                                                                                                                                                                      |                                                                                                                                                                                  |
| 0.2141 (2)  | 0.08777 (9)                                            | 0.93707 (13)                                                                                                                                                             | 0.0448 (5)                                                                                                                                                                                                                                                      |                                                                                                                                                                                  |
| 0.6011 (2)  | 0.00424 (8)                                            | 0.91075 (14)                                                                                                                                                             | 0.0510 (5)                                                                                                                                                                                                                                                      |                                                                                                                                                                                  |
| 0.6570      | -0.0200                                                | 0.9652                                                                                                                                                                   | 0.077*                                                                                                                                                                                                                                                          |                                                                                                                                                                                  |
|             | x<br>0.18172 (8)<br>0.2141 (2)<br>0.6011 (2)<br>0.6570 | x         y           0.18172 (8)         0.11354 (3)           0.2141 (2)         0.08777 (9)           0.6011 (2)         0.00424 (8)           0.6570         -0.0200 | x         y         z           0.18172 (8)         0.11354 (3)         0.82003 (5)           0.2141 (2)         0.08777 (9)         0.93707 (13)           0.6011 (2)         0.00424 (8)         0.91075 (14)           0.6570         -0.0200         0.9652 | xyz $U_{iso}*/U_{eq}$ 0.18172 (8)0.11354 (3)0.82003 (5)0.0358 (2)0.2141 (2)0.08777 (9)0.93707 (13)0.0448 (5)0.6011 (2)0.00424 (8)0.91075 (14)0.0510 (5)0.6570-0.02000.96520.077* |

| 03   | 0.9492(2)   | 0.21531 (10)  | 1.09662 (15) | 0.0536(5)   |
|------|-------------|---------------|--------------|-------------|
| 04   | 0.3359(2)   | 0 13072 (10)  | 0.66335 (14) | 0.0510(5)   |
| H4   | 0.3793      | 0.1733        | 0.6665       | 0.077*      |
| C1   | 0.1266 (3)  | 0.21306 (13)  | 0.8032 (2)   | 0.0380 (6)  |
| C2   | 0.0631 (3)  | 0.24707 (15)  | 0.6995 (2)   | 0.0497 (7)  |
| H2A  | 0.0431      | 0.2171        | 0.6359       | 0.060*      |
| C3   | 0.0295 (4)  | 0.32424 (16)  | 0.6896 (3)   | 0.0639 (9)  |
| H3   | -0.0112     | 0.3466        | 0.6196       | 0.077*      |
| C4   | 0.0560 (4)  | 0.36781 (16)  | 0.7825 (3)   | 0.0725 (10) |
| H4A  | 0.0307      | 0.4200        | 0.7757       | 0.087*      |
| C5   | 0.1198 (5)  | 0.33591 (16)  | 0.8866 (3)   | 0.0749 (10) |
| Н5   | 0.1385      | 0.3665        | 0.9495       | 0.090*      |
| C6   | 0.1560 (4)  | 0.25804 (15)  | 0.8973 (2)   | 0.0551 (8)  |
| H6   | 0.1998      | 0.2362        | 0.9675       | 0.066*      |
| C7   | 0.0125 (3)  | 0.06133 (13)  | 0.7244 (2)   | 0.0389 (6)  |
| C8   | -0.1523 (4) | 0.07782 (17)  | 0.7203 (2)   | 0.0587 (8)  |
| H8   | -0.1737     | 0.1176        | 0.7632       | 0.070*      |
| С9   | -0.2837 (4) | 0.03577 (19)  | 0.6533 (3)   | 0.0698 (9)  |
| H9   | -0.3933     | 0.0477        | 0.6511       | 0.084*      |
| C10  | -0.2562 (4) | -0.02306 (18) | 0.5903 (3)   | 0.0629 (9)  |
| H10  | -0.3460     | -0.0517       | 0.5462       | 0.076*      |
| C11  | -0.0960 (4) | -0.03961 (17) | 0.5925 (3)   | 0.0651 (9)  |
| H11  | -0.0764     | -0.0792       | 0.5486       | 0.078*      |
| C12  | 0.0377 (4)  | 0.00201 (15)  | 0.6594 (2)   | 0.0572 (8)  |
| H12  | 0.1466      | -0.0103       | 0.6605       | 0.069*      |
| C13  | 0.3672 (3)  | 0.10114 (13)  | 0.77302 (19) | 0.0368 (6)  |
| H13  | 0.3831      | 0.0456        | 0.7680       | 0.044*      |
| C14  | 0.5235 (3)  | 0.13105 (13)  | 0.85807 (19) | 0.0363 (6)  |
| C15  | 0.6364 (3)  | 0.07990 (12)  | 0.92673 (19) | 0.0363 (6)  |
| C16  | 0.7810 (3)  | 0.10582 (13)  | 1.0067 (2)   | 0.0404 (6)  |
| H16  | 0.8560      | 0.0710        | 1.0519       | 0.048*      |
| C17  | 0.8119 (3)  | 0.18334 (14)  | 1.0182 (2)   | 0.0412 (6)  |
| C18  | 0.7035 (3)  | 0.23562 (14)  | 0.9503 (2)   | 0.0465 (7)  |
| H18  | 0.7269      | 0.2879        | 0.9575       | 0.056*      |
| C19  | 0.5600 (3)  | 0.20922 (13)  | 0.8717 (2)   | 0.0438 (7)  |
| H19  | 0.4860      | 0.2444        | 0.8268       | 0.053*      |
| C20  | 1.0787 (4)  | 0.16408 (17)  | 1.1566 (2)   | 0.0635 (9)  |
| H20A | 1.0368      | 0.1320        | 1.2040       | 0.095*      |
| H20B | 1.1732      | 0.1932        | 1.2009       | 0.095*      |
| H20C | 1.1132      | 0.1326        | 1.1051       | 0.095*      |
|      |             |               |              |             |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$    | $U^{23}$    |
|----|-------------|-------------|-------------|-------------|-------------|-------------|
| P1 | 0.0395 (4)  | 0.0306 (3)  | 0.0328 (4)  | 0.0029 (3)  | 0.0043 (3)  | 0.0020 (3)  |
| 01 | 0.0551 (12) | 0.0408 (9)  | 0.0339 (10) | 0.0076 (8)  | 0.0070 (8)  | 0.0076 (8)  |
| O2 | 0.0608 (13) | 0.0318 (9)  | 0.0454 (12) | 0.0020 (8)  | -0.0059 (9) | 0.0032 (8)  |
| O3 | 0.0452 (11) | 0.0561 (11) | 0.0473 (11) | -0.0069 (9) | -0.0035 (9) | -0.0058 (9) |

| O4  | 0.0523 (12) | 0.0566 (12) | 0.0382 (11) | -0.0021 (9)  | 0.0052 (9)   | -0.0001 (8)  |
|-----|-------------|-------------|-------------|--------------|--------------|--------------|
| C1  | 0.0376 (15) | 0.0336 (12) | 0.0420 (15) | 0.0032 (10)  | 0.0113 (12)  | 0.0028 (11)  |
| C2  | 0.0507 (17) | 0.0484 (15) | 0.0498 (17) | 0.0114 (13)  | 0.0153 (14)  | 0.0107 (13)  |
| C3  | 0.061 (2)   | 0.0520 (18) | 0.082 (2)   | 0.0177 (15)  | 0.0261 (18)  | 0.0295 (17)  |
| C4  | 0.077 (2)   | 0.0345 (16) | 0.111 (3)   | 0.0128 (15)  | 0.036 (2)    | 0.0162 (19)  |
| C5  | 0.098 (3)   | 0.0414 (17) | 0.084 (3)   | 0.0054 (17)  | 0.027 (2)    | -0.0193 (16) |
| C6  | 0.067 (2)   | 0.0413 (15) | 0.0536 (19) | 0.0057 (14)  | 0.0141 (16)  | -0.0002 (13) |
| C7  | 0.0437 (16) | 0.0392 (13) | 0.0317 (14) | -0.0021 (11) | 0.0083 (12)  | 0.0027 (11)  |
| C8  | 0.0465 (18) | 0.0670 (19) | 0.064 (2)   | -0.0067 (14) | 0.0193 (15)  | -0.0151 (15) |
| C9  | 0.0446 (19) | 0.085 (2)   | 0.076 (2)   | -0.0130 (17) | 0.0135 (17)  | -0.0075 (19) |
| C10 | 0.055 (2)   | 0.073 (2)   | 0.054 (2)   | -0.0242 (16) | 0.0065 (16)  | -0.0039 (16) |
| C11 | 0.072 (2)   | 0.0586 (18) | 0.063 (2)   | -0.0190 (17) | 0.0185 (18)  | -0.0223 (15) |
| C12 | 0.0478 (18) | 0.0513 (17) | 0.070 (2)   | -0.0069 (13) | 0.0144 (16)  | -0.0182 (15) |
| C13 | 0.0390 (15) | 0.0327 (12) | 0.0340 (14) | 0.0028 (10)  | 0.0042 (11)  | -0.0002 (10) |
| C14 | 0.0371 (14) | 0.0358 (13) | 0.0336 (14) | 0.0011 (10)  | 0.0074 (11)  | 0.0002 (10)  |
| C15 | 0.0399 (15) | 0.0327 (13) | 0.0337 (14) | 0.0010 (11)  | 0.0073 (12)  | -0.0022 (10) |
| C16 | 0.0407 (15) | 0.0416 (14) | 0.0355 (15) | 0.0064 (11)  | 0.0065 (12)  | 0.0040 (11)  |
| C17 | 0.0399 (15) | 0.0464 (14) | 0.0342 (15) | -0.0054 (12) | 0.0070 (12)  | -0.0039 (11) |
| C18 | 0.0501 (17) | 0.0331 (13) | 0.0487 (17) | -0.0054 (12) | 0.0038 (14)  | 0.0000 (12)  |
| C19 | 0.0463 (16) | 0.0347 (13) | 0.0420 (16) | 0.0039 (11)  | 0.0012 (13)  | 0.0045 (11)  |
| C20 | 0.0416 (18) | 0.080 (2)   | 0.057 (2)   | 0.0037 (15)  | -0.0022 (15) | -0.0090 (16) |
|     |             |             |             |              |              |              |

# Geometric parameters (Å, °)

| P101   | 1.489 (2) | C8—C9    | 1.373 (4) |
|--------|-----------|----------|-----------|
| P1—C1  | 1.788 (3) | C8—H8    | 0.9300    |
| P1—C7  | 1.799 (3) | C9—C10   | 1.359 (4) |
| P1—C13 | 1.833 (3) | С9—Н9    | 0.9300    |
| O2—C15 | 1.351 (3) | C10-C11  | 1.360 (4) |
| O2—H2  | 0.8200    | C10—H10  | 0.9300    |
| O3—C17 | 1.382 (3) | C11—C12  | 1.381 (4) |
| O3—C20 | 1.426 (3) | C11—H11  | 0.9300    |
| O4—C13 | 1.426 (3) | C12—H12  | 0.9300    |
| O4—H4  | 0.8200    | C13—C14  | 1.507 (3) |
| C1—C6  | 1.382 (3) | C13—H13  | 0.9800    |
| C1—C2  | 1.386 (3) | C14—C15  | 1.390 (3) |
| C2—C3  | 1.370 (4) | C14—C19  | 1.394 (3) |
| C2—H2A | 0.9300    | C15—C16  | 1.391 (3) |
| C3—C4  | 1.358 (4) | C16—C17  | 1.373 (3) |
| С3—Н3  | 0.9300    | C16—H16  | 0.9300    |
| C4—C5  | 1.375 (4) | C17—C18  | 1.381 (3) |
| C4—H4A | 0.9300    | C18—C19  | 1.379 (3) |
| C5—C6  | 1.386 (4) | C18—H18  | 0.9300    |
| С5—Н5  | 0.9300    | C19—H19  | 0.9300    |
| С6—Н6  | 0.9300    | C20—H20A | 0.9600    |
| C7—C12 | 1.375 (4) | C20—H20B | 0.9600    |
| С7—С8  | 1.391 (4) | C20—H20C | 0.9600    |
|        |           |          |           |

| O1—P1—C1                        | 111.82 (11)          | C11—C10—H10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.3                |
|---------------------------------|----------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| O1—P1—C7                        | 112.41 (11)          | C10—C11—C12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 120.4 (3)            |
| C1—P1—C7                        | 106.81 (12)          | C10—C11—H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.8                |
| O1—P1—C13                       | 111.88 (11)          | C12—C11—H11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.8                |
| C1—P1—C13                       | 106.70 (11)          | C7—C12—C11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.1 (3)            |
| C7—P1—C13                       | 106.86 (13)          | С7—С12—Н12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.4                |
| С15—О2—Н2                       | 109.5                | C11—C12—H12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 119.4                |
| C17—O3—C20                      | 117.1 (2)            | Q4—C13—C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 115.4 (2)            |
| C13—O4—H4                       | 109.5                | Q4—C13—P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 110.58 (16)          |
| C6-C1-C2                        | 119.2 (2)            | C14—C13—P1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 111.17 (17)          |
| C6-C1-P1                        | 118.36 (19)          | 04—C13—H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 106.4                |
| C2-C1-P1                        | 122.41 (19)          | C14—C13—H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 106.4                |
| $C_3 - C_2 - C_1$               | 120.9(3)             | P1—C13—H13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 106.4                |
| $C_3 - C_2 - H_2 A$             | 119.6                | C15 - C14 - C19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 117.9(2)             |
| C1 - C2 - H2A                   | 119.6                | C15 - C14 - C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1198(2)              |
| C4-C3-C2                        | 119.6 (3)            | C19 - C14 - C13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1223(2)              |
| C4-C3-H3                        | 120.2                | 02-C15-C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 122.3(2)<br>117.1(2) |
| $C_2 - C_3 - H_3$               | 120.2                | 02 - C15 - C16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 117.1(2)<br>1217(2)  |
| $C_{2} = C_{3} = C_{4} = C_{5}$ | 120.2<br>120.9(3)    | $C_{14}$ $C_{15}$ $C_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 121.7(2)<br>121.1(2) |
| $C_3 - C_4 - H_4 A$             | 119.5                | C17 - C16 - C15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 121.1(2)<br>1193(2)  |
| $C_{5}$ $C_{4}$ $H_{4A}$        | 119.5                | C17 - C16 - H16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.4                |
| C4-C5-C6                        | 119.8 (3)            | $C_{15}$ $C_{16}$ $H_{16}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.1                |
| C4-C5-H5                        | 120.1                | $C_{16}$ $C_{17}$ $C_{18}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 120.1<br>121.0(2)    |
| C6-C5-H5                        | 120.1                | $C_{16} - C_{17} - O_{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 121.0(2)<br>1240(2)  |
| $C_1 - C_6 - C_5$               | 1196(3)              | C18 - C17 - O3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 124.0(2)<br>1149(2)  |
| C1 - C6 - H6                    | 120.2                | C19 - C18 - C17                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 1191(2)              |
| C5-C6-H6                        | 120.2                | C19 - C18 - H18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.4                |
| $C_{12} - C_{7} - C_{8}$        | 117.6 (2)            | C17 - C18 - H18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.4                |
| $C_{12} = C_7 = P_1$            | 123 2 (2)            | C18 - C19 - C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 120.4<br>121.5(2)    |
| C8 - C7 - P1                    | 129.2(2)<br>119.0(2) | C18 - C19 - H19                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 119.2                |
| C9-C8-C7                        | 1204(3)              | $C_{14}$ $C_{19}$ $H_{19}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 119.2                |
| C9-C8-H8                        | 119.8                | $O_3 - C_2 O - H_2 O A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.5                |
| C7 - C8 - H8                    | 119.8                | $03 - C_{20} - H_{20B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 109.5                |
| $C_{10}$ $C_{9}$ $C_{8}$        | 121 1 (3)            | $H_{20A} - C_{20} - H_{20B}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 109.5                |
| C10 - C9 - H9                   | 119.5                | 03-C20-H20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 109.5                |
| C8-C9-H9                        | 119.5                | $H_{20}^{-}$ $H_{$ | 109.5                |
| $C_{0}$ $C_{10}$ $C_{11}$       | 119.3                | H20R_C20_H20C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 109.5                |
| $C_{9}$ $C_{10}$ $H_{10}$       | 120.3                | 11201 020 11200                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 109.5                |
| C9-C10-1110                     | 120.3                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |
| 01 - P1 - C1 - C6               | 14 3 (3)             | C10-C11-C12-C7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | -0.6(5)              |
| C7 - P1 - C1 - C6               | 1377(2)              | 01 - P1 - C13 - O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -17633(14)           |
| $C_1 = P_1 - C_1 - C_6$         | -1083(2)             | C1 - P1 - C13 - O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -5373(18)            |
| 01 - P1 - C1 - C2               | -168.7(2)            | C7 - P1 - C13 - O4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 60 24 (18)           |
| $C7_{P1}_{C1}_{C2}$             | -45 3 (2)            | 01 - P1 - C13 - C14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | -46 77 (10)          |
| $C_{13}$ P1 $C_{1}$ $C_{2}$     | 68.7(2)              | $C1_P1_C13_C14$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 75 83 (18)           |
| $C_{1} = C_{1} = C_{2}$         | 0.7(2)               | $C7_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1}_{1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $-170\ 20\ (15)$     |
| $P_1 = C_1 = C_2 = C_3$         | -1770(2)             | 04-013-014                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -130.8(2)            |
| 1                               | -11(4)               | $D_1 = C_{13} = C_{14} = C_{15}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 100.0(2)             |
| 1 - 12 - 13 - 14                | -1.1 (4)             | r1—U13—U14—U13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 102.3 (2)            |

| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                             | $\begin{array}{l} 1.5 (5) \\ -0.7 (5) \\ 0.7 (4) \\ 177.8 (2) \\ -0.4 (5) \\ -100.7 (2) \\ 136.3 (2) \\ 22.4 (3) \\ 74.9 (2) \\ -48.0 (2) \\ -161.9 (2) \\ 0.0 (4) \\ -175.9 (2) \end{array}$ | $\begin{array}{c} 04-0.13-0.14-0.19\\ P1-0.13-0.14-0.19\\ C19-0.14-0.15-0.2\\ C13-0.14-0.15-0.2\\ C19-0.14-0.15-0.16\\ C13-0.14-0.15-0.16\\ O2-0.15-0.16-0.17\\ C14-0.15-0.16-0.17\\ C15-0.16-0.17-0.18\\ C15-0.16-0.17-0.3\\ C20-0.3-0.17-0.18\\ C16-0.17-0.18\\ C16-0.17-0.18-0.19\\ \end{array}$ | 49.7 (3)<br>-77.3 (3)<br>-178.5 (2)<br>1.9 (3)<br>0.1 (4)<br>-179.4 (2)<br>179.0 (2)<br>0.4 (4)<br>-1.3 (4)<br>178.4 (2)<br>10.2 (4)<br>-170.1 (2)<br>1.7 (4) |
|----------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
| C13—P1—C7—C8<br>C12—C7—C8—C9<br>P1—C7—C8—C9<br>C7—C8—C9—C10<br>C8—C9—C10—C11<br>C9—C10—C11—C12<br>C8—C7—C12—C11<br>P1—C7—C12—C11 | -161.9 (2)<br>0.0 (4)<br>-175.9 (2)<br>0.5 (5)<br>-1.0 (5)<br>1.1 (5)<br>0.0 (4)<br>175.8 (2)                                                                                                 | C20-O3-C17-C16<br>C20-O3-C17-C18<br>C16-C17-C18-C19<br>O3-C17-C18-C19<br>C17-C18-C19-C14<br>C15-C14-C19-C18<br>C13-C14-C19-C18                                                                                                                                                                      | 10.2 (4)<br>-170.1 (2)<br>1.7 (4)<br>-178.1 (2)<br>-1.1 (4)<br>0.2 (4)<br>179.7 (2)                                                                           |

Hydrogen-bond geometry (Å, °)

| D—H···A                  | <i>D</i> —Н | H···A | D····A    | D—H··· $A$ |  |
|--------------------------|-------------|-------|-----------|------------|--|
| 02—H2…O1 <sup>i</sup>    | 0.82        | 1.81  | 2.613 (2) | 168        |  |
| O4—H4···O3 <sup>ii</sup> | 0.82        | 2.28  | 3.046 (3) | 156        |  |

Symmetry codes: (i) -*x*+1, -*y*, -*z*+2; (ii) *x*-1/2, -*y*+1/2, *z*-1/2.