organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Phenyl-*N*,*N*,*N*',*N*'-tetramethyl-1ethyne-1-carboximidamidium bromide

Ioannis Tiritiris^a and Willi Kantlehner^b*

^aInstitut für Organische Chemie, Universität Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany, and ^bFakultät Chemie/Organische Chemie, Hochschule Aalen, Beethovenstrasse 1, D-73430 Aalen, Germany Correspondence e-mail: willi.kantlehner@htw-aalen.de

Received 10 May 2012; accepted 14 May 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; R factor = 0.021; wR factor = 0.052; data-to-parameter ratio = 27.3.

The reaction of 3,3,3-tris(dimethylamino)-1-phenylprop-1-yne with bromine in pentane yields the title compound, $C_{13}H_{17}N_2^+ \cdot Br^-$. The acetylenic bond distance [1.197 (2) Å] is consistent with a C=C triple bond. The amidinium C=N bonds [1.325 (2) and 1.330 (2) Å] have double-bond character and the positive charge is delocalized between the two dimethylamino groups.

Related literature

For the synthesis of alkynyl orthoamides and acetylenic amidinium salts, see: Weingärtner *et al.* (2011). For the synthesis of vinylogous guanidinium iodides and bromides, see: Kantlehner *et al.* (2012). For the crystal structure of N,N,N',N',N'',N'''-octamethyl-(but-2-yne)-bis(amidinium)-bis(tetrafluoridoborate), see: Drandarov *et al.* (2012).

Experimental

Crystal data C₁₃H₁₇N₂⁺·Br⁻

 $M_r = 281.19$

Monoclinic, $P2_1/c$
a = 13.1009 (8) Å
b = 10.6538 (6) Å
c = 9.6611 (6) Å
$\beta = 100.276 \ (3)^{\circ}$
$V = 1326.81 (14) \text{ Å}^3$

Data collection

27687 measured reflections
4075 independent reflections
3466 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.032$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.021 & 149 \text{ parameters} \\ wR(F^2) = 0.052 & H\text{-atom parameters constrained} \\ S = 1.07 & \Delta\rho_{\max} = 0.38 \text{ e } \text{ Å}^{-3} \\ 4075 \text{ reflections} & \Delta\rho_{\min} = -0.43 \text{ e } \text{ Å}^{-3} \end{array}$

Z = 4

Mo $K\alpha$ radiation

 $0.28 \times 0.20 \times 0.15~\text{mm}$

 $\mu = 3.08 \text{ mm}^{-1}$

T = 100 K

Data collection: *APEX2* (Bruker, 2008); cell refinement: *SAINT* (Bruker, 2008); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *DIAMOND* (Brandenburg & Putz, 2005); software used to prepare material for publication: *SHELXL97*.

The authors thank Dr Wolfgang Frey (Institut für Organische Chemie, Universität Stuttgart) for measuring the crystal data.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2415).

References

Blessing, R. H. (1995). Acta Cryst. A51, 33-38.

- Brandenburg, K. & Putz, H. (2005). *DIAMOND*. Crystal Impact GbR, Bonn, Germany.
- Bruker (2008). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Drandarov, K., Tiritiris, I., Wassiljew, O., Siehl, H.-U. & Kantlehner, W. (2012). *Chem. Eur. J.* doi: 10.1002/chem.201103695.
- Kantlehner, W., Stieglitz, R., Kress, R., Frey, W. & Tiritiris, I. (2012). *Synthesis*. In the press.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Weingärtner, W., Kantlehner, W. & Maas, G. (2011). Synthesis, 2, 265-272.

supporting information

Acta Cryst. (2012). E68, o1812 [doi:10.1107/S1600536812021873]

3-Phenyl-N,N,N',N'-tetramethyl-1-ethyne-1-carboximidamidium bromide

Ioannis Tiritiris and Willi Kantlehner

S1. Comment

S2. Experimental

To a solution of 3,3,3-tris(dimethylamino)-1-phenyl-prop-1-yne (7.0 g, 28.5 mmol) in pentane (50 mL) was added dropwise a solution of bromine (4.56 g, 28.5 mmol) in pentane (50 mL) at 273 K with stirring. After 2 h stirring at ambient temperature the pale-yellow precipitate was filtered off *in vacuo* and recrystallised from acetonitrile; yield: 6.4 g (56%), pale-yellow single crystals. ¹H NMR (60 MHz, CDCl₃/TMS): d = 3.42 (s, 12 H, NMe₂), 7.20–7.80 (m, 5 H, Ph–H).

S3. Refinement

Hydrogen atoms bound to aromatic carbon atoms were placed in calculated positions with d(C-H) = 0.95 Å and were included in the refinement in the riding model approximation, with U(H) set to 1.2 $U_{eq}(C)$. The hydrogen atoms of the methyl group were allowed to rotate with a fixed angle around the C–N bond to best fit the experimental electron density, with U(H) set to 1.5 $U_{eq}(C)$ and d(C-H) = 0.98 Å.

Figure 1

The crystal structure of N, N, N', N'- tetramethyl-3-phenyl-prop-2-yne-amidinium bromide with atom labels and 50% probability displacement ellipsoids.

3-Phenyl-N,N,N',N'-tetramethyl-1-ethyne- 1-carboximidamidium bromide

Crystal data

C₁₃H₁₇N₂⁺·Br⁻ $M_r = 281.19$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 13.1009 (8) Å b = 10.6538 (6) Å c = 9.6611 (6) Å $\beta = 100.276$ (3)° V = 1326.81 (14) Å³ Z = 4

Data collection

Bruker Kappa APEXII DUO diffractometer Radiation source: sealed tube Graphite monochromator φ scans, and ω scans Absorption correction: multi-scan (Blessing, 1995) $T_{\min} = 0.483, T_{\max} = 0.630$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.021$ $wR(F^2) = 0.052$ S = 1.074075 reflections 149 parameters F(000) = 576 $D_x = 1.408 \text{ Mg m}^{-3}$ Melting point: 441 K Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 4075 reflections $\theta = 2.5-30.6^{\circ}$ $\mu = 3.08 \text{ mm}^{-1}$ T = 100 KBlock, yellow $0.28 \times 0.20 \times 0.15 \text{ mm}$

27687 measured reflections 4075 independent reflections 3466 reflections with $I > 2\sigma(I)$ $R_{int} = 0.032$ $\theta_{max} = 30.6^\circ, \ \theta_{min} = 2.5^\circ$ $h = -18 \rightarrow 18$ $k = -15 \rightarrow 15$ $l = -13 \rightarrow 13$

0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map Hydrogen site location: difference Fourier map H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.024P)^2 + 0.4023P]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} < 0.001$

$\Delta \rho_{\text{max}} = 0.38 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\text{min}} = -0.43 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

(Fractional atomic coordinates a	ıd isotropic o	r equivalent	isotropic	displacement	parameters	$(Å^2)$)
---	---------------------------------	----------------	--------------	-----------	--------------	------------	---------	---

	X	V	Ζ	U_{iso}^*/U_{eq}	
Br1	0.313905 (9)	0.523031 (12)	0.155779 (13)	0.01703 (4)	
C1	0.29358 (9)	0.46256 (11)	0.66879 (12)	0.0128 (2)	
N1	0.35589 (8)	0.56042 (10)	0.66379 (10)	0.01344 (19)	
N2	0.30756 (8)	0.37987 (10)	0.77285 (11)	0.0147 (2)	
C2	0.41450 (10)	0.62002 (12)	0.79005 (13)	0.0164 (2)	
H2A	0.3882	0.5904	0.8731	0.025*	
H2B	0.4065	0.7113	0.7823	0.025*	
H2C	0.4881	0.5982	0.7992	0.025*	
C3	0.35920 (11)	0.62655 (13)	0.53213 (13)	0.0205 (3)	
H3A	0.3140	0.5838	0.4546	0.031*	
H3B	0.4305	0.6271	0.5143	0.031*	
H3C	0.3353	0.7131	0.5392	0.031*	
C4	0.22431 (11)	0.29642 (12)	0.79900 (15)	0.0207 (3)	
H4A	0.1580	0.3255	0.7451	0.031*	
H4B	0.2210	0.2970	0.8995	0.031*	
H4C	0.2382	0.2109	0.7699	0.031*	
C5	0.40815 (10)	0.35338 (13)	0.86079 (14)	0.0203 (3)	
H5A	0.4635	0.3900	0.8175	0.031*	
H5B	0.4181	0.2624	0.8695	0.031*	
H5C	0.4103	0.3900	0.9543	0.031*	
C6	0.20698 (10)	0.44506 (11)	0.55744 (13)	0.0153 (2)	
C7	0.13169 (9)	0.42701 (11)	0.46956 (13)	0.0148 (2)	
C8	0.04099 (9)	0.40275 (11)	0.36723 (12)	0.0133 (2)	
C9	-0.02930 (10)	0.31159 (11)	0.39520 (14)	0.0170 (2)	
H9A	-0.0156	0.2651	0.4804	0.020*	
C10	-0.11893 (10)	0.28928 (12)	0.29838 (15)	0.0204 (3)	
H10A	-0.1669	0.2274	0.3171	0.024*	
C11	-0.13845 (10)	0.35719 (13)	0.17439 (14)	0.0203 (3)	
H11A	-0.2002	0.3420	0.1084	0.024*	
C12	-0.06867 (10)	0.44725 (13)	0.14572 (14)	0.0195 (3)	
H12A	-0.0828	0.4935	0.0603	0.023*	
C13	0.02160 (10)	0.46995 (12)	0.24136 (13)	0.0167 (2)	

supporting information

H13A	0.0699	0.5	308	0.2213	0.020*		
Atomic d	Atomic displacement parameters (\mathring{A}^2)						
	U^{11}	<i>U</i> ²²	U ³³	U^{12}	<i>U</i> ¹³	U ²³	
Br1	0.01516 (6)	0.01901 (6)	0.01757 (7)	0.00196 (5)	0.00471 (4)	-0.00012 (5)	
C1	0.0109 (5)	0.0140 (5)	0.0139 (5)	0.0021 (4)	0.0035 (4)	-0.0027 (4)	
N1	0.0132 (5)	0.0152 (4)	0.0115 (4)	-0.0012 (4)	0.0012 (4)	-0.0005 (4)	
N2	0.0138 (5)	0.0147 (5)	0.0158 (5)	0.0012 (4)	0.0034 (4)	0.0016 (4)	
C2	0.0149 (6)	0.0184 (6)	0.0150 (6)	-0.0022 (4)	0.0001 (4)	-0.0030 (4)	
C3	0.0242 (7)	0.0219 (6)	0.0151 (6)	-0.0052 (5)	0.0028 (5)	0.0034 (5)	
C4	0.0224 (7)	0.0158 (6)	0.0258 (7)	-0.0025 (5)	0.0091 (5)	0.0024 (5)	
C5	0.0184 (6)	0.0224 (6)	0.0194 (6)	0.0077 (5)	0.0010 (5)	0.0047 (5)	
C6	0.0148 (6)	0.0131 (5)	0.0182 (6)	0.0011 (4)	0.0034 (4)	-0.0018 (4)	
C7	0.0140 (5)	0.0130 (5)	0.0179 (6)	0.0008 (4)	0.0045 (4)	-0.0020 (4)	
C8	0.0105 (5)	0.0125 (5)	0.0167 (6)	0.0008 (4)	0.0023 (4)	-0.0039 (4)	
С9	0.0162 (6)	0.0141 (5)	0.0216 (6)	-0.0001 (4)	0.0056 (5)	-0.0007 (4)	
C10	0.0131 (6)	0.0171 (6)	0.0323 (7)	-0.0037 (5)	0.0076 (5)	-0.0081 (5)	
C11	0.0105 (6)	0.0252 (6)	0.0246 (6)	0.0019 (5)	0.0010 (5)	-0.0124 (5)	
C12	0.0171 (6)	0.0254 (6)	0.0153 (6)	0.0034 (5)	0.0009 (5)	-0.0022 (5)	
C13	0.0140 (6)	0.0169 (6)	0.0191 (6)	-0.0015 (4)	0.0032 (5)	-0.0005 (5)	

Geometric parameters (Å, °)

C1—N2	1.3246 (15)	C5—H5A	0.9800
C1—N1	1.3304 (16)	С5—Н5В	0.9800
C1—C6	1.4296 (17)	С5—Н5С	0.9800
N1-C3	1.4615 (15)	C6—C7	1.1966 (17)
N1-C2	1.4651 (15)	C7—C8	1.4273 (17)
N2-C5	1.4625 (16)	C8—C13	1.3949 (17)
N2-C4	1.4636 (16)	C8—C9	1.3974 (17)
C2—H2A	0.9800	C9—C10	1.3851 (18)
C2—H2B	0.9800	С9—Н9А	0.9500
C2—H2C	0.9800	C10—C11	1.384 (2)
С3—НЗА	0.9800	C10—H10A	0.9500
С3—Н3В	0.9800	C11—C12	1.3870 (19)
С3—Н3С	0.9800	C11—H11A	0.9500
C4—H4A	0.9800	C12—C13	1.3860 (18)
C4—H4B	0.9800	C12—H12A	0.9500
C4—H4C	0.9800	С13—Н13А	0.9500
N2—C1—N1	123.10 (11)	N2—C5—H5A	109.5
N2-C1-C6	117.91 (11)	N2—C5—H5B	109.5
N1—C1—C6	118.99 (11)	H5A—C5—H5B	109.5
C1—N1—C3	121.53 (10)	N2—C5—H5C	109.5
C1—N1—C2	122.91 (10)	H5A—C5—H5C	109.5
C3—N1—C2	115.04 (10)	H5B—C5—H5C	109.5
C1—N2—C5	123.89 (11)	C7—C6—C1	176.30 (13)

C1—N2—C4	121.91 (11)	C6—C7—C8	178.36 (13)
C5—N2—C4	113.86 (10)	C13—C8—C9	120.10 (11)
N1—C2—H2A	109.5	C13—C8—C7	120.69 (11)
N1—C2—H2B	109.5	C9—C8—C7	119.20 (11)
H2A—C2—H2B	109.5	C10—C9—C8	119.81 (12)
N1—C2—H2C	109.5	С10—С9—Н9А	120.1
H2A—C2—H2C	109.5	С8—С9—Н9А	120.1
H2B—C2—H2C	109.5	C11—C10—C9	119.90 (12)
N1—C3—H3A	109.5	C11—C10—H10A	120.0
N1—C3—H3B	109.5	C9—C10—H10A	120.0
НЗА—СЗ—НЗВ	109.5	C10-C11-C12	120.53 (12)
N1—C3—H3C	109.5	C10-C11-H11A	119.7
НЗА—СЗ—НЗС	109.5	C12—C11—H11A	119.7
НЗВ—СЗ—НЗС	109.5	C13—C12—C11	120.13 (12)
N2—C4—H4A	109.5	C13—C12—H12A	119.9
N2—C4—H4B	109.5	C11—C12—H12A	119.9
H4A—C4—H4B	109.5	C12—C13—C8	119.51 (11)
N2—C4—H4C	109.5	С12—С13—Н13А	120.2
H4A—C4—H4C	109.5	C8—C13—H13A	120.2
H4B—C4—H4C	109.5		
N2—C1—N1—C3	160.73 (11)	C13—C8—C9—C10	-0.83 (18)
C6-C1-N1-C3	-19.49 (17)	C7—C8—C9—C10	178.38 (11)
N2-C1-N1-C2	-27.94 (18)	C8-C9-C10-C11	0.07 (18)
C6-C1-N1-C2	151.84 (11)	C9-C10-C11-C12	0.32 (19)
N1—C1—N2—C5	-25.57 (18)	C10-C11-C12-C13	0.06 (19)
C6—C1—N2—C5	154.65 (11)	C11—C12—C13—C8	-0.82 (19)
N1-C1-N2-C4	161.57 (12)	C9—C8—C13—C12	1.20 (18)
C6-C1-N2-C4	-18.20 (17)	C7—C8—C13—C12	-178.00 (11)