Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(2,4-Dichlorophenyl)-5-(4-fluorophenyl)-2-phenyl-7-(trifluoromethyl)pyrazolo[1,5-a]pyrimidine

Ju Liu,^a Zhi-Qiang Cai,^{b,c}* Yang Wang,^a Yu-Li Sang^a and Li-Feng Xu^a

^aCollege of Pharmacy, Liaoning University, Shenyang 110036, People's Republic of China, ^bPanjin Vocational and Technical College, Panjin 120010, People's Republic of China, and ^cTianjin Key Laboratory of Molecular Design and Drug Discovery, State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin 300193, People's Republic of China Correspondence e-mail: caizg@tjipr.com

Received 18 May 2012; accepted 24 May 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.051; wR factor = 0.143; data-to-parameter ratio = 12.6.

In the title compound, $C_{25}H_{13}Cl_2F_4N_3$, there are four planar systems, *viz*. three benzene rings and a pyrazolo[1,5-a]pyrimidine system [r.m.s. deviation = 0.002 Å]. The dihedral angle between the dichlorophenyl ring and the unsubstituted phenyl ring is $69.95 (5)^\circ$, while that between the fluorophenyl ring and the unsubstituted phenyl ring is 7.97 $(10)^{\circ}$. The crystal packing is dominated by van der Waals interactions. A Cl···Cl interaction of 3.475 (3) Å also occurs.

Related literature

For background information and the related structures, see: Liu et al. (2012); Frizzo et al. (2008); Bui et al. (2009). For the synthesis of other pyrozolo[1,5-a]pyrimidine derivatives and for their pharmacological applications, see: Fraley et al. (2012); Dalinger et al. (2005); Dennis et al. (2004).

Experimental

Crystal data

	· · · · · · · · · · · · · · · · · · ·
$C_{25}H_{13}Cl_2F_4N_3$	V = 2212.7 (8) A ³
$M_r = 502.28$	Z = 4
Monoclinic, $P2_1/c$	Mo $K\alpha$ radiation
a = 9.0826 (18) Å	$\mu = 0.35 \text{ mm}^{-1}$
b = 9.0606 (18) Å	T = 293 K
c = 27.259 (6) Å	$0.24 \times 0.22 \times 0.20 \ \text{mm}$
$\beta = 99.46 \ (3)^{\circ}$	

Data collection

Rigaku Saturn diffractometer Absorption correction: multi-scan (CrystalClear; Rigaku/MSC, 2005) $T_{\min} = 0.922, T_{\max} = 0.934$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.051$ $wR(F^2) = 0.143$ S = 1.093895 reflections

15847 measured reflections 3895 independent reflections 3056 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.041$

308 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.37 \ {\rm e} \ {\rm \AA}^{-3}$ $\Delta \rho_{\rm min} = -0.46$ e Å⁻³

Data collection: RAPID-AUTO (Rigaku, 1998); cell refinement: RAPID-AUTO; data reduction: CrystalClear (Rigaku/MSC, 2005); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

The authors thank the State Key Laboratory of Elementoorganic Chemistry, Nankai University, for the X-ray data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: KP2419).

References

- Bui, T. T., Dahaoui, S., Lecomte, C., Desiraju, G. R. & Espinosa, E. (2009). Angew. Chem. Int. Ed. 48, 3838-3841.
- Dalinger, I. L., Vatsadse, I. A., Shevelev, S. A. & Ivachtchenko, A. V. (2005). ACS Comb. Sci. 7 236-245.
- Dennis, R. C., Kathyn, E. C. & John, A. K. (2004). Bioorg. Med. Chem. Lett. 14, 5681-5684.
- Fraley, M. E., Rubino, R. S., Hoffman, W. F., Hambaugh, S. R., Arrington, K. L., Hungate, R. W., Bilodeau, M. T., Tebben, A. J., Rutledge, R. Z., Kendall, R. L., McFall, R. C., Huckle, W. R., Coll, K. E. & Thomas, K. A. (2012). Bioorg. Med. Chem. Lett. 12, 3537-3541.
- Frizzo, C. P., Campos, P. T., Marzari, M. R. B., Machado, P. & Martins, M. A. P. (2008). Acta Cryst. E64, o212.
- Liu, J., Cai, Z.-Q., Wang, Y., Jiang, M.-J. & Xu, L.-F. (2012). Acta Cryst. E68, 01515.
- Rigaku (1998). RAPID-AUTO. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2005). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o1923 [doi:10.1107/S1600536812023641]

3-(2,4-Dichlorophenyl)-5-(4-fluorophenyl)-2-phenyl-7-(trifluoromethyl)pyrazolo[1,5-*a*]pyrimidine

Ju Liu, Zhi-Qiang Cai, Yang Wang, Yu-Li Sang and Li-Feng Xu

S1. Comment

The pyrazolo[1,5-*a*]pyrimidine structural motif may be found in a large number of pharmaceutical agents with a diverse range of physiological activities, for example, antiepileptic agents, anxiolytics, antidepressants, agents for treatment of sleep disorders and oncolytics. A series of antagonist of protease-activated PAR2 receptors were reported (Fraley, *et al.*, 2012 and Dalinger, *et al.*, 2005). As a part of our ongoing study of pyrazolo[1,5-*a*]pyrimidine derivatives containing 5-(4-fluorophenyl) and 3-(2,4-dichlorophenyl) substituents (Liu, *et al.*, 2012), we report herein the crystal structure of the title compound.

The title molecule (Fig. 1) bond lengths and angles are generally within normal ranges. The dihedral angles between fluorobenzene ring and benzene ring is 7.97° . The dihedral angle between dichlorophenyl ring and benzene ring is 69.95° . The torsion angles C(16)—C(17)—C(18)—C(19), N(2)—N(1)—C(1)—C(2), C(21)—C(22)—C(23)—F(4) and C(10)—C(11)—C(12)—Cl(2) are -178.71 (19), 175.35 (17), -178.4 (2) and -179.9 (2), respectively. The crystal structure is held together by van der Waals forces and pronounced Cl…Cl interaction of 3.475 (3) Å (Bui, *et al.*, 2009).

S2. Experimental

A mixture of the corresponding 4-(2,4-dichlorophenyl)-3-phenyl-1*H*-pyrazol-5-amine (1.50 g, 4.93 mmol) and the 4,4,4-trifluoro-1-(4-fluorophenyl)butane-1,3-dione (1.27 g, 5.42 6 mmol) in a flask (25 mL) was heated at 453–458 K for 2.5 h, allowing elimination of the water evolved. After cooling to room temperature, the solid in the flask was recrystallised from methanol to yield the title compound as a yellow solid (1.55 g, 62.58%). Crystals suitable for X-ray analysis were obtained from EtOH : EtOAc(1:1) solution mixture by slow evaporation.

S3. Refinement

All H atoms were geometrically positioned (C—H 0.93 Å) and treated as riding, with $U_{iso}(H) = 1.2Ueq(C)$.Due to lack of heavy atoms, Friedel pairs were merged in refinement.

Figure 1

The structure of $C_{25}H_{13}Cl_2F_4N_3$ with all non-H atom-labelling scheme and ellipsoids drawn at the 50% probability level.

3-(2,4-Dichlorophenyl)-5-(4-fluorophenyl)-2-phenyl-7- (trifluoromethyl)pyrazolo[1,5-a]pyrimidine

Crystal data

 $C_{25}H_{13}Cl_2F_4N_3$ $M_r = 502.28$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 9.0826 (18) Åb = 9.0606 (18) Å*c* = 27.259 (6) Å $\beta = 99.46 (3)^{\circ}$ V = 2212.7 (8) Å³ Z = 4

Data collection

Rigaku Saturn	15847 measured
diffractometer	3895 independe
Radiation source: rotating anode	3056 reflections
Confocal monochromator	$R_{\rm int} = 0.041$
ω scans	$\theta_{\rm max} = 25.0^{\circ}, \theta_{\rm min}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(CrystalClear; Rigaku/MSC, 2005)	$k = -10 \rightarrow 7$
$T_{\min} = 0.922, \ T_{\max} = 0.934$	$l = -30 \rightarrow 32$

F(000) = 1016 $D_{\rm x} = 1.508 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 5009 reflections $\theta = 2.3 - 27.9^{\circ}$ $\mu = 0.35 \text{ mm}^{-1}$ T = 293 KPrism, yellow $0.24 \times 0.22 \times 0.20$ mm

d reflections ent reflections s with $I > 2\sigma(I)$ $_{in} = 2.4^{\circ}$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.051$	H-atom parameters constrained
$wR(F^2) = 0.143$	$w = 1/[\sigma^2(F_o^2) + (0.0833P)^2 + 0.040P]$
S = 1.09	where $P = (F_o^2 + 2F_c^2)/3$
3895 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
308 parameters	$\Delta ho_{ m max} = 0.37 \ { m e} \ { m \AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.46 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier map	Extinction coefficient: 0.028 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

			_	II */II	
	X	У	Z	$U_{\rm iso} V_{\rm eq}$	
Cl1	1.31929 (9)	0.44828 (10)	0.47969 (3)	0.0868 (3)	
Cl2	0.94948 (12)	0.20741 (11)	0.59085 (3)	0.1024 (4)	
F1	1.09069 (17)	0.35785 (15)	0.20644 (5)	0.0619 (4)	
F2	1.2102 (2)	0.5478 (2)	0.23496 (6)	0.0886 (6)	
F3	0.9955 (2)	0.56762 (17)	0.18909 (5)	0.0831 (6)	
F4	0.24299 (18)	0.7892 (2)	0.32444 (6)	0.0917 (6)	
N1	1.2012 (2)	0.33960 (19)	0.31669 (6)	0.0413 (4)	
N2	1.0698 (2)	0.41358 (18)	0.31156 (6)	0.0385 (4)	
N3	0.8699 (2)	0.47095 (19)	0.35650 (6)	0.0401 (4)	
C1	1.2191 (2)	0.2873 (2)	0.36384 (7)	0.0388 (5)	
C2	1.3488 (2)	0.1903 (2)	0.37979 (8)	0.0432 (5)	
C3	1.4710 (3)	0.1954 (3)	0.35534 (9)	0.0542 (6)	
H3	1.4737	0.2649	0.3304	0.065*	
C4	1.5895 (3)	0.0981 (3)	0.36768 (10)	0.0670 (8)	
H4	1.6707	0.1023	0.3509	0.080*	
C5	1.5865 (3)	-0.0044 (3)	0.40471 (11)	0.0727 (9)	
H5	1.6655	-0.0701	0.4129	0.087*	
C6	1.4674 (4)	-0.0098 (3)	0.42954 (11)	0.0731 (8)	
H6	1.4664	-0.0782	0.4549	0.088*	
C7	1.3487 (3)	0.0857 (3)	0.41720 (9)	0.0594 (7)	
H7	1.2678	0.0802	0.4341	0.071*	
C8	1.1017 (2)	0.3286 (2)	0.38894 (7)	0.0395 (5)	
C9	1.0711 (2)	0.2977 (2)	0.43952 (7)	0.0402 (5)	

C10	1.1586 (3)	0.3478 (2)	0.48288 (8)	0.0468 (6)
C11	1.1222 (3)	0.3204 (3)	0.52918 (8)	0.0553 (7)
H11	1.1831	0.3551	0.5576	0.066*
C12	0.9960 (3)	0.2419 (3)	0.53295 (8)	0.0592 (7)
C13	0.9050 (3)	0.1923 (3)	0.49108 (10)	0.0747 (9)
H13	0.8181	0.1407	0.4936	0.090*
C14	0.9437 (3)	0.2199 (3)	0.44528 (9)	0.0620(7)
H14	0.8820	0.1849	0.4170	0.074*
C15	1.0032 (2)	0.4081 (2)	0.35423 (7)	0.0378 (5)
C16	0.8006 (2)	0.5390 (2)	0.31605 (7)	0.0386 (5)
C17	0.8643 (3)	0.5463 (2)	0.27171 (8)	0.0424 (5)
H17	0.8129	0.5937	0.2438	0.051*
C18	0.9989 (2)	0.4847 (2)	0.27000 (7)	0.0394 (5)
C19	1.0751 (3)	0.4900 (3)	0.22528 (8)	0.0461 (6)
C20	0.6539 (2)	0.6071 (2)	0.31877 (7)	0.0396 (5)
C21	0.5912 (3)	0.7106 (3)	0.28349 (9)	0.0493 (6)
H21	0.6427	0.7381	0.2581	0.059*
C22	0.4542 (3)	0.7726 (3)	0.28576 (9)	0.0573 (7)
H22	0.4130	0.8419	0.2623	0.069*
C23	0.3796 (3)	0.7307 (3)	0.32307 (10)	0.0576 (7)
C24	0.4372 (3)	0.6316 (3)	0.35902 (9)	0.0564 (6)
H24	0.3848	0.6061	0.3844	0.068*
C25	0.5753 (3)	0.5702 (2)	0.35670 (8)	0.0473 (6)
H25	0.6163	0.5030	0.3809	0.057*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C11	0.0765 (6)	0.1313 (7)	0.0511 (4)	-0.0570 (5)	0.0062 (4)	-0.0089 (4)
Cl2	0.1446 (9)	0.1281 (8)	0.0411 (4)	-0.0592 (6)	0.0350 (5)	-0.0028 (4)
F1	0.0830 (11)	0.0617 (9)	0.0432 (8)	0.0200 (7)	0.0171 (7)	-0.0052 (6)
F2	0.0899 (13)	0.1194 (15)	0.0648 (10)	-0.0465 (11)	0.0371 (9)	-0.0103 (9)
F3	0.1145 (14)	0.0927 (12)	0.0507 (9)	0.0534 (10)	0.0388 (9)	0.0330 (8)
F4	0.0567 (10)	0.1403 (16)	0.0836 (12)	0.0343 (10)	0.0276 (9)	0.0172 (11)
N1	0.0423 (11)	0.0467 (10)	0.0346 (9)	-0.0032 (8)	0.0056 (8)	-0.0020 (8)
N2	0.0449 (11)	0.0409 (10)	0.0303 (9)	0.0002 (8)	0.0075 (8)	0.0001 (7)
N3	0.0425 (10)	0.0471 (10)	0.0315 (9)	-0.0027 (8)	0.0083 (8)	-0.0011 (8)
C1	0.0382 (12)	0.0458 (12)	0.0321 (11)	-0.0077 (9)	0.0049 (9)	-0.0040 (9)
C2	0.0425 (13)	0.0500 (13)	0.0356 (11)	-0.0023 (10)	0.0021 (10)	-0.0076 (10)
C3	0.0491 (14)	0.0662 (15)	0.0459 (14)	-0.0023 (12)	0.0033 (11)	-0.0048 (12)
C4	0.0484 (16)	0.087 (2)	0.0648 (17)	0.0074 (14)	0.0059 (13)	-0.0123 (16)
C5	0.0590 (19)	0.0739 (18)	0.080(2)	0.0197 (15)	-0.0047 (16)	-0.0118 (16)
C6	0.080 (2)	0.0664 (17)	0.0702 (19)	0.0159 (16)	0.0042 (16)	0.0117 (15)
C7	0.0614 (16)	0.0612 (15)	0.0560 (16)	0.0081 (13)	0.0108 (13)	0.0055 (12)
C8	0.0430 (12)	0.0447 (12)	0.0299 (10)	-0.0063 (9)	0.0036 (9)	-0.0008 (9)
C9	0.0408 (12)	0.0465 (12)	0.0320 (11)	-0.0018 (10)	0.0028 (9)	0.0022 (9)
C10	0.0486 (14)	0.0560 (14)	0.0344 (12)	-0.0109 (11)	0.0024 (10)	-0.0003 (10)
C11	0.0632 (16)	0.0666 (16)	0.0337 (12)	-0.0140 (13)	0.0010 (11)	-0.0032 (11)

C12	0.0747 (18)	0.0703 (16)	0.0346 (13)	-0.0133 (14)	0.0148 (12)	0.0029 (11)
C13	0.0732 (19)	0.104 (2)	0.0478 (15)	-0.0433 (17)	0.0131 (14)	0.0027 (15)
C14	0.0591 (16)	0.0897 (19)	0.0355 (13)	-0.0285 (14)	0.0028 (11)	-0.0048 (12)
C15	0.0424 (12)	0.0442 (12)	0.0274 (10)	-0.0045 (9)	0.0071 (9)	-0.0028 (9)
C16	0.0439 (12)	0.0378 (11)	0.0338 (11)	-0.0055 (9)	0.0052 (9)	-0.0028 (9)
C17	0.0494 (14)	0.0440 (12)	0.0341 (11)	0.0012 (10)	0.0074 (10)	0.0014 (9)
C18	0.0518 (14)	0.0371 (11)	0.0303 (11)	-0.0035 (10)	0.0095 (10)	-0.0006 (9)
C19	0.0576 (15)	0.0468 (13)	0.0358 (12)	0.0053 (11)	0.0133 (11)	0.0039 (10)
C20	0.0407 (12)	0.0421 (12)	0.0362 (11)	-0.0068 (9)	0.0064 (9)	-0.0043 (9)
C21	0.0441 (13)	0.0639 (15)	0.0404 (12)	-0.0012 (11)	0.0080 (10)	0.0047 (11)
C22	0.0495 (14)	0.0713 (16)	0.0504 (14)	0.0128 (12)	0.0064 (12)	0.0111 (12)
C23	0.0412 (14)	0.0759 (17)	0.0563 (15)	0.0061 (12)	0.0093 (12)	-0.0060 (13)
C24	0.0552 (15)	0.0684 (16)	0.0504 (14)	-0.0040 (13)	0.0227 (12)	-0.0013 (13)
C25	0.0540 (14)	0.0510 (13)	0.0389 (12)	-0.0036 (11)	0.0134 (11)	0.0012 (10)

Geometric parameters (Å, °)

Cl1—C10	1.734 (2)	С8—С9	1.477 (3)
Cl2—C12	1.728 (2)	C9—C14	1.386 (3)
F1-C19	1.320 (3)	C9—C10	1.387 (3)
F2—C19	1.320 (3)	C10—C11	1.379 (3)
F3—C19	1.325 (2)	C11—C12	1.367 (3)
F4—C23	1.356 (3)	C11—H11	0.9300
N1—C1	1.354 (3)	C12—C13	1.370 (3)
N1—N2	1.356 (2)	C13—C14	1.375 (3)
N2-C18	1.369 (3)	C13—H13	0.9300
N2-C15	1.397 (3)	C14—H14	0.9300
N3—C16	1.328 (3)	C16—C17	1.425 (3)
N3—C15	1.349 (3)	C16—C20	1.481 (3)
C1—C8	1.409 (3)	C17—C18	1.352 (3)
C1—C2	1.477 (3)	C17—H17	0.9300
C2—C3	1.386 (3)	C18—C19	1.498 (3)
С2—С7	1.392 (3)	C20—C25	1.390 (3)
C3—C4	1.389 (4)	C20—C21	1.396 (3)
С3—Н3	0.9300	C21—C22	1.376 (3)
C4—C5	1.375 (4)	C21—H21	0.9300
C4—H4	0.9300	C22—C23	1.365 (4)
С5—С6	1.369 (4)	C22—H22	0.9300
С5—Н5	0.9300	C23—C24	1.368 (4)
С6—С7	1.380 (4)	C24—C25	1.384 (3)
С6—Н6	0.9300	C24—H24	0.9300
С7—Н7	0.9300	C25—H25	0.9300
C8—C15	1.391 (3)		
C1—N1—N2	103.71 (17)	C12—C13—H13	120.4
N1—N2—C18	127.17 (18)	C14—C13—H13	120.4
N1—N2—C15	112.99 (16)	C13—C14—C9	122.6 (2)
C18—N2—C15	119.81 (18)	C13—C14—H14	118.7

C16—N3—C15	117.66 (18)	C9—C14—H14	118.7
N1—C1—C8	112.68 (18)	N3—C15—C8	131.98 (19)
N1—C1—C2	116.95 (19)	N3—C15—N2	122.52 (18)
C8—C1—C2	130.22 (19)	C8—C15—N2	105.50 (19)
C3—C2—C7	118.2 (2)	N3—C16—C17	121.5 (2)
C3—C2—C1	120.1 (2)	N3—C16—C20	117.33 (19)
C7—C2—C1	121.6 (2)	C17—C16—C20	121.14 (19)
C2—C3—C4	120.8 (2)	C18—C17—C16	120.4 (2)
С2—С3—Н3	119.6	С18—С17—Н17	119.8
C4—C3—H3	119.6	С16—С17—Н17	119.8
C5—C4—C3	119.9 (3)	C17—C18—N2	118.08 (19)
C5—C4—H4	120.0	C17—C18—C19	123.80 (19)
C3—C4—H4	120.0	N2-C18-C19	118.1 (2)
C6-C5-C4	119.9 (3)	F1-C19-F2	106.4(2)
C6—C5—H5	120.0	F1—C19—F3	105.79 (17)
C4—C5—H5	120.0	F2-C19-F3	108 3 (2)
$C_{5}-C_{6}-C_{7}$	120.0 120.4(3)	F1 - C19 - C18	112.40(18)
C5—C6—H6	119.8	F_{2} $-C_{19}$ $-C_{18}$	112.10 (10)
C7—C6—H6	119.8	F_{3} $-C_{19}$ $-C_{18}$	110.76 (19)
$C_{6} - C_{7} - C_{2}^{2}$	120.7(3)	C_{25} C_{20} C_{21}	118.70(12)
C6-C7-H7	119.6	$C_{25} = C_{20} = C_{16}$	120.87(19)
C2	119.6	C_{21} C_{20} C_{16} C_{16}	120.07(1)
$C_{15} - C_{8} - C_{1}$	105.08 (18)	$C_{22} = C_{21} = C_{20}$	120.9(2) 120.9(2)
$C_{15} = C_{8} = C_{9}$	105.00(10) 122.3(2)	$C_{22} = C_{21} = C_{20}$	119.6
C1 - C8 - C9	122.5(2) 132 56(19)	$C_{22} = C_{21} = H_{21}$	119.6
C14 - C9 - C10	132.30(1))	C_{23} C_{22} C_{21} C_{21}	119.0 118.9(2)
C14 - C9 - C8	110.2 (2)	$C_{23} = C_{22} = C_{21}$	120.6
$C_{14} = C_{2} = C_{3}$	124.3(2)	$C_{23} = C_{22} = H_{22}$	120.6
$C_{10} = C_{20} = C_{30}$	124.3(2) 122.1(2)	$F_{4} = C_{23} = C_{22}$	120.0 118.7(2)
$C_{11} = C_{10} = C_{3}$	122.1(2) 118.08(17)	$F_{4} = C_{23} = C_{24}$	118.7(2)
C_{10} C_{10} C_{11}	110.00(17) 110.85(17)	14 - 023 - 024	110.7(2)
$C_{12} = C_{10} = C_{10}$	119.03(17) 110.5(2)	$C_{22} = C_{23} = C_{24}$	122.0(2) 118.3(2)
$C_{12} = C_{11} = C_{10}$	119.3 (2)	$C_{23} = C_{24} = C_{23}$	110.3 (2)
C_{12} C_{11} C	120.2	$C_{25} = C_{24} = H_{24}$	120.9
	120.2	$C_{23} = C_{24} = H_{24}$	120.9
C11 - C12 - C13	120.4(2)	$C_{24} = C_{25} = C_{20}$	121.2 (2)
C12 - C12 - C12	119.78 (19)	С24—С25—Н25	119.4
C13 - C12 - C12	119.8 (2)	C20—C25—H25	119.4
C12—C13—C14	119.2 (2)		
C1 - N1 - N2 - C18	-17837(19)	C1-C8-C15-N3	177 8 (2)
C1 - N1 - N2 - C15	-0.6(2)	C9-C8-C15-N3	-0.1(3)
$N_{2}-N_{1}-C_{1}-C_{8}$	-0.7(2)	C1 - C8 - C15 - N2	-20(2)
$N_2 - N_1 - C_1 - C_2$	175 35 (17)	C9-C8-C15-N2	-179 81 (18)
$N_1 - C_1 - C_2 - C_3$	22.1 (3)	N1 - N2 - C15 - N3	-17807(10)
$C_8 = C_1 = C_2 = C_3$	-162.6(2)	C18 - N2 - C15 - N3	-0.1(3)
$N_1 = C_1 = C_2 = C_7$	-153 9 (2)	N1 - N2 - C15 - C8	17(2)
$C_{8} = C_{1} = C_{2} = C_{7}$	21 4 (3)	C18 - N2 - C15 - C8	179 63 (17)
C_{7} C_{2} C_{3} C_{4}	04(3)	C15 N3 C16 C17	-0.2(3)
07 02 03 07	(5)		0.2 (3)

C1—C2—C3—C4	-175.6 (2)	C15—N3—C16—C20	179.71 (17)
C2—C3—C4—C5	-0.3 (4)	N3—C16—C17—C18	-0.7 (3)
C3—C4—C5—C6	-0.4 (4)	C20-C16-C17-C18	179.40 (18)
C4—C5—C6—C7	1.0 (4)	C16—C17—C18—N2	1.2 (3)
C5—C6—C7—C2	-0.8 (4)	C16—C17—C18—C19	-178.71 (19)
C3—C2—C7—C6	0.1 (4)	N1—N2—C18—C17	176.86 (18)
C1—C2—C7—C6	176.1 (2)	C15—N2—C18—C17	-0.8 (3)
N1-C1-C8-C15	1.8 (2)	N1—N2—C18—C19	-3.3 (3)
C2-C1-C8-C15	-173.7 (2)	C15—N2—C18—C19	179.10 (19)
N1—C1—C8—C9	179.3 (2)	C17—C18—C19—F1	-115.6 (2)
C2-C1-C8-C9	3.9 (4)	N2-C18-C19-F1	64.6 (3)
C15—C8—C9—C14	59.2 (3)	C17—C18—C19—F2	124.1 (2)
C1-C8-C9-C14	-118.0 (3)	N2-C18-C19-F2	-55.8 (3)
C15—C8—C9—C10	-117.6 (2)	C17—C18—C19—F3	2.5 (3)
C1-C8-C9-C10	65.3 (3)	N2-C18-C19-F3	-177.34 (19)
C14—C9—C10—C11	0.7 (4)	N3-C16-C20-C25	-15.9 (3)
C8—C9—C10—C11	177.6 (2)	C17—C16—C20—C25	164.1 (2)
C14—C9—C10—Cl1	-179.21 (19)	N3-C16-C20-C21	163.79 (19)
C8—C9—C10—Cl1	-2.3 (3)	C17—C16—C20—C21	-16.3 (3)
C9-C10-C11-C12	-0.2 (4)	C25—C20—C21—C22	-1.1 (3)
Cl1—C10—C11—C12	179.8 (2)	C16—C20—C21—C22	179.3 (2)
C10-C11-C12-C13	-0.9 (4)	C20—C21—C22—C23	-0.3 (4)
C10-C11-C12-Cl2	-179.9 (2)	C21—C22—C23—F4	-178.4 (2)
C11—C12—C13—C14	1.3 (5)	C21—C22—C23—C24	1.4 (4)
Cl2—C12—C13—C14	-179.7 (2)	F4—C23—C24—C25	178.7 (2)
C12—C13—C14—C9	-0.7 (5)	C22—C23—C24—C25	-1.1 (4)
C10-C9-C14-C13	-0.3 (4)	C23—C24—C25—C20	-0.3 (4)
C8—C9—C14—C13	-177.3 (3)	C21—C20—C25—C24	1.4 (3)
C16—N3—C15—C8	-179.1 (2)	C16—C20—C25—C24	-179.0 (2)
C16—N3—C15—N2	0.6 (3)		