

## organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

# Tris[2-(2*H*-indazol-2-yl)ethyl]amine

### Saúl Ovalle,<sup>a</sup> Perla Elizondo Martínez,<sup>a</sup> Nancy Pérez Rodríguez,<sup>a</sup> Sylvain Bernès<sup>b</sup> and Marcos Flores-Alamo<sup>c</sup>\*

<sup>a</sup>Laboratorio de Química Industrial, CELAES, Facultad de Ciencias Químicas, UANL, Avenidad Universidad s/n, 66450 San Nicolás de los Garza, NL, Mexico, <sup>b</sup>DEP Facultad de Ciencias Químicas, UANL, Guerrero y Progreso s/n, Col. Treviño, 64570 Monterrey, NL, Mexico, and <sup>c</sup>Facultad de Química, Universidad Nacional Autónoma de México, México DF 04510, Mexico Correspondence e-mail: sylvain\_bernes@hotmail.com

Received 28 April 2012; accepted 15 May 2012

Key indicators: single-crystal X-ray study; T = 130 K; mean  $\sigma$ (C–C) = 0.003 Å; R factor = 0.045; wR factor = 0.131; data-to-parameter ratio = 13.6.

The title tertiary amine,  $C_{27}H_{27}N_7$ , a potential tripodal ligand for coordination chemistry, crystallizes with the central N atom located on a threefold axis of a trigonal cell. The *gauche* conformation of the N(amime)-CH<sub>2</sub>-CH<sub>2</sub>-N(indazole) chain [torsion angle = -64.2 (2)°] places the pendant 2*H*indazole heterocycles surrounding the symmetry axis, affording a claw-like shaped molecule. Two symmetry-related indazole planes in the molecule make an acute angle of 60.39 (4)°. The lone pair of the tertiary N atom is located inside the cavity, and should thus be inactive (as a ligand). In the crystal, neither significant  $\pi$ - $\pi$  nor C-H··· $\pi$  interactions between molecules are found.

### **Related literature**

For the pharmacological properties of indazoles, see: Cerecetto *et al.* (2005); Ryu *et al.* (2001); Teixeira *et al.* (2009). For isomerism in indazoles, see: Teixeira *et al.* (2006); Alkorta & Elguero (2005). For structures of related bis-(2*H*-indazoles), see: Rodríguez de Barbarín *et al.* (2006); Ovalle *et al.* (2011). For the structure of the precursor used in the synthesis of the title compound, see: McKee *et al.* (2006).



### Experimental

Crystal data

 $\begin{array}{l} C_{27}H_{27}N_7\\ M_r = 449.56\\ Trigonal, R\overline{3}\\ a = 13.7314 \ (15) \ \text{\AA}\\ c = 22.235 \ (3) \ \text{\AA}\\ V = 3630.8 \ (8) \ \text{\AA}^3 \end{array}$ 

#### Data collection

Oxford Diffraction Xcalibur Atlas Gemini diffractometer Absorption correction: multi-scan [*CrysAlis PRO* (Oxford Diffraction, 2009); based on expressions derived by Clark &

#### Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.045$  $wR(F^2) = 0.131$ S = 0.961404 reflections Z = 6Mo K $\alpha$  radiation  $\mu = 0.08 \text{ mm}^{-1}$ T = 130 K $0.40 \times 0.20 \times 0.20 \text{ mm}$ 

Reid (1995)]  $T_{min} = 0.509, T_{max} = 1.000$ 2900 measured reflections 1404 independent reflections 852 reflections with  $I > 2\sigma(I)$  $R_{int} = 0.035$ 

103 parameters H-atom parameters constrained  $\Delta \rho_{\rm max} = 0.12$  e Å^{-3}  $\Delta \rho_{\rm min} = -0.15$  e Å^{-3}

Data collection: *CrysAlis CCD* (Oxford Diffraction, 2009); cell refinement: *CrysAlis RED* (Oxford Diffraction, 2009); data reduction: *CrysAlis RED*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

Authors thank the PAICyT program (Programa de Apoyo a la Investigación Científica y Tecnológica) of the Universidad Autónoma de Nuevo León for supporting this work (project No. T004–09).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: LR2063).

#### References

Alkorta, I. & Elguero, J. (2005). J. Phys. Org. Chem. 18, 719-724.

- Cerecetto, H., Gerpe, A., González, M., Arán, V. J. & de Ocariz, C. O. (2005). *Mini Rev. Med. Chem.* 5, 869–878.
- Clark, R. C. & Reid, J. S. (1995). Acta Cryst. A51, 887-897.

McKee, V., Morgan, G. G. & Nelson, J. (2006). Acta Cryst. E62, o3747-o3749.

- Ovalle, S., Bernès, S., Pérez Rodríguez, N. & Elizondo Martínez, P. (2011). Acta Cryst. E67, o2144.
- Oxford Diffraction (2009). CrysAlis CCD, CrysAlis PRO and CrysAlis RED. Oxford Diffraction Ltd, Yarnton, England. Rodríguez de Barbarín, C., Nájera, B., Elizondo, P. & Cerda, P. (2006). *Acta*
- Cryst. E62, 05423-05424.
- Ryu, E. K., Jeon, D. J., Song, J. H., Kim, H. R., Lee, J. N., Kim, K. M. & Cho, K. Y. (2001). US Patent No. 6239076.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Teixeira, F. C., Antunes, I. F., Curto, M. J. M., Neves, M. & Teixeira, A. P. S. (2009). ARKIVOC, xi, 69-84.
- Teixeira, F. C., Ramos, H., Antunes, I. F., Curto, M. J. M., Duarte, M. T. & Bento, I. (2006). Molecules, 11, 867-889.

# supporting information

Acta Cryst. (2012). E68, o1879-o1880 [doi:10.1107/S1600536812022027]

## Tris[2-(2H-indazol-2-yl)ethyl]amine

## Saúl Ovalle, Perla Elizondo Martínez, Nancy Pérez Rodríguez, Sylvain Bernès and Marcos Flores-Alamo

### S1. Comment

The interest in obtaining the title molecule, a new 2*H*-indazole derivative, is due to the potential applications for this class of compounds. Regarding pharmacological activity, these include anti-inflammatory, antitumor and antidepressants drugs (Cerecetto *et al.*, 2005). These molecules have also been used in agriculture as selective herbicides (Ryu *et al.*, 2001) and as precursors of other compounds to increase their biological activity and specificity (Teixeira *et al.*, 2009). The chemistry of 2*H*-indazole remains less studied compared to its tautomer 1*H*-indazole, in part because the latter is thermodynamically more stable for the majority of derivatives (Teixeira *et al.*, 2006). However the opposite situation also occurs in some cases (Alkorta & Elguero, 2005).

The title molecule is a tris-(2*H*-indazole) compound derived from a tertiary amine (Fig. 1). The molecule is placed on a threefold axis in space group  $R\overline{3}$  (Z' = 1/3). Each arm contains a *gauche* N<sub>amime</sub>—CH<sub>2</sub>—CH<sub>2</sub>—N<sub>indazole</sub> chain [torsion angle: -64.2 (2)°], forming a claw-like geometry (Fig. 2). The geometry for the tertiary N atom (N3) is consistent with the presence of the lone pair inside the molecular cavity. The three symmetry-related indazole heterocycles in the molecule are arranged in such a way that no strong interactions are present. The C1—H1A group interacts weakly with the pyrazole ring of the following arm: the separation H1A…Cg<sup>i</sup> is 2.85 Å and the angle C1—H1A…Cg<sup>i</sup> is 128° (Cg is the centroid of ring N1/N2/C1/C7/C6 and *i* stands for symmetry code: 1 - *y*, 1 + *x*-*y*, *z*). The angle between two indazole planes in the molecule is 60.39 (4)°. Other geometric parameters compare well with those previously reported for bis-(2*H*-indazole) compounds (Rodríguez de Barbarín *et al.*, 2006; Ovalle *et al.*, 2011).

### **S2. Experimental**

The title molecule was obtained by a three steps reaction (Fig. 1). Condensation between tris(2-aminoethyl)amine and 2nitrobenzaldehyde produced the corresponding tris-imine (McKee *et al.*, 2006). Selective reduction of imine bonds with sodium borohydride in methanol gave the corresponding amine, which was isolated. Then, 0.046 g of Pd/C was added to a solution of this intermediate (0.005 mol) in ethanol. The mixture was refluxed for 4 h, with addition of hydrazine monohydrate (0.110 mol) during the first 3 h. The resulting mixture was filtered, distilled, and the organic phase was extracted. The product was purified by column chromatography with silica gel and methanol as eluent. Suitable crystals were obtained by slow evaporation of an ethanol solution at 298 K. *M*.p. 445 K; analysis found (calc. for  $C_{27}H_{27}N_7$ ): C 71.46 (72.14), H 5.98 (6.05), N 22.56% (21.81%); IR RTA: 3119 (CH Ar.  $v_s$ ), 2953 (–CH<sub>2</sub>–  $v_s$ ), 1623 (C=N Ar.  $\delta_s$ ), 1471, 1512 (C=C Ar.  $v_s$  and  $v_{as}$ ). <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>): 7.65 (d, 3*H*, ArH), 7.29 (t, 3*H*, ArH), 7.05 (t, 3*H*, ArH), 7.00 (d, 3*H*, ArH), 5.58 (s, 3*H*, ArH), 4.00 (t, 6*H*, CH<sub>2</sub>), 3.09 (t, 6*H*, CH<sub>2</sub>) p.p.m.. <sup>13</sup>C NMR: 150–115 (Ar), 55–50 (–CH<sub>2</sub>–).

### S3. Refinement

All H atoms were placed in idealized positions and refined as riding to their parent C atoms, with bond lengths fixed to 0.97 (methylene CH<sub>2</sub>) or 0.93 Å (aromatic CH). Isotropic displacement parameters for H atoms were calculated as  $U_{iso}$ (H) = 1.2  $U_{eq}$ (carrier atom).



### Figure 1

Synthetic route for the title compound. The X-ray structure of the precursor [P] has been reported (McKee et al., 2006).



### Figure 2

*ORTEP*-like view of the title molecule, with displacement ellipsoids at the 30% probability level for non-H atoms. Unlabeled atoms are generated by symmetry codes: -x + y, 1 - x, z and 1 - y, 1 + x-y, z. The figure on the right is a space filling representation in the same orientation, showing the full shape of the molecule.

### Tris[2-(2H-indazol-2-yl)ethyl]amine

Crystal data  $C_{27}H_{27}N_7$   $M_r = 449.56$ Trigonal,  $R\overline{3}$ Hall symbol: -R 3 a = 13.7314 (15) Å c = 22.235 (3) Å  $V = 3630.8 (8) \text{ Å}^3$  Z = 6F(000) = 1428

### Data collection

Oxford Diffraction Xcalibur Atlas Gemini diffractometer Radiation source: Enhance (Mo) X-ray Source Graphite monochromator Detector resolution: 10.4685 pixels mm<sup>-1</sup>  $\omega$  scans Absorption correction: multi-scan [*CrysAlis PRO* (Oxford Diffraction, 2009); based on expressions derived by Clark & Reid (1995)]

### Refinement

Refinement on  $F^2$ Least-squares matrix: full  $R[F^2 > 2\sigma(F^2)] = 0.045$  $wR(F^2) = 0.131$ S = 0.961404 reflections  $D_x = 1.234 \text{ Mg m}^{-3}$ Melting point: 445 K Mo K $\alpha$  radiation,  $\lambda = 0.71073 \text{ Å}$ Cell parameters from 1214 reflections  $\theta = 3.5-29.5^{\circ}$  $\mu = 0.08 \text{ mm}^{-1}$ T = 130 KPlate, orange  $0.40 \times 0.20 \times 0.20 \text{ mm}$ 

 $T_{\min} = 0.509, T_{\max} = 1.000$ 2900 measured reflections
1404 independent reflections
852 reflections with  $I > 2\sigma(I)$   $R_{\text{int}} = 0.035$   $\theta_{\text{max}} = 25.3^{\circ}, \theta_{\text{min}} = 3.6^{\circ}$   $h = -16 \rightarrow 11$   $k = -11 \rightarrow 16$   $l = -18 \rightarrow 26$ 

103 parameters0 restraints0 constraintsPrimary atom site location: structure-invariant direct methods

| $w = 1/[\sigma^2(F_o^2) + (0.0792P)^2]$                    |
|------------------------------------------------------------|
| where $P = (F_o^2 + 2F_c^2)/3$                             |
| $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| $\Delta \rho_{\rm max} = 0.12 \text{ e } \text{\AA}^{-3}$  |
| $\Delta \rho_{\rm min} = -0.15 \text{ e } \text{\AA}^{-3}$ |
|                                                            |

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters  $(\hat{A}^2)$ 

|     | x            | У            | Ζ            | $U_{ m iso}$ */ $U_{ m eq}$ |  |
|-----|--------------|--------------|--------------|-----------------------------|--|
| N1  | 0.06603 (12) | 0.53619 (12) | 0.91972 (8)  | 0.0708 (5)                  |  |
| N2  | 0.14166 (12) | 0.50358 (11) | 0.93250 (7)  | 0.0667 (5)                  |  |
| N3  | 0.3333       | 0.6667       | 1.01076 (10) | 0.0624 (7)                  |  |
| C1  | 0.19002 (14) | 0.48969 (15) | 0.88423 (10) | 0.0724 (6)                  |  |
| H1A | 0.2435       | 0.4671       | 0.8839       | 0.087*                      |  |
| C2  | 0.16242 (17) | 0.51736 (19) | 0.77209 (10) | 0.0881 (7)                  |  |
| H2A | 0.2129       | 0.4981       | 0.7558       | 0.106*                      |  |
| C3  | 0.1031 (2)   | 0.54814 (19) | 0.73614 (11) | 0.0956 (8)                  |  |
| H3A | 0.1128       | 0.5501       | 0.6947       | 0.115*                      |  |
| C4  | 0.0267 (2)   | 0.57740 (17) | 0.76090 (12) | 0.0932 (8)                  |  |
| H4A | -0.0127      | 0.5990       | 0.7353       | 0.112*                      |  |
| C5  | 0.00892 (17) | 0.57496 (15) | 0.82125 (12) | 0.0822 (6)                  |  |
| H5A | -0.0423      | 0.5938       | 0.8369       | 0.099*                      |  |
| C6  | 0.06970 (13) | 0.54348 (13) | 0.85902 (10) | 0.0625 (5)                  |  |
| C7  | 0.14644 (13) | 0.51492 (14) | 0.83448 (9)  | 0.0647 (5)                  |  |
| C8  | 0.15877 (17) | 0.48420 (16) | 0.99499 (9)  | 0.0802 (6)                  |  |
| H8A | 0.2021       | 0.4460       | 0.9963       | 0.096*                      |  |
| H8B | 0.0863       | 0.4351       | 1.0133       | 0.096*                      |  |
| C9  | 0.21862 (15) | 0.59058 (16) | 1.03092 (8)  | 0.0771 (6)                  |  |
| H9A | 0.1761       | 0.6295       | 1.0287       | 0.093*                      |  |
| H9B | 0.2206       | 0.5714       | 1.0727       | 0.093*                      |  |

Atomic displacement parameters  $(Å^2)$ 

|    | $U^{11}$    | $U^{22}$    | $U^{33}$    | $U^{12}$    | $U^{13}$     | $U^{23}$     |
|----|-------------|-------------|-------------|-------------|--------------|--------------|
| N1 | 0.0597 (10) | 0.0648 (9)  | 0.0921 (13) | 0.0343 (8)  | 0.0033 (8)   | 0.0052 (8)   |
| N2 | 0.0544 (9)  | 0.0587 (9)  | 0.0845 (12) | 0.0265 (7)  | -0.0009 (8)  | 0.0072 (7)   |
| N3 | 0.0626 (10) | 0.0626 (10) | 0.0621 (16) | 0.0313 (5)  | 0.000        | 0.000        |
| C1 | 0.0472 (10) | 0.0709 (12) | 0.0993 (16) | 0.0298 (9)  | 0.0048 (10)  | 0.0007 (10)  |
| C2 | 0.0654 (13) | 0.0928 (16) | 0.0912 (17) | 0.0283 (11) | -0.0011 (11) | -0.0138 (12) |
| C3 | 0.0872 (16) | 0.0865 (16) | 0.0829 (17) | 0.0209 (13) | -0.0145 (13) | -0.0056 (12) |
| C4 | 0.0903 (16) | 0.0622 (13) | 0.110 (2)   | 0.0255 (12) | -0.0399 (14) | -0.0024 (12) |
| C5 | 0.0740 (13) | 0.0594 (12) | 0.1138 (19) | 0.0338 (10) | -0.0214 (12) | -0.0076 (11) |
| C6 | 0.0464 (10) | 0.0429 (9)  | 0.0907 (15) | 0.0168 (8)  | -0.0048 (9)  | 0.0011 (8)   |
| C7 | 0.0417 (9)  | 0.0580 (11) | 0.0835 (14) | 0.0168 (8)  | -0.0031 (9)  | -0.0060 (9)  |
| C8 | 0.0712 (13) | 0.0675 (13) | 0.0906 (15) | 0.0262 (10) | -0.0005 (10) | 0.0155 (10)  |
| C9 | 0.0736 (13) | 0.0812 (14) | 0.0715 (14) | 0.0349 (11) | 0.0126 (10)  | 0.0132 (10)  |

Geometric parameters (Å, °)

| N1—N2                                | 1.351 (2)    | C3—C4                     | 1.410 (3)    |
|--------------------------------------|--------------|---------------------------|--------------|
| N1—C6                                | 1.353 (2)    | С3—НЗА                    | 0.9300       |
| N2—C1                                | 1.325 (2)    | C4—C5                     | 1.361 (3)    |
| N2—C8                                | 1.456 (2)    | C4—H4A                    | 0.9300       |
| N3—C9 <sup>i</sup>                   | 1.4588 (19)  | C5—C6                     | 1.396 (3)    |
| N3—C9                                | 1.4588 (19)  | С5—Н5А                    | 0.9300       |
| N3—C9 <sup>ii</sup>                  | 1.4588 (19)  | C6—C7                     | 1.405 (2)    |
| C1—C7                                | 1.382 (3)    | C8—C9                     | 1.499 (3)    |
| C1—H1A                               | 0.9300       | C8—H8A                    | 0.9700       |
| C2—C3                                | 1.351 (3)    | C8—H8B                    | 0.9700       |
| C2—C7                                | 1.402 (3)    | С9—Н9А                    | 0.9700       |
| C2—H2A                               | 0.9300       | С9—Н9В                    | 0.9700       |
| N2—N1—C6                             | 103.18 (13)  | С4—С5—Н5А                 | 120.9        |
| C1—N2—N1                             | 113.64 (15)  | C6—C5—H5A                 | 120.9        |
| C1—N2—C8                             | 127.49 (17)  | N1—C6—C5                  | 128.11 (18)  |
| N1—N2—C8                             | 118.84 (15)  | N1—C6—C7                  | 111.85 (16)  |
| C9 <sup>i</sup> —N3—C9               | 110.99 (10)  | C5—C6—C7                  | 120.0 (2)    |
| C9 <sup>i</sup> —N3—C9 <sup>ii</sup> | 110.99 (11)  | C1—C7—C2                  | 135.71 (19)  |
| C9—N3—C9 <sup>ii</sup>               | 110.99 (11)  | C1—C7—C6                  | 103.79 (18)  |
| N2—C1—C7                             | 107.54 (17)  | C2—C7—C6                  | 120.51 (18)  |
| N2—C1—H1A                            | 126.2        | N2—C8—C9                  | 112.99 (15)  |
| C7—C1—H1A                            | 126.2        | N2—C8—H8A                 | 109.0        |
| C3—C2—C7                             | 118.8 (2)    | С9—С8—Н8А                 | 109.0        |
| C3—C2—H2A                            | 120.6        | N2—C8—H8B                 | 109.0        |
| C7—C2—H2A                            | 120.6        | C9—C8—H8B                 | 109.0        |
| C2—C3—C4                             | 120.6 (2)    | H8A—C8—H8B                | 107.8        |
| С2—С3—Н3А                            | 119.7        | N3—C9—C8                  | 113.80 (16)  |
| C4—C3—H3A                            | 119.7        | N3—C9—H9A                 | 108.8        |
| C5—C4—C3                             | 121.9 (2)    | С8—С9—Н9А                 | 108.8        |
| C5—C4—H4A                            | 119.1        | N3—C9—H9B                 | 108.8        |
| C3—C4—H4A                            | 119.1        | С8—С9—Н9В                 | 108.8        |
| C4—C5—C6                             | 118.2 (2)    | Н9А—С9—Н9В                | 107.7        |
| C6—N1—N2—C1                          | -0.53 (18)   | N2—C1—C7—C6               | -0.23 (18)   |
| C6—N1—N2—C8                          | -178.56 (14) | C3—C2—C7—C1               | -179.5 (2)   |
| N1—N2—C1—C7                          | 0.49 (19)    | C3—C2—C7—C6               | 0.3 (3)      |
| C8—N2—C1—C7                          | 178.32 (15)  | N1-C6-C7-C1               | -0.10 (18)   |
| C7—C2—C3—C4                          | 0.1 (3)      | C5—C6—C7—C1               | 179.66 (15)  |
| C2—C3—C4—C5                          | -0.6 (3)     | N1—C6—C7—C2               | -179.97 (14) |
| C3—C4—C5—C6                          | 0.7 (3)      | C5—C6—C7—C2               | -0.2 (2)     |
| N2—N1—C6—C5                          | -179.36 (16) | C1—N2—C8—C9               | 111.2 (2)    |
| N2—N1—C6—C7                          | 0.37 (18)    | N1—N2—C8—C9               | -71.1 (2)    |
| C4—C5—C6—N1                          | 179.45 (17)  | C9 <sup>i</sup> —N3—C9—C8 | 159.04 (17)  |

# supporting information

| C4—C5—C6—C7 | -0.3 (2)    | C9 <sup>ii</sup> —N3—C9—C8 | -77.0 (3) |
|-------------|-------------|----------------------------|-----------|
| N2—C1—C7—C2 | 179.62 (19) | N2—C8—C9—N3                | -64.2 (2) |

Symmetry codes: (i) -*x*+*y*, -*x*+1, *z*; (ii) -*y*+1, *x*-*y*+1, *z*.