

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

$2-[2-(2-Bromophenyl)-2-oxoethyl]-1\lambda^{6},2$ benzothiazole-1,1,3-trione

Nazia Sattar,^a Hamid Latif Siddigui,^a* Waseeg Ahmad Siddiqui,^b Muhammad Akram^c and Masood Parvez^d

^aInstitute of Chemistry, University of the Punjab, Lahore 54590, Pakistan, ^bDepartment of Chemistry, University of Sargodha, Sargodha 40100, Pakistan, ^cDepartment of Chemistry, Universiti Teknologi Malaysia, 81310 UTM Skudai Johor, Darul Ta'zim, Malaysia, and ^dDepartment of Chemistry, The University of Calgary, 2500 University Drive NW, Calgary, Alberta, Canada T2N 1N4 Correspondence e-mail: drhamidlatif@hotmail.com

Received 9 May 2012; accepted 17 May 2012

Key indicators: single-crystal X-ray study; T = 123 K; mean σ (C–C) = 0.006 Å; R factor = 0.050; wR factor = 0.105; data-to-parameter ratio = 16.5.

The asymmetric unit of the title compound, $C_{15}H_{10}BrNO_4S$, contains two different conformers in which the benzisothiazole rings are essentially planar, with r.m.s. deviations of 0.012 and 0.017 Å. The mean planes of the benzene rings form dihedral angles 70.49 (13) and 72.79 $(11)^{\circ}$ with the benzisothiazole rings. The orientation of the Br atoms in the two conformers exhibit the most pronounced difference, with opposing orientations in the two molecules. The crystal structure is stabilized by $\pi - \pi$ interactions between the benzene rings of the benzisothiazole moieties of one molecule and bromobenzene rings of the other molecule, with distances between the ring centroids of 3.599 (3) and 3.620 (3) Å, respectively. The crystal packing is further consolidated by pairs of weak intermolecular C-H···O hydrogen bonds, which form inversion dimers.

Related literature

For non-steroidal anti-inflammatory drugs (NSAIDs) and related compounds, see: Lombardino et al. (1971); Soler (1985); Carty et al. (1993); Turck et al. (1995); Blackham & Owen (1975); Singh et al. (2007); Vaccarino et al. (2007); Kapui et al. (2003). For related structures, see: Maliha et al. (2007); Siddiqui et al. (2007).

12284 measured reflections

 $R_{\rm int} = 0.042$

6541 independent reflections

5268 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

C ₁₅ H ₁₀ BrNO ₄ S	$\gamma = 93.640 \ (14)^{\circ}$
$M_r = 380.21$	V = 1440.3 (7) Å ³
Triclinic, P1	Z = 4
a = 7.574 (2) Å	Mo $K\alpha$ radiation
b = 13.903 (4) Å	$\mu = 3.02 \text{ mm}^{-1}$
c = 14.814 (4) Å	T = 123 K
$\alpha = 110.574 \ (15)^{\circ}$	$0.18 \times 0.18 \times 0.16 \text{ mm}$
$\beta = 96.936 \ (13)^{\circ}$	

Data collection

Nonius KappaCCD diffractometer Absorption correction: multi-scan (SORTAV; Blessing, 1997) $T_{\min} = 0.613, T_{\max} = 0.644$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.050$	397 parameters
wR(F ²) = 0.105	H-atom parameters constrained
S = 1.12	$\Delta \rho_{max} = 0.81 \text{ e } \text{\AA}_{\circ}^{-3}$
541 reflections	$\Delta \rho_{\rm max} = 0.01 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -1.04 \text{ e } \text{\AA}^{-3}$

Table 1 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	$D-\mathrm{H}$	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots \mathbf{A}$
$C14-H14\cdots O1^{i}$ $C17-H17\cdots O5^{ii}$ $C27-H27\cdots O7^{iii}$	0.95 0.95 0.95	2.40 2.43 2.29	3.305 (5) 3.225 (5) 3.164 (5)	159 141 153
symmetry codes: (i)	-x + 2, -y	+1, -z; (ii)	-x + 1, -y + 1	, -z + 1; (iii)

x + 2, -y, -z + 1.

Data collection: COLLECT (Hooft, 1998); cell refinement: DENZO (Otwinowski & Minor, 1997); data reduction: SCALE-PACK (Otwinowski & Minor, 1997); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: SHELXL97.

The authors are grateful to the Higher Education Commission, Pakistan, and the Institute of Chemistry, University of the Punjab, Lahore, Pakistan, for financial support.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PK2412).

References

- Blackham, A. & Owen, R. T. (1975). J. Pharm. Pharmacol. 27, 201-203.
- Blessing, R. H. (1997). J. Appl. Cryst. 30, 421-426.
- Carty, T. J., Marfat, A., Moore, P. F., Falkner, F. C., Twomey, T. M. & Weissmen, A. (1993). Agents Actions, 39, 157-165.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Hooft, R. (1998). COLLECT. Nonius BV, Delft, The Netherlands.
- Kapui, Z., Varga, M., Urban-Szabo, K., Mikus, E., Szabo, T., Szeredi, J., Batori, S., Finance, O. & Aranyi, P. (2003). J. Pharmacol. Exp. Ther. 305, 451-459.
- Lombardino, J. G., Wiseman, E. H. & McLamore, W. (1971). J. Med. Chem. 14, 1171-1175
- Maliha, B., Hussain, I., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, 04728.

- Otwinowski, Z. & Minor, W. (1997). *Methods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Siddiqui, W. A., Ahmad, S., Siddiqui, H. L., Tariq, M. I. & Parvez, M. (2007). Acta Cryst. E63, 04001.
- Singh, S. K., Shivaramakrishna, S., Saibaba, V., Rao, K. S., Ganesh, K. R., Vasudev, R., Kumar, P. P., Babu, J. M., Vyas, K., Rao, Y. K. & Iqbal, J. (2007). *Eur. J. Med. Chem.* 42, 456–462.
- Soler, J. E. (1985). US Patent No. 4 563 452.
- Turck, D., Busch, U., Heinzel, G., Narjes, H. & Nehmiz, G. (1995). Clin. Drug Invest. 9, 270–276.
- Vaccarino, A. L., Paul, D., Mukherjee, P. K., de Turco, E. B. R., Marcheseli, V. L., Xu, L., Trudell, M. L., Minguez, J. M., Matia, M. P., Sunkel, C., Alvarez-Builla, J. & Bazan, N. G. (2007). *Bioorg. Med. Chem.* 15, 2206–2215.

supporting information

Acta Cryst. (2012). E68, o1889-o1890 [doi:10.1107/S1600536812022428]

2-[2-(2-Bromophenyl)-2-oxoethyl]- $1\lambda^6$, 2-benzothiazole-1, 1, 3-trione

Nazia Sattar, Hamid Latif Siddiqui, Waseeq Ahmad Siddiqui, Muhammad Akram and Masood Parvez

S1. Comment

Oxicam, a class of non-steroidal anti-inflammatory drugs (NSAIDs) consists of 1,2-benzothiazine 1,1-dioxide derivatives which are found to be potent anti-inflammatory and analgesic agents, *e.g.*, Piroxicam (Lombardino *et al.*, 1971), Droxicam (Soler, 1985), Ampiroxicam (Carty *et al.*, 1993), Meloxicam (Turck *et al.*, 1995) and Sudoxicam (Blackham & Owen, 1975) are the recent members of this class currently in use in the international market. Various derivatives are known to be cyclooxygenase-2 (COX-2) inhibitors (Singh *et al.*, 2007), analgesic (Vaccarino *et al.*, 2007) and human leucocyte elastase (HLE) inhibitors (Kapui *et al.*, 2003). Earlier, we have reported the synthesis and crystal structures of some of the 1,2-benzothiazine derivatives (Maliha *et al.*, 2007; Siddiqui *et al.*, 2007). Herein, we report the synthesis and crystal structure of the title compound that has served as a precursor for the 1,2-benzothiazine derivative.

The asymmetric unit of the title compound contains two conformers (Fig. 1). In both molecules, the benzisothiazol rings S1/N1/C1–C7 and S2/N2/C16–C22 are essentially planar with rms deviations of fitted atoms being 0.017 Å and 0.012 Å, respectively, while the mean-planes of the benzene rings C10–C15 and C25–C30 form dihedral angles 70.49 (13)° and 72.79 (11)°, respectively, with the mean-planes of the benzisothiazol rings. The orientation of the Br atoms in the two conformers exhibit the most pronounced difference, with opposing orientations in the two molecules. The crystal structure is stabilized by π - π interactions between benzene rings (C1–C6) of benzisothiazol moieties in one molecule and bromobenzene rings (C25–C30) in the other molecule with distances between the ring centroids being 3.599 (3) Å and 3.620 (3) Å, respectively. The crystal packing is further consolidated by weak intermolecular C—H···O hydrogen bonds. The molecule containing S1 forms centrosymmetric dimers *via* C14—H14···O1 hydrogen bonding interactions. The other molecule also forms centrosymmetric dimers *via* C17—H17···O5 hydrogen bonds; the dimers are further extended along the *b*-axis *via* C27—H27···O7 hydrogen bonds (Fig. 2 and Tab. 1).

The bond distances and angles in the title compound (Fig. 1) agree very well with the corresponding bond distances and angles reported in closely related compounds (Maliha *et al.*, 2007; Siddiqui *et al.*, 2007).

S2. Experimental

A mixture of 2-bromo-1-(2-bromophenyl)ethanone (2.0 g, 7.2 mmol) and sodium saccharin (1.76 g, 8.6 mmol) in dimethylformamide (15 ml) was stirred at 383 K for 3 h under anhydrous conditions. On completion of the reaction (as indicated by TLC), the contents of the flask were poured into crushed ice. The precipitates formed were filtered, washed with water, ice-cold ethanol and dried to give the reddish brown title product (1.94 g, 71%). Crystals were grown by slow evaporation of a solution in EtOAc and CHCl₃ (1:1) at room temperature; m.p. 395–397 K.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with C—H = 0.95 and 0.99 Å, for aryl and methylene H-atoms, respectively. The $U_{iso}(H)$ were allowed at $1.2U_{eq}(C)$.

Figure 1

The asymmetric unit of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 2

A view of the C—H…O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms not participating in hydrogen-bonding were omitted to enhance clarity.

$2-[2-(2-Bromophenyl)-2-oxoethyl]-1\lambda^{6}, 2-benzothiazole-1, 1, 3-trione$

Crystal data	
C ₁₅ H ₁₀ BrNO ₄ S $M_r = 380.21$ Triclinic, $P1$ Hall symbol: -P 1 a = 7.574 (2) Å b = 13.903 (4) Å c = 14.814 (4) Å a = 110.574 (15)° $\beta = 96.936$ (13)° $\gamma = 93.640$ (14)° V = 1440.3 (7) Å ³	Z = 4 F(000) = 760 $D_x = 1.753 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 6425 reflections $\theta = 1.0-27.5^{\circ}$ $\mu = 3.02 \text{ mm}^{-1}$ T = 123 K Prism, colorless $0.18 \times 0.18 \times 0.16 \text{ mm}$
Data collection	
Nonius KappaCCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (<i>SORTAV</i> ; Blessing, 1997) $T_{\min} = 0.613, T_{\max} = 0.644$	12284 measured reflections 6541 independent reflections 5268 reflections with $I > 2\sigma(I)$ $R_{int} = 0.042$ $\theta_{max} = 27.5^{\circ}, \ \theta_{min} = 1.5^{\circ}$ $h = -9 \rightarrow 9$ $k = -18 \rightarrow 18$ $l = -19 \rightarrow 19$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.050$	Hydrogen site location: difference Fourier map
$wR(F^2) = 0.105$	H-atom parameters constrained
S = 1.12	$w = 1/[\sigma^2(F_o^2) + 5.440P]$
6541 reflections	where $P = (F_o^2 + 2F_c^2)/3$
397 parameters	$(\Delta/\sigma)_{\rm max} < 0.001$
0 restraints	$\Delta \rho_{\rm max} = 0.81 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	$\Delta \rho_{\rm min} = -1.04 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Br1	0.36505 (6)	0.45967 (4)	0.15933 (3)	0.03241 (12)
Br2	0.91717 (7)	0.09057 (4)	0.66368 (3)	0.03844 (13)
S1	0.67803 (14)	0.13040 (8)	-0.09125 (7)	0.0234 (2)
S2	0.60738 (13)	0.34637 (7)	0.39090 (7)	0.02000 (19)
01	0.8217 (4)	0.1917 (2)	-0.1062 (2)	0.0349 (7)
O2	0.5086 (4)	0.1188 (2)	-0.1509 (2)	0.0321 (7)
O3	0.6920 (4)	0.1327 (2)	0.1629 (2)	0.0283 (6)
O4	0.9038 (4)	0.3378 (2)	0.1237 (2)	0.0310 (7)
05	0.5563 (4)	0.3780 (2)	0.4859 (2)	0.0283 (6)
O6	0.4665 (4)	0.3119 (2)	0.3092 (2)	0.0283 (6)
07	1.0338 (4)	0.2269 (2)	0.3508 (2)	0.0260 (6)
08	0.8207 (5)	0.2096 (2)	0.5384 (2)	0.0389 (8)
N1	0.6521 (5)	0.1750 (2)	0.0257 (2)	0.0215 (7)
N2	0.7478 (4)	0.2569 (2)	0.3791 (2)	0.0207 (7)
C1	0.7402 (5)	0.0120 (3)	-0.0868 (3)	0.0209 (8)
C2	0.7806 (5)	-0.0711 (3)	-0.1628 (3)	0.0250 (8)
H2	0.7750	-0.0703	-0.2270	0.030*
C3	0.8297 (5)	-0.1558 (3)	-0.1406 (3)	0.0277 (9)
Н3	0.8576	-0.2148	-0.1908	0.033*
C4	0.8388 (5)	-0.1557 (3)	-0.0463 (3)	0.0261 (9)
H4	0.8734	-0.2146	-0.0332	0.031*
C5	0.7983 (5)	-0.0711 (3)	0.0290 (3)	0.0230 (8)
Н5	0.8054	-0.0711	0.0934	0.028*
C6	0.7473 (5)	0.0133 (3)	0.0077 (3)	0.0208 (8)
C7	0.6977 (5)	0.1109 (3)	0.0771 (3)	0.0198 (8)

C8	0 5961 (5)	0 2769 (3)	0 0709 (3)	0.0213 (8)
H8A	0 5346	0 2778	0 1264	0.026*
H8B	0.5100	0.2916	0.0229	0.026*
C9	0.7555 (5)	0.3606 (3)	0.1071 (3)	0.0205 (8)
C10	0.7307 (5)	0.4707 (3)	0.1184 (3)	0.0215 (8)
C11	0.5795 (5)	0.5213 (3)	0.1368 (3)	0.0234 (8)
C12	0.5781 (6)	0.6246 (3)	0.1462 (3)	0.0305 (9)
H12	0.4728	0.6577	0.1583	0.037*
C13	0.7319 (7)	0.6784 (4)	0.1378 (4)	0.0384 (11)
H13	0.7330	0.7492	0.1453	0.046*
C14	0.8831 (7)	0.6296 (4)	0.1187 (4)	0.0386 (11)
H14	0.9878	0.6663	0.1118	0.046*
C15	0.8825 (6)	0.5280 (3)	0.1095 (3)	0.0290 (9)
H15	0.9880	0.4953	0.0967	0.035*
C16	0.7715 (5)	0.4356 (3)	0.3809 (3)	0.0181 (7)
C17	0.7503 (5)	0.5350 (3)	0.3834 (3)	0.0229 (8)
H17	0.6394	0.5629	0.3918	0.028*
C18	0.8992 (5)	0.5917 (3)	0.3730 (3)	0.0249 (8)
H18	0.8906	0.6597	0.3735	0.030*
C19	1.0615 (5)	0.5497 (3)	0.3619 (3)	0.0232 (8)
H19	1.1622	0.5905	0.3564	0.028*
C20	1.0793 (5)	0.4497 (3)	0.3586 (3)	0.0226 (8)
H20	1.1896	0.4213	0.3501	0.027*
C21	0.9302 (5)	0.3926 (3)	0.3681 (3)	0.0181 (7)
C22	0.9183 (5)	0.2841 (3)	0.3645 (3)	0.0197 (8)
C23	0.6895 (6)	0.1524 (3)	0.3720 (3)	0.0224 (8)
H23A	0.7401	0.1020	0.3186	0.027*
H23B	0.5574	0.1393	0.3561	0.027*
C24	0.7505 (5)	0.1370 (3)	0.4683 (3)	0.0204 (8)
C25	0.7189 (5)	0.0296 (3)	0.4674 (3)	0.0196 (8)
C26	0.7853 (5)	-0.0009 (3)	0.5443 (3)	0.0255 (9)
C27	0.7537 (6)	-0.1035 (4)	0.5369 (4)	0.0343 (11)
H27	0.8041	-0.1240	0.5883	0.041*
C28	0.6490 (7)	-0.1757 (4)	0.4549 (4)	0.0383 (12)
H28	0.6255	-0.2452	0.4508	0.046*
C29	0.5792 (6)	-0.1468 (3)	0.3795 (3)	0.0335 (10)
H29	0.5064	-0.1961	0.3236	0.040*
C30	0.6150 (5)	-0.0461 (3)	0.3851 (3)	0.0243 (8)
H30	0.5682	-0.0275	0.3319	0.029*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Br1	0.0246 (2)	0.0352 (2)	0.0418 (3)	0.01061 (18)	0.01351 (19)	0.0153 (2)
Br2	0.0388 (3)	0.0569 (3)	0.0219 (2)	0.0144 (2)	0.00103 (19)	0.0167 (2)
S1	0.0299 (5)	0.0228 (5)	0.0171 (4)	0.0017 (4)	0.0034 (4)	0.0071 (4)
S2	0.0177 (4)	0.0206 (5)	0.0245 (5)	0.0040 (4)	0.0070 (4)	0.0101 (4)
01	0.048 (2)	0.0283 (16)	0.0300 (16)	-0.0069 (14)	0.0119 (15)	0.0128 (14)

O2	0.0371 (18)	0.0359 (17)	0.0229 (15)	0.0102 (14)	-0.0017 (13)	0.0111 (13)
O3	0.0403 (18)	0.0268 (15)	0.0198 (14)	0.0082 (13)	0.0104 (13)	0.0084 (12)
O4	0.0248 (16)	0.0288 (16)	0.0371 (17)	0.0087 (13)	0.0015 (13)	0.0092 (14)
05	0.0278 (16)	0.0325 (16)	0.0313 (16)	0.0069 (13)	0.0172 (13)	0.0151 (13)
O6	0.0202 (14)	0.0290 (16)	0.0341 (16)	0.0009 (12)	0.0004 (12)	0.0111 (13)
O7	0.0233 (15)	0.0285 (15)	0.0328 (16)	0.0122 (12)	0.0074 (12)	0.0166 (13)
08	0.059 (2)	0.0251 (16)	0.0254 (16)	-0.0119 (15)	-0.0055 (15)	0.0068 (13)
N1	0.0300 (18)	0.0185 (16)	0.0148 (15)	0.0028 (14)	0.0034 (14)	0.0044 (13)
N2	0.0239 (17)	0.0175 (16)	0.0249 (17)	0.0046 (13)	0.0076 (14)	0.0110 (14)
C1	0.0184 (19)	0.0199 (19)	0.0218 (19)	-0.0026 (15)	-0.0003 (15)	0.0061 (16)
C2	0.025 (2)	0.028 (2)	0.0169 (18)	-0.0004 (17)	0.0037 (16)	0.0019 (16)
C3	0.023 (2)	0.021 (2)	0.031 (2)	-0.0006 (16)	0.0070 (17)	-0.0009 (17)
C4	0.0187 (19)	0.022 (2)	0.035 (2)	0.0026 (16)	0.0054 (17)	0.0076 (18)
C5	0.023 (2)	0.0214 (19)	0.027 (2)	0.0023 (16)	0.0058 (16)	0.0105 (17)
C6	0.0180 (19)	0.0217 (19)	0.0202 (18)	-0.0023 (15)	0.0034 (15)	0.0052 (16)
C7	0.0206 (19)	0.0157 (18)	0.0222 (19)	-0.0009 (14)	0.0029 (15)	0.0065 (15)
C8	0.0207 (19)	0.0203 (19)	0.0217 (19)	0.0044 (15)	0.0010 (15)	0.0067 (16)
C9	0.024 (2)	0.0204 (19)	0.0158 (17)	0.0051 (15)	0.0028 (15)	0.0039 (15)
C10	0.022 (2)	0.024 (2)	0.0174 (18)	0.0013 (16)	0.0015 (15)	0.0072 (16)
C11	0.023 (2)	0.027 (2)	0.0204 (19)	0.0049 (16)	0.0032 (16)	0.0079 (16)
C12	0.036 (2)	0.026 (2)	0.028 (2)	0.0116 (19)	0.0030 (19)	0.0074 (18)
C13	0.046 (3)	0.023 (2)	0.045 (3)	0.004 (2)	0.001 (2)	0.012 (2)
C14	0.036 (3)	0.034 (3)	0.047 (3)	-0.008(2)	0.003 (2)	0.019 (2)
C15	0.023 (2)	0.031 (2)	0.033 (2)	0.0036 (18)	0.0031 (18)	0.0122 (19)
C16	0.0201 (19)	0.0215 (19)	0.0129 (16)	0.0022 (15)	0.0024 (14)	0.0064 (15)
C17	0.024 (2)	0.023 (2)	0.0229 (19)	0.0068 (16)	0.0046 (16)	0.0084 (16)
C18	0.027 (2)	0.022 (2)	0.026 (2)	0.0015 (16)	0.0060 (17)	0.0087 (17)
C19	0.022 (2)	0.024 (2)	0.0216 (19)	-0.0064 (16)	0.0027 (16)	0.0085 (16)
C20	0.0170 (19)	0.029 (2)	0.0229 (19)	0.0040 (16)	0.0035 (15)	0.0101 (17)
C21	0.0193 (18)	0.0208 (18)	0.0149 (17)	0.0044 (15)	0.0045 (14)	0.0066 (15)
C22	0.0201 (19)	0.025 (2)	0.0159 (17)	0.0047 (15)	0.0016 (15)	0.0093 (15)
C23	0.029 (2)	0.0188 (19)	0.0212 (19)	-0.0011 (16)	0.0027 (16)	0.0097 (16)
C24	0.0211 (19)	0.0204 (19)	0.0224 (19)	0.0027 (15)	0.0052 (15)	0.0102 (16)
C25	0.0195 (19)	0.0214 (19)	0.0191 (18)	0.0043 (15)	0.0069 (15)	0.0070 (15)
C26	0.022 (2)	0.035 (2)	0.026 (2)	0.0116 (17)	0.0077 (16)	0.0154 (18)
C27	0.038 (3)	0.042 (3)	0.043 (3)	0.022 (2)	0.021 (2)	0.032 (2)
C28	0.047 (3)	0.026 (2)	0.056 (3)	0.015 (2)	0.033 (3)	0.022 (2)
C29	0.037 (3)	0.025 (2)	0.038 (3)	0.0022 (19)	0.018 (2)	0.007 (2)
C30	0.023 (2)	0.022 (2)	0.027 (2)	0.0052 (16)	0.0077 (17)	0.0073 (17)

Geometric parameters (Å, °)

Br1—C11	1.908 (4)	C10—C15	1.403 (6)	
Br2—C26	1.890 (4)	C11—C12	1.394 (6)	
S1—O1	1.426 (3)	C12—C13	1.387 (7)	
S1—O2	1.433 (3)	C12—H12	0.9500	
S1—N1	1.664 (3)	C13—C14	1.377 (7)	
S1—C1	1.762 (4)	C13—H13	0.9500	

S2—O5	1.429 (3)	C14—C15	1.370 (6)
S2—O6	1.431 (3)	C14—H14	0.9500
S2—N2	1.664 (3)	C15—H15	0.9500
S2—C16	1.757 (4)	C16—C21	1.380 (5)
O3—C7	1.206 (5)	C16—C17	1.389 (5)
O4—C9	1.206 (5)	C17—C18	1.390 (5)
07—C22	1.207 (4)	C17—H17	0.9500
08—C24	1 200 (5)	C18—C19	1 397 (6)
N1-C7	1.200 (5)	C18—H18	0.9500
N1—C8	1.555(5) 1.453(5)	C19-C20	1 390 (5)
N2_C22	1.195 (5)	C19H19	0.9500
N2 C23	1.300(5) 1.455(5)	C_{1}^{2}	1 388 (5)
$N_2 = C_{23}$	1.433(3)	C20—C21	1.388 (3)
C1 - C2	1.362(3) 1.287(5)	C_{20} $- H_{20}$	0.9300
C1 = C0	1.367 (3)	C_{21} C_{22}	1.487(3)
$C_2 = C_3$	1.390 (6)	C_{23} C_{24}	1.537 (5)
C2—H2	0.9500	C23—H23A	0.9900
C3—C4	1.389 (6)	C23—H23B	0.9900
С3—Н3	0.9500	C24—C25	1.493 (5)
C4—C5	1.389 (6)	C25—C26	1.400 (5)
C4—H4	0.9500	C25—C30	1.405 (6)
C5—C6	1.383 (5)	C26—C27	1.394 (6)
С5—Н5	0.9500	C27—C28	1.387 (7)
C6—C7	1.489 (5)	C27—H27	0.9500
C8—C9	1.525 (5)	C28—C29	1.373 (7)
C8—H8A	0.9900	C28—H28	0.9500
C8—H8B	0.9900	C29—C30	1.381 (6)
C9—C10	1.507 (5)	C29—H29	0.9500
C10—C11	1.387 (5)	C30—H30	0.9500
O1—S1—O2	116.92 (19)	C14—C13—C12	120.2 (4)
O1—S1—N1	109.81 (18)	C14—C13—H13	119.9
O2—S1—N1	109.41 (18)	C12—C13—H13	119.9
01 - S1 - C1	112.50 (19)	C15—C14—C13	119.9 (4)
02-81-C1	112.67 (18)	C15—C14—H14	120.1
N1 = S1 = C1	92.85 (17)	C13-C14-H14	120.1
05-82-06	$117\ 20\ (18)$	C14-C15-C10	120.1 122.0(4)
05 - 82 - N2	109.94(17)	C14-C15-H15	119.0
06 S2 N2	109.94(17) 109.76(18)	C10 $C15$ $H15$	119.0
00-32-102	109.70(18) 112.41(18)	$C_{10} - C_{15} - M_{15}$	119.0
05-32-016	112.41(10) 112.30(17)	$C_{21} = C_{10} = C_{17}$	123.2(3)
$N_2 = S_2 = C_{10}$	112.30(17)	C_{21} C_{10} S_{2}	110.1(3) 126.7(3)
$N_2 = S_2 = C_{10}$	92.44(17)	C1/-C10-S2	120.7(3)
$C_1 = 1 \times 1 = 0$	123.3(3)	C16 C17 U17	110.7 (4)
C = N1 = S1	115.4 (5)	C10-C1/-H1/	121./
$C_0 = N_1 = S_1$	121.2 (3)	C18 - C1 / -H1 / C17 - C12 - C12	121./
C22—N2—C23	121.7 (3)	C17— $C18$ — $C19$	120.7 (4)
C22—N2—S2	115.7 (3)	C17—C18—H18	119.7
C23—N2—S2	122.2 (3)	C19—C18—H18	119.7
C2-C1-C6	123.1 (4)	C20-C19-C18	121.7 (4)

~ ~ ~		GR	
C2-C1-S1	127.2 (3)	С20—С19—Н19	119.2
C6—C1—S1	109.6 (3)	C18—C19—H19	119.2
C1—C2—C3	116.5 (4)	C21—C20—C19	117.7 (4)
C1—C2—H2	121.7	С21—С20—Н20	121.1
C3—C2—H2	121.7	C19—C20—H20	121.1
C4—C3—C2	121.3 (4)	C16—C21—C20	120.1 (3)
C4—C3—H3	119.4	$C_{16} - C_{21} - C_{22}$	1133(3)
C2_C3_H3	119.1	C_{20} C_{21} C_{22}	126.6(3)
$C_2 = C_3 = H_3$	117.4	07 C22 N2	120.0(3)
$C_3 = C_4 = C_3$	121.1 (4)	07 - 022 - 021	124.1(4)
C5—C4—H4	119.5	$0/-c_{22}-c_{21}$	127.4 (4)
C5—C4—H4	119.5	N2—C22—C21	108.4 (3)
C6—C5—C4	118.3 (4)	N2—C23—C24	110.8 (3)
С6—С5—Н5	120.9	N2—C23—H23A	109.5
C4—C5—H5	120.9	C24—C23—H23A	109.5
C5—C6—C1	119.7 (4)	N2—C23—H23B	109.5
C5—C6—C7	126.8 (4)	С24—С23—Н23В	109.5
C1—C6—C7	113.5 (3)	H23A—C23—H23B	108.1
O3—C7—N1	124.0 (4)	O8—C24—C25	124.0 (4)
03-07-06	127.5(4)	08-C24-C23	1196(3)
N1 - C7 - C6	108.4(3)	C_{25} C_{24} C_{23}	1164(3)
$N1 = C^{2} = C^{2}$	100.4(3)	$C_{25} = C_{24} = C_{25}$	110.4(3)
	111.4 (5)	$C_{20} = C_{25} = C_{30}$	117.4(4)
$NI - C\delta - H\delta A$	109.4	$C_{20} = C_{23} = C_{24}$	124.0 (4)
С9—С8—Н8А	109.4	C30—C25—C24	118.6 (3)
N1—C8—H8B	109.4	C27—C26—C25	120.6 (4)
С9—С8—Н8В	109.4	C27—C26—Br2	115.6 (3)
H8A—C8—H8B	108.0	C25—C26—Br2	123.8 (3)
O4—C9—C10	119.6 (4)	C28—C27—C26	120.3 (4)
O4—C9—C8	119.7 (3)	С28—С27—Н27	119.9
C10—C9—C8	120.6 (3)	С26—С27—Н27	119.9
C11—C10—C15	117.1 (4)	C29—C28—C27	120.0 (4)
C11—C10—C9	128 4 (4)	C29—C28—H28	120.0
C_{15} C_{10} C_{9}	1145(4)	C27—C28—H28	120.0
C10 C11 C12	121.6(4)	C_{28}^{28} C_{29}^{29} C_{30}^{30}	120.0 1100(4)
$C_{10} = C_{11} = C_{12}$	121.0(4) 122.4(2)	$C_{20} = C_{20} = C_{30}$	120.0
C10 - C11 - B11	123.4(3)	$C_{20} = C_{29} = H_{29}$	120.0
	114.8 (3)	C_{30} C_{29} H_{29}	120.0
C13—C12—C11	119.3 (4)	C29—C30—C25	121.8 (4)
C13—C12—H12	120.4	С29—С30—Н30	119.1
C11—C12—H12	120.4	С25—С30—Н30	119.1
01—S1—N1—C7	-111.1 (3)	Br1-C11-C12-C13	175.6 (3)
O2—S1—N1—C7	119.3 (3)	C11—C12—C13—C14	1.1 (7)
C1—S1—N1—C7	4.1 (3)	C12—C13—C14—C15	-1.1 (7)
O1—S1—N1—C8	65.3 (3)	C13—C14—C15—C10	0.4 (7)
02 - 1 - 1 - 28	-64.3 (3)	C11—C10—C15—C14	0.2 (6)
C1 = S1 = N1 = C8	-1796(3)	C9-C10-C15-C14	-1794(4)
O5 S2 N2 C22	-1167(3)	$05 \ S2 \ C16 \ C21$	113 1 (2)
05 - 52 - 102 - 022	112.0 (2)	05 - 52 - 010 - 021	-1122(3)
00 - 52 - N2 - 022	113.0 (3)	00-32-010-021	112.2(3)
C10-S2-N2-C22	-1.8(3)	N2-S2-C16-C21	0.3 (3)

O5—S2—N2—C23	70.9 (3)	O5—S2—C16—C17	-67.8 (4)
O6—S2—N2—C23	-59.4 (3)	O6—S2—C16—C17	66.9 (4)
C16—S2—N2—C23	-174.2 (3)	N2—S2—C16—C17	179.4 (3)
O1—S1—C1—C2	-69.0 (4)	C21—C16—C17—C18	-0.4 (6)
O2—S1—C1—C2	65.8 (4)	S2-C16-C17-C18	-179.4 (3)
N1—S1—C1—C2	178.2 (4)	C16—C17—C18—C19	-0.8 (6)
O1—S1—C1—C6	109.9 (3)	C17—C18—C19—C20	1.5 (6)
O2—S1—C1—C6	-115.4 (3)	C18—C19—C20—C21	-0.9 (6)
N1—S1—C1—C6	-2.9 (3)	C17—C16—C21—C20	1.0 (6)
C6-C1-C2-C3	0.1 (6)	S2-C16-C21-C20	-179.9 (3)
S1—C1—C2—C3	178.8 (3)	C17—C16—C21—C22	-178.0 (3)
C1—C2—C3—C4	-0.5 (6)	S2—C16—C21—C22	1.1 (4)
C2—C3—C4—C5	0.3 (6)	C19—C20—C21—C16	-0.3 (5)
C3—C4—C5—C6	0.4 (6)	C19—C20—C21—C22	178.6 (4)
C4—C5—C6—C1	-0.8 (6)	C23—N2—C22—O7	-4.5 (6)
C4—C5—C6—C7	179.7 (4)	S2—N2—C22—O7	-176.9 (3)
C2-C1-C6-C5	0.6 (6)	C23—N2—C22—C21	175.0 (3)
S1—C1—C6—C5	-178.3 (3)	S2—N2—C22—C21	2.6 (4)
C2—C1—C6—C7	-179.9 (4)	C16—C21—C22—O7	177.2 (4)
S1—C1—C6—C7	1.3 (4)	C20—C21—C22—O7	-1.7 (6)
C8—N1—C7—O3	1.4 (6)	C16—C21—C22—N2	-2.3 (4)
S1—N1—C7—O3	177.7 (3)	C20-C21-C22-N2	178.8 (4)
C8—N1—C7—C6	179.8 (3)	C22—N2—C23—C24	83.4 (4)
S1—N1—C7—C6	-3.9 (4)	S2—N2—C23—C24	-104.7 (3)
C5—C6—C7—O3	-0.7 (7)	N2—C23—C24—O8	6.4 (5)
C1—C6—C7—O3	179.8 (4)	N2—C23—C24—C25	-172.9 (3)
C5—C6—C7—N1	-179.0 (4)	O8—C24—C25—C26	-7.6 (6)
C1—C6—C7—N1	1.5 (4)	C23—C24—C25—C26	171.7 (4)
C7—N1—C8—C9	90.7 (4)	O8—C24—C25—C30	171.8 (4)
S1—N1—C8—C9	-85.4 (4)	C23—C24—C25—C30	-8.9 (5)
N1—C8—C9—O4	-22.3 (5)	C30—C25—C26—C27	2.2 (6)
N1—C8—C9—C10	155.1 (3)	C24—C25—C26—C27	-178.4 (4)
O4—C9—C10—C11	-155.3 (4)	C30—C25—C26—Br2	-176.7 (3)
C8—C9—C10—C11	27.3 (6)	C24—C25—C26—Br2	2.7 (5)
O4—C9—C10—C15	24.3 (5)	C25—C26—C27—C28	-2.9 (6)
C8—C9—C10—C15	-153.1 (4)	Br2—C26—C27—C28	176.0 (3)
C15—C10—C11—C12	-0.2 (6)	C26—C27—C28—C29	1.4 (6)
C9—C10—C11—C12	179.4 (4)	C27—C28—C29—C30	0.7 (6)
C15—C10—C11—Br1	-176.0 (3)	C28—C29—C30—C25	-1.4 (6)
C9—C10—C11—Br1	3.6 (6)	C26—C25—C30—C29	-0.1 (6)
C10-C11-C12-C13	-0.5 (6)	C24—C25—C30—C29	-179.5 (4)

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D····A	D—H···A	
C3—H3…O7 ⁱ	0.95	2.56	3.238 (5)	129	
C14—H14…O1 ⁱⁱ	0.95	2.40	3.305 (5)	159	
С17—Н17…О5 ^{ііі}	0.95	2.43	3.225 (5)	141	

Acta Cryst. (2012). E68, o1889–o1890

supporting information

C27—H27…O7 ^{iv}	0.95	2.29	3.164 (5)	153
С30—Н30…О2 ^v	0.95	2.51	3.251 (5)	135
C8—H8A····Br1	0.99	2.82	3.165 (4)	101
C23—H23A····O3	0.99	2.48	3.014 (5)	114

Symmetry codes: (i) -x+2, -y, -z; (ii) -x+2, -y+1, -z; (iii) -x+1, -y+1, -z+1; (iv) -x+2, -y, -z+1; (v) -x+1, -y, -z.