organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

3-(2-Methyl-2-nitropropyl)-1H-indole

Zheng Fang,^a Feng Zhang,^a Bao-hua Zou^a and Kai Guo^{b*}

^aSchool of Pharmaceutical Sciences, Nanjing University of Technology, Puzhu South Road No. 30 Nanjing, Nanjing 210009, People's Republic of China, and ^bCollege of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, Puzhu South Road No. 30 Nanjing, Nanjing 210009, People's Republic of China Correspondence e-mail: kaiguo@njut.edu.cn

Received 24 April 2012; accepted 7 May 2012

Key indicators: single-crystal X-ray study; T = 293 K; mean σ (C–C) = 0.004 Å; R factor = 0.057; wR factor = 0.179; data-to-parameter ratio = 14.7.

In the title compound, $C_{12}H_{14}N_2O_2$, the indole ring is essentially planar, with an r.m.s. deviation of 0.0136 Å. In the crystal, pairs of N-H···O hydrogen bonds link the molecules into inversion dimers..

Related literature

The title compound is an intermediate of the β -adrenergic receptor antagonist (β blocker) bucindolol {systematic name: 1-[[2-(3-indolyl)-1,1-dimethylethyl]amino]-3-(2-nitrilearyloxy)-2-propanol)}, see: Qiu et al., (2003). For synthetic procedures, see: Kerighbaum et al. (1980). For a related structure, see: Léger et al. (1984).

Experimental

Crystal data

C12H14N2O2 $M_r = 218.25$ Monoclinic, $P2_1/n$ a = 6.1170 (12) Åb = 10.123 (2) Å c = 18.868 (4) Å $\beta = 91.36 \ (3)^{\circ}$

V = 1168.0 (4) Å³ Z = 4Mo $K\alpha$ radiation $\mu = 0.09 \text{ mm}^-$ T = 293 K $0.20 \times 0.20 \times 0.10 \text{ mm}$

Data collection

Enraf–Nonius CAD-4	2141 independent reflections
diffractometer	1089 reflections with $I > 2\sigma(I)$
Absorption correction: ψ scan	$R_{\rm int} = 0.029$
(North et al., 1968)	3 standard reflections every 200
$T_{\rm min} = 0.983, T_{\rm max} = 0.992$	reflections
2354 measured reflections	intensity decay: 1%
Refinement	

$R[F^2 > 2\sigma(F^2)] = 0.057$	146 parameters
$wR(F^2) = 0.179$	H-atom parameters constrained
S = 1.00	$\Delta \rho_{\rm max} = 0.14 \ {\rm e} \ {\rm \AA}^{-3}$
2141 reflections	$\Delta \rho_{\rm min} = -0.13 \text{ e} \text{ Å}^{-3}$

Table 1

D

N

Hydrogen-bond geometry (Å, °).

$-H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$-H1A\cdots O2^{i}$	0.86	2.55	3.187 (4)	132

Symmetry code: (i) -x + 1, -y + 1, -z + 2.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: PLATON (Spek, 2009).

This research was supported financially by the College of Life Science and Pharmaceutical Engineering, Nanjing University of Technology, the 973 project (2012CB725204) and the Key Basic Research Program of China.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: PV2541).

References

- Enraf-Nonius (1989). CAD-4 Software. Enraf-Nonius, Delft, The Netherlands
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Kerighbaum, W. E., Matier, W. L. & Dennis, R. D. (1980). J. Med. Chem. 23,
- 285-289 Léger, J.-M., Goursolle, M. & Carpy, A. (1984). Acta Cryst. C40, 706-708.
- North, A. C. T., Phillips, D. C. & Mathews, F. S. (1968). Acta Cryst. A24, 351-359
- Qiu, F., Wang, L. & Dong, Y. (2003). Zhongguo Yaowu Huaxue Zazhi, 13, 353-355.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o1758 [doi:10.1107/S1600536812020582]

3-(2-Methyl-2-nitropropyl)-1H-indole

Zheng Fang, Feng Zhang, Bao-hua Zou and Kai Guo

S1. Comment

Bucindolol, 1-[[2-(3-indolyl)-1,l-dimethylethyl]-amino]-3-(2-nitrile-aryloxy)-2-propanol, is one of the β -adrenergic receptor antagonists (β blocker) for the treatment of essential hypertension (Qiu *et al.*, 2003). As a part of our studies on the synthesis of Bucindolol, the title compound (Fig. 1) which is used as the key intermediate, has been synthesized and its crystal structure reported in this article. The crystal structure of the title compound is stabilized by N1—H1A···O2 hydrogen bonds resulting in dimers of molecules lying about inversion centers (Fig. 1 and Tab. 1). The bond distances and angles in the title molecule are in excellent agreement with the corresponding bond distances and angles reported for a related structure (Léger *et al.*, 1984).

S2. Experimental

A mixture of gramine (13.0 g,(0.069 mol), 2-nitropropane (44 g,(0.49 mol), and NaOH pellets (2.9 g, 0.072 mol) was stirred and heated at reflux for 18 h. After the mixture had cooled to 298 K, 10% HOAc (60 ml) was added and stirring was continued for 1 h. The mixture was partitioned between 150 ml each of EtOH and water to afford an organic layer, which was separated, washed three times with water, and dried over MgS0₄. Evaporation afforded 16.5 g of dark oil which slowly crystallized on standing at 298 K. Recrystallization of the crude product from EtOH-H₂0 (1:1) gave 12.6 g (78%) of the title compound as pure yellow crystals (Kerighbaum *et al.*, 1980). Crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporation of an ethanol solution.

S3. Refinement

All H atoms were positioned geometrically and refined using a riding model, with N—H = 0.86 Å and C—H = 0.93, 0.96 and 0.97 Å, for aryl, methyl and methylene H-atoms, respectively. The $U_{iso}(H)$ were allowed at $1.5U_{eq}(methyl C)$ or $1.2U_{eq}(non-methyl C/N)$.

Figure 1

The molecular structure of the title compound with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. H atoms are presented as small spheres of arbitrary radius.

Figure 2

A view of the N—H…O hydrogen bonds (dotted lines) in the crystal structure of the title compound. H atoms non-participating in hydrogen- bonding were omitted for clarity.

3-(2-Methyl-2-nitropropyl)-1H-indole

Crystal data

 $C_{12}H_{14}N_2O_2$ $M_r = 218.25$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 6.1170 (12) Å b = 10.123 (2) Å c = 18.868 (4) Å $\beta = 91.36 (3)^{\circ}$ $V = 1168.0 (4) \text{ Å}^3$ Z = 4

Data collection

Enraf–Nonius CAD-4 diffractometer Radiation source: fine-focus sealed tube Graphite monochromator $\omega/2\theta$ scans Absorption correction: ψ scan (North *et al.*, 1968) $T_{\min} = 0.983, T_{\max} = 0.992$ 2354 measured reflections

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.057$ $wR(F^2) = 0.179$ S = 1.002141 reflections 146 parameters 0 restraints Primary atom site location: structure-invariant direct methods Secondary atom site location: difference Fourier map F(000) = 464 $D_x = 1.241 \text{ Mg m}^{-3}$ Mo K\alpha radiation, \lambda = 0.71073 \mathbf{A} Cell parameters from 25 reflections $\theta = 9-13^{\circ}$ $\mu = 0.09 \text{ mm}^{-1}$ T = 293 KBlock, yellow $0.20 \times 0.20 \times 0.10 \text{ mm}$

2141 independent reflections 1089 reflections with $I > 2\sigma(I)$ $R_{int} = 0.029$ $\theta_{max} = 25.4^{\circ}, \ \theta_{min} = 2.2^{\circ}$ $h = 0 \rightarrow 7$ $k = 0 \rightarrow 12$ $l = -22 \rightarrow 22$ 3 standard reflections every 200 reflections intensity decay: 1%

Hydrogen site location: inferred from neighbouring sites H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.084P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} < 0.001$ $\Delta\rho_{max} = 0.14 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.13 \text{ e } \text{Å}^{-3}$ Extinction correction: *SHELXL97* (Sheldrick, 2008), Fc*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4} Extinction coefficient: 0.043 (7)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates a	nd isotropic	or equivalent	<i>isotropic</i>	displacement	parameters	$(Å^2)$
	1	1	1	1	1	· · ·

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.3793 (4)	0.2257 (3)	1.01215 (14)	0.1125 (10)	
C1	0.3885 (5)	0.3891 (3)	0.78945 (14)	0.0565 (8)	

N1	0.5544 (5)	0.5489 (3)	0.85178 (14)	0.0795 (9)
H1A	0.6445	0.6098	0.8650	0.095*
O2	0.1178 (5)	0.3613 (3)	1.02354 (13)	0.0997 (9)
C2	0.3631 (5)	0.3039 (3)	0.73199 (16)	0.0680 (9)
H2A	0.2434	0.2474	0.7288	0.082*
N2	0.2086 (5)	0.2746 (3)	0.99150 (14)	0.0704 (8)
C3	0.5157 (7)	0.3042 (4)	0.68028 (18)	0.0818 (11)
H3A	0.4991	0.2472	0.6419	0.098*
C4	0.6966 (7)	0.3888 (4)	0.68414 (19)	0.0860 (11)
H4A	0.7994	0.3858	0.6487	0.103*
C5	0.7254 (6)	0.4763 (4)	0.73929 (19)	0.0784 (10)
H5A	0.8442	0.5335	0.7418	0.094*
C6	0.5676 (5)	0.4748 (3)	0.79116 (16)	0.0651 (8)
C7	0.3738 (6)	0.5096 (3)	0.88767 (17)	0.0742 (10)
H7A	0.3307	0.5450	0.9306	0.089*
C8	0.2668 (5)	0.4125 (3)	0.85229 (14)	0.0593 (8)
C9	0.0639 (5)	0.3434 (3)	0.87513 (15)	0.0681 (9)
H9A	-0.0179	0.3157	0.8330	0.082*
H9B	-0.0259	0.4065	0.9000	0.082*
C10	0.0990 (4)	0.2237 (3)	0.92255 (15)	0.0594 (8)
C11	-0.1206 (5)	0.1680 (4)	0.9453 (2)	0.0956 (13)
H11A	-0.2075	0.2377	0.9646	0.143*
H11B	-0.0964	0.1010	0.9806	0.143*
H11C	-0.1961	0.1303	0.9049	0.143*
C12	0.2438 (5)	0.1190 (3)	0.89062 (18)	0.0751 (10)
H12A	0.3789	0.1583	0.8767	0.113*
H12B	0.1709	0.0811	0.8498	0.113*
H12C	0.2732	0.0511	0.9251	0.113*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0832 (17)	0.165 (3)	0.0884 (18)	0.013 (2)	-0.0211 (15)	-0.0015 (18)
C1	0.0663 (19)	0.0544 (17)	0.0482 (17)	0.0097 (16)	-0.0089 (14)	-0.0007 (14)
N1	0.103 (2)	0.0663 (18)	0.0686 (18)	-0.0168 (17)	-0.0142 (16)	-0.0007 (15)
O2	0.131 (2)	0.104 (2)	0.0646 (15)	0.0075 (17)	0.0064 (14)	-0.0244 (15)
C2	0.085 (2)	0.065 (2)	0.0542 (18)	0.0045 (18)	-0.0038 (16)	-0.0053 (16)
N2	0.0663 (18)	0.087 (2)	0.0576 (16)	-0.0094 (17)	0.0052 (14)	0.0047 (16)
C3	0.115 (3)	0.073 (2)	0.0575 (19)	0.018 (2)	0.005 (2)	-0.0036 (18)
C4	0.099 (3)	0.094 (3)	0.066 (2)	0.024 (3)	0.015 (2)	0.019 (2)
C5	0.080(2)	0.079 (2)	0.076 (2)	0.001 (2)	-0.007(2)	0.024 (2)
C6	0.079 (2)	0.0619 (19)	0.0543 (18)	0.0063 (19)	-0.0058 (17)	0.0084 (16)
C7	0.099 (3)	0.069 (2)	0.0540 (19)	0.004 (2)	-0.0044 (19)	-0.0060 (17)
C8	0.072 (2)	0.0553 (18)	0.0500 (17)	0.0110 (17)	-0.0094 (15)	-0.0021 (15)
C9	0.0590 (19)	0.091 (2)	0.0543 (18)	0.0182 (18)	-0.0052 (14)	-0.0103 (17)
C10	0.0523 (17)	0.071 (2)	0.0552 (17)	-0.0026 (16)	-0.0003 (14)	-0.0109 (15)
C11	0.062 (2)	0.117 (3)	0.108 (3)	-0.020 (2)	0.020 (2)	-0.020 (3)
C12	0.075 (2)	0.068 (2)	0.083 (2)	-0.0041 (18)	0.0151 (18)	-0.0052 (18)

Geometric parameters (Å, °)

01—N2	1.212 (3)	C5—H5A	0.9300
C1—C2	1.391 (4)	C7—C8	1.349 (4)
C1—C6	1.397 (4)	C7—H7A	0.9300
C1—C8	1.435 (4)	C8—C9	1.497 (4)
N1—C7	1.369 (4)	C9—C10	1.519 (4)
N1C6	1.372 (4)	С9—Н9А	0.9700
N1—H1A	0.8600	С9—Н9В	0.9700
O2—N2	1.208 (3)	C10—C12	1.516 (4)
C2—C3	1.366 (4)	C10—C11	1.528 (4)
C2—H2A	0.9300	C11—H11A	0.9600
N2-C10	1.538 (4)	C11—H11B	0.9600
C3—C4	1.400 (5)	C11—H11C	0.9600
С3—НЗА	0.9300	C12—H12A	0.9600
C4—C5	1.374 (5)	C12—H12B	0.9600
C4—H4A	0.9300	C12—H12C	0.9600
C5—C6	1.391 (5)		
C2-C1-C6	118.4 (3)	C7—C8—C1	105.9 (3)
C2—C1—C8	134.1 (3)	C7—C8—C9	126.4 (3)
C6—C1—C8	107.5 (3)	C1—C8—C9	127.7 (3)
C7—N1—C6	108.5 (3)	C8—C9—C10	115.8 (2)
C7—N1—H1A	125.7	С8—С9—Н9А	108.3
C6—N1—H1A	125.7	С10—С9—Н9А	108.3
C3—C2—C1	119.3 (3)	C8—C9—H9B	108.3
С3—С2—Н2А	120.3	С10—С9—Н9В	108.3
C1—C2—H2A	120.3	H9A—C9—H9B	107.4
O2—N2—O1	122.6 (3)	C12—C10—C9	113.6 (2)
O2—N2—C10	118.0 (3)	C12—C10—C11	112.3 (3)
O1—N2—C10	119.3 (3)	C9—C10—C11	110.3 (3)
C2—C3—C4	121.1 (3)	C12—C10—N2	108.9 (2)
С2—С3—НЗА	119.4	C9—C10—N2	106.5 (2)
С4—С3—Н3А	119.4	C11—C10—N2	104.8 (2)
C5—C4—C3	121.4 (3)	C10—C11—H11A	109.5
C5—C4—H4A	119.3	C10—C11—H11B	109.5
C3—C4—H4A	119.3	H11A—C11—H11B	109.5
C4—C5—C6	116.6 (4)	C10—C11—H11C	109.5
C4—C5—H5A	121.7	H11A—C11—H11C	109.5
С6—С5—Н5А	121.7	H11B—C11—H11C	109.5
N1-C6-C5	129.5 (3)	C10—C12—H12A	109.5
N1—C6—C1	107.3 (3)	C10—C12—H12B	109.5
C5—C6—C1	123.2 (3)	H12A—C12—H12B	109.5
C8—C7—N1	110.8 (3)	C10—C12—H12C	109.5
С8—С7—Н7А	124.6	H12A—C12—H12C	109.5
N1—C7—H7A	124.6	H12B—C12—H12C	109.5
C6-C1-C2-C3	1.7 (4)	C2-C1-C8-C7	-179.3 (3)

C8—C1—C2—C3	-178.4 (3)	C6—C1—C8—C7	0.6 (3)
C1—C2—C3—C4	-0.1 (5)	C2-C1-C8-C9	1.2 (5)
C2—C3—C4—C5	-1.2 (5)	C6—C1—C8—C9	-178.8 (3)
C3—C4—C5—C6	0.9 (5)	C7—C8—C9—C10	-87.7 (4)
C7—N1—C6—C5	-178.0 (3)	C1-C8-C9-C10	91.6 (3)
C7—N1—C6—C1	0.8 (3)	C8—C9—C10—C12	-56.2 (3)
C4—C5—C6—N1	179.4 (3)	C8—C9—C10—C11	176.7 (3)
C4—C5—C6—C1	0.8 (4)	C8—C9—C10—N2	63.6 (3)
C2-C1-C6-N1	179.1 (3)	O2-N2-C10-C12	178.4 (3)
C8—C1—C6—N1	-0.9 (3)	O1—N2—C10—C12	-2.7 (4)
C2-C1-C6-C5	-2.0 (4)	O2—N2—C10—C9	55.6 (3)
C8—C1—C6—C5	178.0 (3)	O1—N2—C10—C9	-125.5 (3)
C6—N1—C7—C8	-0.4 (4)	O2—N2—C10—C11	-61.3 (4)
N1—C7—C8—C1	-0.1 (3)	O1—N2—C10—C11	117.6 (3)
N1—C7—C8—C9	179.3 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
N1—H1A····O2 ⁱ	0.86	2.55	3.187 (4)	132

Symmetry code: (i) -x+1, -y+1, -z+2.