

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

2-[(2,6-Diisopropylphenyl)iminomethyl]-4-iodophenol

P. Balamurugan,^a K. Kanmani Raja,^b I. Mohammed Bilal,^c G. Chakkaravarthi^{d*} and G. Rajagopal^{e*}

^aDepartment of Chemistry, Government Arts College (Men), Nandanam, Chennai 600 035, India, ^bDepartment of Chemistry, Government Thirumagal Mills College, Gudiyattam 632 604, India, ^cDepartment of Chemistry, B.S. Abdur Rahman University, Vandalur, Chennai 600 049, India, ^dDepartment of Physics, CPCL Polytechnic College, Chennai 600 068, India, and ^eDepartment of Chemistry, Government Arts College, Melur 625 106, India Correspondence e-mail: chakkaravarthi_2005@yahoo.com,

rajagopal18@yahoo.com

Received 10 May 2012; accepted 24 May 2012

Key indicators: single-crystal X-ray study; T = 295 K; mean σ (C–C) = 0.005 Å; R factor = 0.039; wR factor = 0.111; data-to-parameter ratio = 25.8.

The asymmetric unit of title compound, C₁₉H₂₂INO, contains two independent molecules. Classical intramolecular O- $H \cdots N$ hydrogen bonds stabilize the molecular structures. The crystal structure is stabilized by weak intermolecular C- $H \cdots \pi$ and $\pi - \pi$ [centroid–centroid = 3.8622 (18) Å] interactions. In both molecules, the aromatic rings are nearly perpendicular to each other [dihedral angles = 84.26(17) and 86.69 (15)°].

Related literature

For the biological activity of Schiff base ligands, see: Santos et al. (2001). For related strucutures, see: Raja et al. (2008); Lin et al. (2005).

45699 measured reflections 10505 independent reflections

 $R_{\rm int} = 0.025$

7252 reflections with $I > 2\sigma(I)$

Experimental

Crystal data

C ₁₉ H ₂₂ INO	$\gamma = 76.408 \ (2)^{\circ}$
$M_r = 407.28$	V = 1855.00 (12) Å ³
Triclinic, P1	Z = 4
a = 5.9891 (2) Å	Mo $K\alpha$ radiation
b = 12.4270 (5) Å	$\mu = 1.73 \text{ mm}^{-1}$
c = 25.8832 (10) Å	$T = 295 { m K}$
$\alpha = 83.065 \ (2)^{\circ}$	$0.26 \times 0.24 \times 0.20 \text{ mm}$
$\beta = 84.860 \ (3)^{\circ}$	

Data collection

Bruker Kappa APEXII CCD diffractometer Absorption correction: multi-scan (SADABS: Sheldrick, 1996) $T_{\min} = 0.662, T_{\max} = 0.724$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.039$	407 parameters
$wR(F^2) = 0.111$	H-atom parameters constrained
S = 1.01	$\Delta \rho_{\rm max} = 0.91 \ {\rm e} \ {\rm \AA}^{-3}$
10505 reflections	$\Delta \rho_{\rm min} = -0.65 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

Cg2 is the centroid of the C8-C13 ring.

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$O1 - H1 \cdots N1$	0.82	1.88	2.606(3)	147
$C16-H16A\cdots Cg2^{i}$	0.82	2.91	2.617 (3) 3.785 (5)	143 153

Symmetry code: (i) x - 1, y, z.

Data collection: APEX2 (Bruker, 2004); cell refinement: SAINT (Bruker, 2004); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: PLATON (Spek, 2009); software used to prepare material for publication: SHELXL97.

The authors wish to acknowledge the SAIF, IIT Madras, for the data collection.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RK2360).

References

Bruker (2004). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.

Lin, J., Cui, G.-H., Li, J.-R. & Xu, S.-S. (2005). Acta Cryst. E61, 0627-0628.

Raja, K. K., Bilal, I. M., Thambidurai, S., Rajagopal, G. & SubbiahPandi, A. (2008). Acta Cryst. E64, o2265.

Santos, M. L. P., Bagatin, I. A., Pereira, E. M. & Ferreira, A. M. D. C. (2001). J. Chem. Soc. Dalton Trans. pp. 838-844.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o1915 [doi:10.1107/S1600536812023653]

2-[(2,6-Diisopropylphenyl)iminomethyl]-4-iodophenol

P. Balamurugan, K. Kanmani Raja, I. Mohammed Bilal, G. Chakkaravarthi and G. Rajagopal

S1. Comment

Schiff base derivatives exhibit antibacterial, antitumor and antitoxic activities (Santos *et al.*, 2001). The asymmetric unit of the title compound **I**, (Fig. 1), contains two independent molecules. The geometric parameters in **I** are comparable with the similar reported structures (Lin *et al.*, 2005; Raja *et al.*, 2008). The dihedral angles between the benzene rings (C1-C6) and (C8-C13) & (C20-C25) and (C27-C32) are 84.26 (17)° and 86.69 (15)°. Further, both molecules adopts antiperiplanar (C1-C7-N1-C8 = 177.2 (2)° and C20-C26-N2-C27 = 175.8 (2)°) conformation about C=N bond.

The molecular structure is stabilized by weak intramolecular O–H···N hydrogen bonds and the crystal structure exhibit weak intermolecular C–H··· π (Cg2ⁱ) (Table 1, Fig. 2) and π – π interactions (Cg1···Cg1ⁱⁱ) with distance 3.8622 (18)Å. Cg1 is the centroid of (C1-C6) ring; Cg2 is the centroid of (C8-C13) ring. Symmetry codes: (i) *x*-1, *y*, *z*; (ii) 1-*x*, 1-*y*, *-z*.

S2. Experimental

An ethanolic solution (10 ml) of 2,6-diisopropylaniline (2 mmol) was stirred in a round bottom flask followed by drop wise addition of ethanolic solution (10 ml) of 5-iodosalicylaldehyde (2 mmol). The reaction mixture was then refluxed for 3 h and upon cooling to 273 K. A yellow solid precipitate from the reaction mixture was filtered out, washed with ice cold ethanol and dried over anhydrous CaCl₂. Single crystals of good diffraction quality were obtained by the recrystallization of compound from ethanol solution by slow evaporation. Yield: 70 %.

S3. Refinement

The H atoms were positioned geometrically with C–H = 0.93-0.98Å and O–H = 0.82Å, and allowed to ride on their parent atoms, with $U_{iso}(H) = 1.5 U_{eq}(O)$ (or) $1.2U_{eq}(C)$ (or) $1.5U_{eq}(C_{methyl})$.

Figure 1

The molecular structure of title compound with the atom labels. Displacement ellipsoids are drawn at 30% probability level. H atoms are presented as a small spheres of arbitrary radius.

Figure 2

The intramolecular O–H···N hydrogen bonds and intermolecular C–H··· π interaction (dashed lines) in crystal structure of title compound.

2-[(2,6-Diisopropylphenyl)iminomethyl]-4-iodophenol

<i>b</i> = 12.4270 (5) Å
c = 25.8832 (10) Å
$\alpha = 83.065 \ (2)^{\circ}$
$\beta = 84.860 \ (3)^{\circ}$
$\gamma = 76.408 \ (2)^{\circ}$

 $V = 1855.00 (12) \text{ Å}^3$ Z = 4F(000) = 816 $D_{\rm x} = 1.458 {\rm Mg} {\rm m}^{-3}$ Mo *K* α radiation, $\lambda = 0.71073$ Å Cell parameters from 10508 reflections

Data collection

Bruker Kappa APEXII CCD diffractometer Radiation source: fine-focus sealed tube Graphite monochromator ω and φ scans Absorption correction: multi-scan (SADABS: Sheldrick, 1996) = 0.662 T = 0.724

(SILDIEDS, Sherarien, 1990)	<i>N</i> 1/ 1/
$T_{\min} = 0.662, \ T_{\max} = 0.724$	$l = -36 \rightarrow 36$
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.039$	Hydrogen site location: inferred from
$wR(F^2) = 0.111$	neighbouring sites
S = 1.01	H-atom parameters constrained
10505 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0464P)^2 + 1.3528P]$
407 parameters	where $P = (F_o^2 + 2F_c^2)/3$
0 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta ho_{ m max} = 0.91$ e Å ⁻³
direct methods	$\Delta \rho_{\rm min} = -0.65 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta p_{\rm min} = 0.05 \mathrm{e} \mathrm{A}$

 $\theta = 0.8 - 29.8^{\circ}$

 $\mu = 1.73 \text{ mm}^{-1}$

Prism, yellow

 $0.26 \times 0.24 \times 0.20$ mm

 $\theta_{\rm max} = 29.8^\circ, \ \theta_{\rm min} = 0.8^\circ$

45699 measured reflections

10505 independent reflections 7252 reflections with $I > 2\sigma(I)$

T = 295 K

 $R_{\rm int} = 0.025$

 $h = -8 \rightarrow 8$

 $k = -17 \rightarrow 17$

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor w*R* and goodness of fit S are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^2 are statistically about twice as large as those based on F, and R-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
C1	0.4118 (5)	0.6977 (2)	0.00843 (10)	0.0464 (6)	
C2	0.5675 (5)	0.7050 (2)	-0.03417 (10)	0.0522 (6)	
H2	0.6832	0.7430	-0.0330	0.063*	
C3	0.5509 (6)	0.6561 (3)	-0.07792 (11)	0.0582 (7)	
C4	0.3847 (7)	0.5972 (3)	-0.07979 (13)	0.0668 (9)	
H4	0.3753	0.5643	-0.1097	0.080*	
C5	0.2343 (7)	0.5870 (3)	-0.03797 (14)	0.0685 (9)	
Н5	0.1248	0.5454	-0.0392	0.082*	
C6	0.2420 (5)	0.6380(2)	0.00656 (11)	0.0544 (7)	
C7	0.4231 (5)	0.7547 (2)	0.05361 (10)	0.0475 (6)	
H7	0.5400	0.7923	0.0539	0.057*	

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

C8	0.2887 (5)	0.8156 (2)	0.13537 (10)	0.0472 (6)
C9	0.4337 (6)	0.7673 (3)	0.17544 (11)	0.0563 (7)
C10	0.4269 (7)	0.8276 (3)	0.21734 (12)	0.0748 (10)
H10	0.5214	0.7975	0.2445	0.090*
C11	0.2842 (8)	0.9303 (4)	0.21954 (14)	0.0866 (12)
H11	0.2825	0.9695	0.2481	0.104*
C12	0.1436 (7)	0.9759 (3)	0.17999 (15)	0.0774 (10)
H12	0.0490	1.0465	0.1819	0.093*
C13	0.1385 (5)	0.9198 (3)	0.13727 (12)	0.0572 (7)
C14	-0.0175 (6)	0.9713 (3)	0.09377 (16)	0.0722 (9)
H14	-0.0246	0.9119	0.0727	0.087*
C15	0.0816 (9)	1.0567 (4)	0.05887 (18)	0.1021 (15)
H15A	0.0918	1.1159	0.0786	0.153*
H15B	-0.0162	1.0862	0.0307	0.153*
H15C	0.2324	1.0225	0.0451	0.153*
C16	-0.2637 (8)	1.0227 (5)	0.1132 (2)	0.1217 (19)
H16A	-0.3289	0.9666	0.1336	0.183*
H16B	-0.3546	1.0528	0.0839	0.183*
H16C	-0.2623	1.0811	0.1342	0.183*
C17	0.5924 (6)	0.6533 (3)	0.17394 (12)	0.0661 (8)
H17	0.5806	0.6279	0.1401	0.079*
C18	0.5224 (10)	0.5710 (4)	0.2152 (2)	0.123 (2)
H18A	0.5301	0.5942	0.2489	0.184*
H18B	0.6244	0.4993	0.2125	0.184*
H18C	0.3678	0.5662	0.2107	0.184*
C19	0.8408 (9)	0.6554 (6)	0.1781 (3)	0.159 (3)
H19A	0.8810	0.7129	0.1533	0.239*
H19B	0.9373	0.5847	0.1710	0.239*
H19C	0.8621	0.6701	0.2127	0.239*
C20	0.7450 (4)	0.6051 (2)	0.36056 (10)	0.0411 (5)
C21	0.9503 (5)	0.6272 (2)	0.33716 (12)	0.0531 (7)
C22	0.9664 (6)	0.7363 (3)	0.32285 (15)	0.0663 (9)
H22	1.1011	0.7511	0.3059	0.080*
C23	0.7852 (6)	0.8224 (2)	0.33351 (13)	0.0601 (8)
H23	0.7989	0.8954	0.3244	0.072*
C24	0.5821 (5)	0.8019 (2)	0.35772 (11)	0.0474 (6)
C25	0.5625 (5)	0.6937 (2)	0.37041 (10)	0.0460 (6)
H25	0.4245	0.6796	0.3859	0.055*
C26	0.7213 (4)	0.4913 (2)	0.37687 (10)	0.0427 (5)
H26	0.5809	0.4800	0.3920	0.051*
C27	0.8554 (4)	0.2998 (2)	0.39095 (10)	0.0421 (5)
C28	0.7612 (5)	0.2388 (2)	0.36035 (11)	0.0510 (6)
C29	0.7379 (6)	0.1340 (2)	0.38151 (14)	0.0651 (8)
H29	0.6760	0.0914	0.3620	0.078*
C30	0.8036 (6)	0.0917 (2)	0.43042 (15)	0.0694 (9)
H30	0.7819	0.0220	0.4442	0.083*
C31	0.9005 (6)	0.1515 (3)	0.45893 (14)	0.0660 (8)
H31	0.9477	0.1212	0.4919	0.079*

C32	0.9307 (5)	0.2568 (2)	0.43996 (11)	0.0496 (6)
C33	1.0355 (6)	0.3225 (3)	0.47292 (13)	0.0663 (8)
H33	1.0681	0.3866	0.4501	0.080*
C34	0.8713 (10)	0.3675 (5)	0.5157 (2)	0.1163 (18)
H34A	0.7312	0.4102	0.5014	0.174*
H34B	0.9379	0.4144	0.5337	0.174*
H34C	0.8387	0.3071	0.5397	0.174*
C35	1.2620 (10)	0.2569 (6)	0.4929 (3)	0.160 (3)
H35A	1.3437	0.3068	0.5042	0.240*
H35B	1.3523	0.2178	0.4656	0.240*
H35C	1.2339	0.2044	0.5217	0.240*
C36	0.6849 (7)	0.2835 (3)	0.30611 (12)	0.0674 (9)
H36	0.6893	0.3624	0.3008	0.081*
C37	0.8456 (9)	0.2258 (7)	0.26518 (19)	0.157 (3)
H37A	0.8594	0.1469	0.2719	0.236*
H37B	0.9942	0.2421	0.2658	0.236*
H37C	0.7864	0.2514	0.2315	0.236*
C38	0.4445 (8)	0.2758 (6)	0.29912 (19)	0.121 (2)
H38A	0.4439	0.2012	0.2931	0.181*
H38B	0.3860	0.3262	0.2698	0.181*
H38C	0.3492	0.2952	0.3300	0.181*
I1	0.77120 (5)	0.67673 (3)	-0.144206 (9)	0.09004 (11)
I2	0.31035 (4)	0.932551 (16)	0.377683 (10)	0.06823 (9)
N1	0.2794 (4)	0.75482 (19)	0.09260 (8)	0.0477 (5)
N2	0.8848 (4)	0.40812 (18)	0.37106 (9)	0.0449 (5)
O1	0.0845 (5)	0.6295 (2)	0.04618 (9)	0.0760 (7)
H1	0.1016	0.6665	0.0691	0.114*
O2	1.1358 (4)	0.54504 (19)	0.32778 (13)	0.0823 (8)
H2A	1.0987	0.4850	0.3325	0.124*

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0554 (15)	0.0450 (14)	0.0400 (13)	-0.0130 (11)	-0.0087 (11)	-0.0022 (11)
0.0640 (17)	0.0561 (16)	0.0394 (14)	-0.0191 (13)	-0.0049 (12)	-0.0041 (12)
0.0696 (19)	0.0612 (18)	0.0408 (15)	-0.0069 (14)	-0.0054 (13)	-0.0080 (13)
0.088 (2)	0.0637 (19)	0.0531 (18)	-0.0144 (17)	-0.0161 (17)	-0.0193 (15)
0.083 (2)	0.068 (2)	0.066 (2)	-0.0317 (18)	-0.0164 (17)	-0.0153 (16)
0.0649 (18)	0.0553 (16)	0.0476 (15)	-0.0216 (13)	-0.0102 (13)	-0.0029 (13)
0.0572 (15)	0.0515 (15)	0.0386 (13)	-0.0212 (12)	-0.0055 (11)	-0.0040 (11)
0.0554 (15)	0.0534 (15)	0.0355 (13)	-0.0209 (12)	0.0057 (11)	-0.0041 (11)
0.0730 (19)	0.0602 (17)	0.0371 (14)	-0.0198 (15)	-0.0017 (13)	-0.0028 (12)
0.104 (3)	0.083 (2)	0.0395 (16)	-0.022 (2)	-0.0094 (17)	-0.0111 (16)
0.127 (4)	0.087 (3)	0.0495 (19)	-0.024 (3)	0.004 (2)	-0.0308 (19)
0.096 (3)	0.066 (2)	0.067 (2)	-0.0123 (19)	0.009 (2)	-0.0187 (18)
0.0635 (18)	0.0572 (17)	0.0516 (16)	-0.0179 (14)	0.0029 (13)	-0.0052 (13)
0.068 (2)	0.062 (2)	0.084 (3)	-0.0083 (16)	-0.0141 (18)	-0.0043 (18)
0.120 (4)	0.115 (4)	0.074 (3)	-0.045 (3)	-0.021 (3)	0.023 (3)
	U^{11} 0.0554 (15) 0.0640 (17) 0.0696 (19) 0.088 (2) 0.083 (2) 0.0649 (18) 0.0572 (15) 0.0554 (15) 0.0730 (19) 0.104 (3) 0.127 (4) 0.096 (3) 0.0635 (18) 0.068 (2) 0.120 (4)	U^{11} U^{22} $0.0554 (15)$ $0.0450 (14)$ $0.0640 (17)$ $0.0561 (16)$ $0.0696 (19)$ $0.0612 (18)$ $0.088 (2)$ $0.0637 (19)$ $0.083 (2)$ $0.068 (2)$ $0.0649 (18)$ $0.0553 (16)$ $0.0572 (15)$ $0.0515 (15)$ $0.0554 (15)$ $0.0534 (15)$ $0.0730 (19)$ $0.0602 (17)$ $0.104 (3)$ $0.083 (2)$ $0.127 (4)$ $0.087 (3)$ $0.096 (3)$ $0.066 (2)$ $0.0635 (18)$ $0.0572 (17)$ $0.068 (2)$ $0.062 (2)$ $0.120 (4)$ $0.115 (4)$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

supporting information

C16	0.073 (3)	0.126 (4)	0.149 (5)	-0.005(3)	-0.009(3)	0.019 (4)
C17	0.088 (2)	0.067 (2)	0.0421 (16)	-0.0137 (17)	-0.0141 (15)	-0.0018(14)
C18	0.109 (4)	0.080 (3)	0.154 (5)	-0.008 (3)	0.025 (3)	0.033 (3)
C19	0.077 (3)	0.127 (5)	0.268 (9)	-0.019 (3)	0.047 (4)	-0.042 (5)
C20	0.0485 (13)	0.0399 (12)	0.0379 (12)	-0.0158 (10)	-0.0037 (10)	-0.0031 (10)
C21	0.0511 (15)	0.0474 (15)	0.0624 (18)	-0.0163 (12)	0.0034 (13)	-0.0066 (13)
C22	0.0600 (18)	0.0577 (18)	0.086 (2)	-0.0314 (15)	0.0084 (16)	0.0003 (16)
C23	0.0695 (19)	0.0413 (14)	0.075 (2)	-0.0264 (14)	-0.0055 (16)	0.0005 (14)
C24	0.0574 (15)	0.0394 (13)	0.0479 (15)	-0.0134 (11)	-0.0074 (12)	-0.0060 (11)
C25	0.0508 (14)	0.0412 (13)	0.0471 (14)	-0.0151 (11)	0.0001 (11)	-0.0030 (11)
C26	0.0472 (13)	0.0404 (13)	0.0423 (13)	-0.0152 (10)	0.0023 (10)	-0.0047 (10)
C27	0.0436 (13)	0.0358 (12)	0.0443 (14)	-0.0053 (10)	0.0024 (10)	-0.0053 (10)
C28	0.0642 (17)	0.0393 (13)	0.0507 (16)	-0.0123 (12)	-0.0058 (13)	-0.0067 (11)
C29	0.086 (2)	0.0378 (14)	0.075 (2)	-0.0168 (14)	-0.0072 (17)	-0.0114 (14)
C30	0.087 (2)	0.0340 (14)	0.082 (2)	-0.0088 (14)	-0.0054 (19)	0.0071 (15)
C31	0.073 (2)	0.0535 (17)	0.063 (2)	-0.0055 (15)	-0.0123 (16)	0.0161 (15)
C32	0.0494 (14)	0.0513 (15)	0.0453 (15)	-0.0071 (12)	-0.0018 (11)	-0.0027 (12)
C33	0.072 (2)	0.081 (2)	0.0519 (17)	-0.0277 (17)	-0.0118 (15)	-0.0035 (16)
C34	0.127 (4)	0.136 (4)	0.105 (4)	-0.054 (3)	0.027 (3)	-0.065 (3)
C35	0.106 (4)	0.204 (7)	0.181 (7)	0.002 (4)	-0.072 (4)	-0.085 (6)
C36	0.104 (3)	0.0578 (18)	0.0497 (17)	-0.0327 (18)	-0.0160 (17)	-0.0044 (14)
C37	0.084 (3)	0.300 (10)	0.063 (3)	-0.001 (4)	0.005 (2)	-0.019 (4)
C38	0.077 (3)	0.182 (6)	0.081 (3)	0.007 (3)	-0.018 (2)	0.014 (3)
I1	0.1026 (2)	0.1210 (2)	0.04660 (13)	-0.02447 (17)	0.00854 (12)	-0.02049 (13)
I2	0.07654 (15)	0.04092 (11)	0.08644 (17)	-0.00987 (9)	-0.00392 (11)	-0.01118 (10)
N1	0.0552 (13)	0.0516 (13)	0.0394 (11)	-0.0199 (10)	0.0001 (10)	-0.0041 (10)
N2	0.0503 (12)	0.0404 (11)	0.0451 (12)	-0.0140 (9)	0.0022 (9)	-0.0058 (9)
01	0.0842 (16)	0.0992 (19)	0.0619 (14)	-0.0542 (15)	0.0054 (12)	-0.0181 (13)
O2	0.0569 (13)	0.0544 (13)	0.131 (2)	-0.0179 (10)	0.0303 (14)	-0.0085 (14)

Geometric parameters (Å, °)

C1—C2	1.388 (4)	C20—C21	1.393 (4)	
C1—C6	1.400 (4)	C20—C26	1.462 (3)	
C1—C7	1.452 (4)	C21—O2	1.347 (4)	
C2—C3	1.370 (4)	C21—C22	1.385 (4)	
С2—Н2	0.9300	C22—C23	1.367 (5)	
C3—C4	1.373 (5)	C22—H22	0.9300	
C3—I1	2.097 (3)	C23—C24	1.382 (4)	
C4—C5	1.358 (5)	C23—H23	0.9300	
C4—H4	0.9300	C24—C25	1.375 (4)	
C5—C6	1.390 (4)	C24—I2	2.089 (3)	
С5—Н5	0.9300	C25—H25	0.9300	
C6—O1	1.342 (4)	C26—N2	1.259 (3)	
C7—N1	1.266 (3)	C26—H26	0.9300	
С7—Н7	0.9300	C27—C32	1.387 (4)	
C8—C13	1.396 (4)	C27—C28	1.396 (4)	
С8—С9	1.398 (4)	C27—N2	1.427 (3)	

C8—N1	1.425 (3)	C28—C29	1.383 (4)
C9—C10	1.383 (4)	C28—C36	1.515 (4)
C9—C17	1.512 (5)	C29—C30	1.366 (5)
C10—C11	1.363 (6)	C29—H29	0.9300
C10—H10	0.9300	C30—C31	1.359 (5)
C11—C12	1.367 (6)	С30—Н30	0.9300
C11—H11	0.9300	C31—C32	1.387 (4)
C12—C13	1.383 (5)	C31—H31	0.9300
C12—H12	0.9300	$C_{32} - C_{33}$	1 515 (4)
C_{13} C_{14}	1 511 (5)	$C_{33} - C_{34}$	1 483 (6)
C14-C15	1 504 (6)	C_{33} $-C_{35}$	1.109 (6)
C14-C16	1.501(6)	C33—H33	0.9800
C_{14} H_{14}	0.9800	C_{34} H34A	0.9600
C_{14}	0.9800	C_{34} H34R	0.9000
C15_H15R	0.9000	C_{34} H34C	0.9000
C15_H15C	0.9000	$C_{25} = H_{25} \Lambda$	0.9000
	0.9600	C35—H35A	0.9600
	0.9600	C35—H35B	0.9600
	0.9600	C35—H35C	0.9600
C16—H16C	0.9600	$C_{36} - C_{38}$	1.493 (6)
	1.490 (6)	C_{36}	1.496 (7)
C17—C19	1.508 (7)	C36—H36	0.9800
C17—H17	0.9800	C3/—H3/A	0.9600
C18—H18A	0.9600	С37—Н37В	0.9600
C18—H18B	0.9600	С37—Н37С	0.9600
C18—H18C	0.9600	C38—H38A	0.9600
C19—H19A	0.9600	C38—H38B	0.9600
C19—H19B	0.9600	C38—H38C	0.9600
C19—H19C	0.9600	O1—H1	0.8200
C20—C25	1.387 (4)	O2—H2A	0.8200
C2C1C6	119.3 (3)	C21—C20—C26	121.5 (2)
C2C1C7	119.6 (2)	O2—C21—C22	118.5 (3)
C6—C1—C7	121.0 (3)	O2—C21—C20	121.8 (3)
C3—C2—C1	120.0 (3)	C22—C21—C20	119.7 (3)
С3—С2—Н2	120.0	C23—C22—C21	120.4 (3)
C1—C2—H2	120.0	C23—C22—H22	119.8
C2—C3—C4	120.8 (3)	C21—C22—H22	119.8
C2—C3—I1	119.9 (2)	C22—C23—C24	120.6 (3)
C4—C3—I1	119.3 (2)	С22—С23—Н23	119.7
C5—C4—C3	120.0 (3)	C24—C23—H23	119.7
C5—C4—H4	120.0	C25—C24—C23	119.3 (3)
C3—C4—H4	120.0	C25—C24—I2	119.8 (2)
C4—C5—C6	120.8 (3)	C_{23} C_{24} I_{2}	120.9(2)
С4—С5—Н5	119.6	C_{24} C_{25} C_{20}	121.1(3)
С6—С5—Н5	119.6	C_{24} C_{25} H_{25}	119.4
01-C6-C5	118.9 (3)	C_{20} C_{25} H_{25}	119.4
01 - C6 - C1	122.1 (3)	$N_2 - C_2 - C_2 0$	122.2 (2)
C5-C6-C1	119.0 (3)	N2—C26—H26	118.9
			× 1 U+7

N1—C7—C1	122.3 (2)	C20—C26—H26	118.9
N1—C7—H7	118.9	C32—C27—C28	122.0 (2)
С1—С7—Н7	118.9	C32—C27—N2	118.2 (2)
C13—C8—C9	122.1 (3)	C28—C27—N2	119.8 (2)
C13—C8—N1	117.8 (3)	C29—C28—C27	117.3 (3)
C9—C8—N1	120.0 (3)	C29—C28—C36	120.2 (3)
C10—C9—C8	117.6 (3)	C27—C28—C36	122.5 (2)
C10—C9—C17	120.4 (3)	C30—C29—C28	121.6 (3)
C8—C9—C17	122.0 (3)	C30—C29—H29	119.2
C11—C10—C9	121.3 (3)	C28—C29—H29	119.2
C11—C10—H10	119.4	$C_{31} - C_{30} - C_{29}$	120.0(3)
C9-C10-H10	119.4	$C_{31} = C_{30} = H_{30}$	120.0
C10-C11-C12	120.3 (3)	C_{29} C_{30} H_{30}	120.0
C10-C11-H11	119.9	C_{30} C_{31} C_{32}	120.0 121.4(3)
C_{12} C_{11} H_{11}	119.9	C_{30} C_{31} H_{31}	1193
C_{11} C_{12} C_{13}	121.7(4)	C_{32} C_{31} H_{31}	119.3
$C_{11} = C_{12} = C_{13}$	110.2	$C_{22} = C_{21} = H_{21}$	117.5 117.6(3)
$C_{12} = C_{12} = H_{12}$	119.2	$C_{27} = C_{32} = C_{33}$	117.0(3) 1210(3)
$C_{12} = C_{12} = C_{12}$	117.1 (3)	$C_{21} = C_{32} = C_{33}$	121.9(3) 120.4(3)
$C_{12} = C_{13} = C_{13}$	117.1(3) 1211(3)	$C_{31} = C_{32} = C_{33}$	120.4(3)
$C_{12} = C_{13} = C_{14}$	121.1(3) 121.7(3)	$C_{34} = C_{33} = C_{33}$	111.9(4) 111.7(3)
$C_{0} = C_{10} = C_{14}$	121.7(3) 110.6(3)	$C_{34} = C_{33} = C_{32}$	111.7(3) 112.2(4)
C15 - C14 - C15	110.0(3)	$C_{33} = C_{33} = C_{32}$	112.5 (4)
C13 - C14 - C16	110.0(4)	С34—С35—П35	100.8
C15 - C14 - C10	115.4 (4)	$C_{22} = C_{22} = H_{22}$	100.8
C13—C14—H14	107.5	С32—С35—П55	100.8
C15—C14—H14	107.5	C33—C34—H34A	109.5
C16—C14—H14	107.5	C33—C34—H34B	109.5
CI4—CI5—HI5A	109.5	H34A—C34—H34B	109.5
CI4—CI5—HI5B	109.5	C33—C34—H34C	109.5
HISA—CIS—HISB	109.5	H34A—C34—H34C	109.5
С14—С15—Н15С	109.5	H34B—C34—H34C	109.5
HISA—CIS—HISC	109.5	C33—C35—H35A	109.5
HI5B—CI5—HI5C	109.5	С33—С35—Н35В	109.5
C14—C16—H16A	109.5	H35A—C35—H35B	109.5
C14—C16—H16B	109.5	С33—С35—Н35С	109.5
H16A—C16—H16B	109.5	H35A—C35—H35C	109.5
C14—C16—H16C	109.5	H35B—C35—H35C	109.5
H16A—C16—H16C	109.5	C38—C36—C37	109.8 (4)
H16B—C16—H16C	109.5	C38—C36—C28	112.7 (3)
C18—C17—C19	110.0 (4)	C37—C36—C28	111.3 (4)
C18—C17—C9	111.8 (3)	С38—С36—Н36	107.6
C19—C17—C9	112.4 (4)	С37—С36—Н36	107.6
C18—C17—H17	107.5	C28—C36—H36	107.6
C19—C17—H17	107.5	С36—С37—Н37А	109.5
С9—С17—Н17	107.5	С36—С37—Н37В	109.5
C17—C18—H18A	109.5	H37A—C37—H37B	109.5
C17—C18—H18B	109.5	С36—С37—Н37С	109.5
H18A—C18—H18B	109.5	H37A—C37—H37C	109.5

C17—C18—H18C	109.5	H37B—C37—H37C	109.5
H18A—C18—H18C	109.5	C36—C38—H38A	109.5
H18B—C18—H18C	109.5	C36—C38—H38B	109.5
C17—C19—H19A	109.5	H38A—C38—H38B	109.5
C17—C19—H19B	109.5	C36—C38—H38C	109.5
H19A—C19—H19B	109.5	H38A—C38—H38C	109.5
С17—С19—Н19С	109.5	H38B—C38—H38C	109.5
H19A—C19—H19C	109.5	C7—N1—C8	121.0 (2)
H19B—C19—H19C	109.5	C26—N2—C27	119.4 (2)
C25—C20—C21	118.9 (2)	C6—O1—H1	109.5
C25—C20—C26	119.5 (2)	C21—O2—H2A	109.5
C6—C1—C2—C3	1.5 (4)	C26—C20—C21—C22	-179.2 (3)
C7—C1—C2—C3	-176.8 (3)	O2—C21—C22—C23	-177.4 (3)
C1—C2—C3—C4	-1.7 (5)	C20—C21—C22—C23	2.7 (5)
C1—C2—C3—I1	175.6 (2)	C21—C22—C23—C24	-1.3 (5)
C2—C3—C4—C5	0.1 (5)	C22—C23—C24—C25	-0.9 (5)
I1—C3—C4—C5	-177.2 (3)	C22—C23—C24—I2	176.8 (3)
C3—C4—C5—C6	1.7 (5)	C23—C24—C25—C20	1.7 (4)
C4—C5—C6—O1	177.4 (3)	I2—C24—C25—C20	-176.0(2)
C4C5C6C1	-1.8 (5)	C21—C20—C25—C24	-0.3 (4)
C2-C1-C6-01	-179.0 (3)	C26—C20—C25—C24	177.1 (2)
C7—C1—C6—O1	-0.7 (5)	C25-C20-C26-N2	-176.7 (3)
C2-C1-C6-C5	0.2 (4)	C21—C20—C26—N2	0.6 (4)
C7—C1—C6—C5	178.5 (3)	C32—C27—C28—C29	2.1 (4)
C2-C1-C7-N1	176.9 (3)	N2-C27-C28-C29	179.7 (3)
C6-C1-C7-N1	-1.3 (4)	C32—C27—C28—C36	-178.1 (3)
C13—C8—C9—C10	-1.1 (5)	N2-C27-C28-C36	-0.6 (4)
N1-C8-C9-C10	-176.6 (3)	C27—C28—C29—C30	0.2 (5)
C13—C8—C9—C17	178.6 (3)	C36—C28—C29—C30	-179.5 (3)
N1—C8—C9—C17	3.0 (4)	C28—C29—C30—C31	-1.9 (6)
C8—C9—C10—C11	0.0 (6)	C29—C30—C31—C32	1.4 (6)
C17—C9—C10—C11	-179.7 (4)	C28—C27—C32—C31	-2.6 (4)
C9—C10—C11—C12	0.1 (7)	N2-C27-C32-C31	179.8 (3)
C10-C11-C12-C13	0.9 (7)	C28—C27—C32—C33	179.3 (3)
C11—C12—C13—C8	-2.0 (6)	N2-C27-C32-C33	1.7 (4)
C11—C12—C13—C14	-179.9 (4)	C30—C31—C32—C27	0.8 (5)
C9—C8—C13—C12	2.1 (5)	C30—C31—C32—C33	178.9 (3)
N1-C8-C13-C12	177.7 (3)	C27—C32—C33—C34	103.9 (4)
C9—C8—C13—C14	180.0 (3)	C31—C32—C33—C34	-74.2 (5)
N1-C8-C13-C14	-4.4 (4)	C27—C32—C33—C35	-129.4 (5)
C12—C13—C14—C15	77.3 (5)	C31—C32—C33—C35	52.5 (5)
C8—C13—C14—C15	-100.5 (4)	C29—C28—C36—C38	51.6 (5)
C12-C13-C14-C16	-46.8 (5)	C27—C28—C36—C38	-128.2 (4)
C8-C13-C14-C16	135.3 (4)	C29—C28—C36—C37	-72.3 (5)
C10—C9—C17—C18	66.9 (5)	C27—C28—C36—C37	107.9 (5)
C8—C9—C17—C18	-112.8 (4)	C1—C7—N1—C8	-177.2 (3)
C10 $C0$ $C17$ $C10$	-573(5)	C13—C8—N1—C7	99.1 (3)

C8—C9—C17—C19	123.0 (5)	C9—C8—N1—C7	-85.2 (3)
C25—C20—C21—O2	178.3 (3)	C20—C26—N2—C27	175.8 (2)
C26—C20—C21—O2	0.9 (5)	C32—C27—N2—C26	-95.2 (3)
C25—C20—C21—C22	-1.9 (4)	C28—C27—N2—C26	87.2 (3)

Hydrogen-bond geometry (Å, °)

Cg2 is the centroid of the C8–C13 ring.

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	<i>D</i> —H··· <i>A</i>
01—H1…N1	0.82	1.88	2.606 (3)	147
O2—H2A…N2	0.82	1.91	2.617 (3)	143
C16—H16 A ····Cg2 ⁱ	0.96	2.91	3.785 (5)	153

Symmetry code: (i) x-1, y, z.