

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3-Nitro-*N*-[(pyrrolidin-1-yl)carbothioyl]benzamide

Nursakinah Zulkifli, Siti Fairus M. Yusoff and Bohari M. Yamin*

School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia Correspondence e-mail: bohari@pkrisc.cc.ukm.my

Received 23 April 2012; accepted 10 May 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.055; wR factor = 0.135; data-to-parameter ratio = 13.0.

In the molecule of the title compound, $C_{12}H_{13}N_3O_3S$, the pyrrolidine ring adopts a half-chair conformation and the dihedral angle formed by the nitro group with the benzene ring is 15.18 (18)°. In the crystal, molecules are linked by N-H···S and C-H···O intermolecular hydrogen bonds into chains parallel to the *c* axis.

Related literature

For standard bond-length data, see: Allen *et al.* (1987). For related structures, see: Emen *et al.* (2003); Kayhan *et al.* (2003).

Experimental

Crystal data	
$C_{12}H_{13}N_3O_3S$	a = 11.331 (3) Å
$M_r = 279.31$	b = 13.543 (3) Å
Monoclinic, $P2_1/c$	c = 8.5982 (19) Å

 $\beta = 97.168 (5)^{\circ}$ $V = 1309.2 (5) \text{ Å}^{3}$ Z = 4Mo K α radiation

Data collection

Bruker SMART APEX CCD area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Sheldrick, 1996) $T_{min} = 0.932, T_{max} = 0.977$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.055$ $wR(F^2) = 0.135$ S = 1.082288 reflections 176 parameters 1 restraint 1853 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.031$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.18 \text{ e } \text{\AA}^{-3}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$N2-H2\cdots S1^{i}$ $C1-H1\cdots O3^{ii}$ $C9-H9A\cdots O3^{ii}$	0.86 (2) 0.93 0.97	2.55 (2) 2.48 2.32	3.406 (3) 3.169 (3) 3.274 (4)	173 131 167

Symmetry codes: (i) -x, -y + 1, -z; (ii) $x, -y + \frac{3}{2}, z - \frac{1}{2}$.

Data collection: *SMART* (Siemens, 1996); cell refinement: *SAINT* (Siemens, 1996); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*, *PARST* (Nardelli, 1995) and *PLATON* (Spek, 2009).

The authors thank the Malaysian Government and Universiti Kebangsaan Malaysia for the research grant No. UKM-GUP-NBT-68-27-110.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2750).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.

Emen, F. M., Flörke, U., Külcü, N. & Arslan, H. (2003). Acta Cryst. E59, o1159– 01160.

Kayhan, E., Flörke, U., Külcü, N. & Arslan, H. (2003). Acta Cryst. E59, o1237– 01238.

Nardelli, M. (1995). J. Appl. Cryst. 28, 659.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Siemens (1996). *SMART* and *SAINT*. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

 $0.28 \times 0.22 \times 0.09 \text{ mm}$

7272 measured reflections

2288 independent reflections

 $\mu = 0.26 \text{ mm}^{-1}$

T = 298 K

supporting information

Acta Cryst. (2012). E68, o1785 [doi:10.1107/S1600536812021319]

3-Nitro-N-[(pyrrolidin-1-yl)carbothioyl]benzamide

Nursakinah Zulkifli, Siti Fairus M. Yusoff and Bohari M. Yamin

S1. Comment

The rapid increase in the number of syntheses of thiourea derivatives is driven by their applications in various fields including biology, pharmacy and materials for devices. The title compound is a thiourea derivative analogue to N'-(4-chlorobenzoyl)-N-(pyrrolidin-1-yl)thiourea (Kayhan *et al.*, 2003) and N'-(2-chlorobenzoyl)-N-(pyrrolidin-1-yl) (Emen *et al.*, 2003), except for the nitro substituent attached at 3-position of the benzene ring (Fig. 1). The molecule maintains a twisted conformation, but the C8-N2-C7-O3 torsion angle of 1.6 (4)° is a little larger than that found in N'-(2-chlorobenzoyl)-N-(pyrrolidin-1-yl)thiourea (0.42 (4)°). The C7-N2-C8-N3 torsion angle of 57.9 (4)° is comparable. The pyrrolidine ring adopts a half chair conformation. The bond lengths (Allen *et al.*, 1987) and angles are in normal ranges. In the crystal structure, the molecules are linked by N2–H2…S1, C1–H1…O3 and C9–H9A…O3 intermolecular hydrogen bonds (Table 1) to form chains parallel to the *c* axis (Fig. 2).

S2. Experimental

An ethanolic solution (10 ml) of 3-nitrobenzoyl isothiocyanate (0.416 g, 2 mmol) was added into a beaker containing pyrrolidine (0.007 g, 1 mmol) in 10 ml ethanol. The solution was refluxed for about 1 hour and left to evaporate at room temperature. Some colourless crsytals were obtained after 3 days on slow evaporation of the solvent. M. p.: 395.3-396.5 K.

S3. Refinement

The imino hydrogen atom was located in a difference Fourier map and refined isotropically with the N—H distance restrained to be 0.87 (1) Å. All other H-atoms were fixed geometrically at ideal positions and allowed to ride on the parent atoms, with C-H = 0.93-0.97Å, and with $U_{iso}(H) = 1.2 U_{eq}(C)$.

Figure 1

The molecular structure of the title compound with 50% probability displacement ellipsoids.

Figure 2

Packing diagram of the title compound, viewed down a axis. Dashed lines denote hydrogen bonds.

3-Nitro-N-[(pyrrolidin-1-yl)carbothioyl]benzamide

Crystal data $C_{12}H_{13}N_3O_3S$ $M_r = 279.31$ Monoclinic, $P2_1/c$ Hall symbol: -P 2ybc a = 11.331 (3) Å b = 13.543 (3) Å c = 8.5982 (19) Å $\beta = 97.168$ (5)° V = 1309.2 (5) Å³ Z = 4

F(000) = 584 $D_x = 1.417 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 2210 reflections $\theta = 1.8-25.0^{\circ}$ $\mu = 0.26 \text{ mm}^{-1}$ T = 298 KSlab, colourless $0.28 \times 0.22 \times 0.09 \text{ mm}$ Data collection

Bruker SMART APEX CCD area-detector diffractometer	7272 measured reflections 2288 independent reflections
Radiation source: fine-focus sealed tube	1853 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.031$
Detector resolution: 83.66 pixels mm ⁻¹	$\theta_{\text{max}} = 25.0^{\circ}, \ \theta_{\text{min}} = 1.8^{\circ}$
ωscan	$h = -12 \rightarrow 13$
Absorption correction: multi-scan	$k = -15 \rightarrow 16$
(SADABS; Sheldrick, 1996)	$l = -10 \rightarrow 10$
$T_{\min} = 0.932, \ T_{\max} = 0.977$	
Refinement	
Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.055$	Hydrogen site location: inferred from
$wR(F^2) = 0.135$	neighbouring sites
S = 1.08	H atoms treated by a mixture of independent
2288 reflections	and constrained refinement
176 parameters	$w = 1/[\sigma^2(F_0^2) + (0.063P)^2 + 0.5394P]$
1 restraint	where $P = (F_o^2 + 2F_c^2)/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta ho_{ m max} = 0.29$ e Å ⁻³
	$\Delta \rho_{\rm min} = -0.18 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted R-factor wR and goodness of fit S are based on F², conventional R-factors R are based on F, with F set to zero for negative F^2 . The threshold expression of $F^2 > 2sigma(F^2)$ is used only for calculating R-factors(gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F² are statistically about twice as large as those based on F, and R- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
S1	-0.14867 (6)	0.55605 (5)	0.11047 (10)	0.0524 (3)	
01	0.3720 (3)	0.6242 (2)	-0.2597 (4)	0.0925 (9)	
O2	0.5564 (3)	0.6408 (2)	-0.1749 (5)	0.1230 (13)	
03	0.14150 (17)	0.70007 (17)	0.3446 (2)	0.0596 (6)	
N1	0.4525 (3)	0.6311 (2)	-0.1531 (5)	0.0767 (9)	
N2	0.06689 (18)	0.63530 (16)	0.1098 (3)	0.0406 (5)	
H2	0.081 (2)	0.5858 (13)	0.052 (2)	0.033 (7)*	
N3	-0.08644 (18)	0.74365 (16)	0.1437 (3)	0.0438 (6)	
C1	0.3068 (2)	0.64030 (18)	0.0326 (3)	0.0441 (6)	
H1	0.2473	0.6492	-0.0509	0.053*	
C2	0.4242 (3)	0.6275 (2)	0.0067 (4)	0.0548 (8)	
C3	0.5143 (3)	0.6127 (2)	0.1286 (6)	0.0714 (11)	
H3	0.5926	0.6047	0.1090	0.086*	
C4	0.4858 (3)	0.6101 (3)	0.2790 (5)	0.0748 (11)	
H4	0.5450	0.5984	0.3621	0.090*	

C5	0.3705 (3)	0.6245 (2)	0.3079 (4)	0.0590 (8)	
Н5	0.3525	0.6242	0.4105	0.071*	
C6	0.2803 (2)	0.63954 (18)	0.1845 (3)	0.0424 (6)	
C7	0.1583 (2)	0.6614 (2)	0.2225 (3)	0.0425 (6)	
C8	-0.0541 (2)	0.6519 (2)	0.1237 (3)	0.0395 (6)	
С9	-0.0126 (3)	0.8336 (2)	0.1380 (4)	0.0558 (8)	
H9A	0.0442	0.8261	0.0632	0.067*	
H9B	0.0300	0.8485	0.2403	0.067*	
C10	-0.1021 (3)	0.9124 (2)	0.0867 (4)	0.0656 (9)	
H10A	-0.1185	0.9147	-0.0267	0.079*	
H10B	-0.0738	0.9766	0.1249	0.079*	
C11	-0.2110 (3)	0.8824 (2)	0.1583 (5)	0.0689 (9)	
H11A	-0.2822	0.9090	0.0986	0.083*	
H11B	-0.2066	0.9057	0.2656	0.083*	
C12	-0.2117 (2)	0.7707 (2)	0.1528 (4)	0.0538 (8)	
H12A	-0.2389	0.7434	0.2464	0.065*	
H12B	-0.2629	0.7470	0.0616	0.065*	

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0347 (4)	0.0467 (4)	0.0771 (5)	-0.0080 (3)	0.0118 (3)	-0.0127 (4)
0.106 (2)	0.100 (2)	0.0814 (19)	0.0194 (18)	0.0502 (17)	0.0123 (16)
0.0760 (19)	0.122 (3)	0.189 (3)	0.0111 (17)	0.087 (2)	0.025 (2)
0.0555 (13)	0.0768 (15)	0.0467 (12)	-0.0099 (10)	0.0069 (9)	-0.0160 (11)
0.071 (2)	0.0548 (18)	0.114 (3)	0.0126 (15)	0.049 (2)	0.0172 (18)
0.0311 (11)	0.0445 (13)	0.0471 (13)	-0.0040 (9)	0.0085 (9)	-0.0134 (10)
0.0360 (12)	0.0451 (14)	0.0528 (14)	-0.0040 (9)	0.0145 (10)	-0.0083 (10)
0.0323 (14)	0.0362 (15)	0.0641 (18)	-0.0005 (10)	0.0063 (12)	0.0047 (12)
0.0433 (16)	0.0350 (15)	0.089 (2)	0.0002 (12)	0.0211 (16)	0.0048 (14)
0.0308 (16)	0.0484 (19)	0.133 (4)	-0.0002 (13)	0.0038 (19)	-0.002 (2)
0.0444 (19)	0.064 (2)	0.107 (3)	0.0044 (15)	-0.024 (2)	-0.006 (2)
0.0539 (19)	0.0505 (18)	0.068 (2)	-0.0036 (14)	-0.0102 (15)	-0.0012 (15)
0.0342 (14)	0.0356 (14)	0.0564 (17)	-0.0062 (10)	0.0016 (12)	-0.0010 (12)
0.0398 (15)	0.0446 (15)	0.0429 (15)	-0.0078 (11)	0.0043 (12)	-0.0012 (12)
0.0352 (13)	0.0474 (16)	0.0371 (13)	-0.0036 (11)	0.0091 (11)	-0.0051 (11)
0.0541 (17)	0.0458 (17)	0.072 (2)	-0.0091 (14)	0.0265 (15)	-0.0099 (14)
0.073 (2)	0.0493 (19)	0.077 (2)	-0.0027 (16)	0.0178 (18)	-0.0002 (16)
0.065 (2)	0.056 (2)	0.089 (2)	0.0099 (16)	0.0211 (19)	-0.0054 (17)
0.0409 (16)	0.0567 (19)	0.0661 (19)	0.0028 (13)	0.0155 (14)	-0.0051 (14)
	U^{11} 0.0347 (4) 0.106 (2) 0.0760 (19) 0.0555 (13) 0.071 (2) 0.0311 (11) 0.0360 (12) 0.0323 (14) 0.0433 (16) 0.0308 (16) 0.0444 (19) 0.0539 (19) 0.0342 (14) 0.0398 (15) 0.0352 (13) 0.0541 (17) 0.073 (2) 0.065 (2) 0.0409 (16)	U^{11} U^{22} 0.0347 (4) 0.0467 (4) 0.106 (2) 0.100 (2) 0.0760 (19) 0.122 (3) 0.0555 (13) 0.0768 (15) 0.071 (2) 0.0548 (18) 0.0311 (11) 0.0445 (13) 0.0360 (12) 0.0451 (14) 0.0323 (14) 0.0362 (15) 0.0433 (16) 0.0484 (19) 0.0444 (19) 0.064 (2) 0.0539 (19) 0.0505 (18) 0.0342 (14) 0.0356 (14) 0.0398 (15) 0.0446 (15) 0.0352 (13) 0.0474 (16) 0.0541 (17) 0.0493 (19) 0.065 (2) 0.0567 (19)	U^{11} U^{22} U^{33} 0.0347 (4) 0.0467 (4) 0.0771 (5) 0.106 (2) 0.100 (2) 0.0814 (19) 0.0760 (19) 0.122 (3) 0.189 (3) 0.0555 (13) 0.0768 (15) 0.0467 (12) 0.071 (2) 0.0548 (18) 0.114 (3) 0.0311 (11) 0.0445 (13) 0.0471 (13) 0.0360 (12) 0.0451 (14) 0.0528 (14) 0.0323 (14) 0.0362 (15) 0.0641 (18) 0.0433 (16) 0.0484 (19) 0.133 (4) 0.0539 (19) 0.0505 (18) 0.068 (2) 0.0342 (14) 0.0356 (14) 0.0564 (17) 0.0398 (15) 0.0446 (15) 0.0429 (15) 0.0352 (13) 0.0474 (16) 0.0371 (13) 0.0541 (17) 0.0458 (17) 0.072 (2) 0.073 (2) 0.0493 (19) 0.077 (2) 0.0409 (16) 0.0567 (19) 0.0661 (19)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

Geometric parameters (Å, °)

S1—C8	1.678 (3)	C4—C5	1.374 (5)
01—N1	1.213 (4)	C4—H4	0.9300
O2—N1	1.222 (4)	C5—C6	1.393 (4)
O3—C7	1.209 (3)	C5—H5	0.9300
N1—C2	1.450 (5)	C6—C7	1.489 (4)

N2—C7	1 374 (3)	C9-C10	1 499 (4)
N2_C8	1.571(3) 1 409 (3)	С9—Н9А	0.9700
N2—H2	0.863(10)	C9—H9B	0.9700
N3 C8	1,313,(3)		1 503 (5)
N3 C12	1.515(3) 1.477(3)		0.0700
N3-C12	1.477(3)	C10_H10A	0.9700
N3-C9	1.462(3)		0.9700
C1 = C0	1.377(4)		1.313 (4)
	1.386 (4)		0.9700
CI—HI	0.9300	CII—HIIB	0.9700
C2—C3	1.384 (5)	C12—H12A	0.9700
C3—C4	1.372 (5)	C12—H12B	0.9700
С3—Н3	0.9300		
01—N1—02	122.7 (4)	N2	115.7 (2)
01-N1-C2	1186(3)	N3-C8-N2	1169(2)
$0^{2}-N^{1}-C^{2}$	118.7 (4)	N3-C8-S1	123.67(19)
$C_{7} N_{2} C_{8}$	123.7(2)	N2	129.07(17)
C7_N2_H2	125.7(2) 115.4(16)	$N_{2} = C_{0} = C_{10}$	117.4(2) 103.3(2)
$C_{1} = C_{1} = C_{1}$	115.4 (16)	$N_3 = C_1 = C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1 C_1$	105.5 (2)
C_{0} N2 C_{12}	113.3(10)	C_{10} C_{0} H_{0A}	111.1
$C_0 = N_3 = C_{12}$	121.9(2)	C10 - C9 - H9A	111.1
$C_0 = N_0 = C_0$	127.3(2)	$N_3 - C_9 - H_9 B$	111.1
C12 - N3 - C9	110.3 (2)	C10-C9-H9B	111.1
C6-C1-C2	118.6 (3)	Н9А—С9—Н9В	109.1
C6—C1—H1	120.7	C9—C10—C11	104.3 (3)
C2-C1-H1	120.7	С9—С10—Н10А	110.9
C3—C2—C1	121.9 (3)	C11—C10—H10A	110.9
C3—C2—N1	119.5 (3)	C9—C10—H10B	110.9
C1—C2—N1	118.6 (3)	C11-C10-H10B	110.9
C4—C3—C2	118.7 (3)	H10A—C10—H10B	108.9
С4—С3—Н3	120.7	C10-C11-C12	105.0 (2)
С2—С3—Н3	120.7	C10-C11-H11A	110.8
C3—C4—C5	120.5 (3)	C12—C11—H11A	110.8
C3—C4—H4	119.8	C10-C11-H11B	110.8
С5—С4—Н4	119.8	C12—C11—H11B	110.8
C4—C5—C6	120.5 (3)	H11A—C11—H11B	108.8
C4—C5—H5	119.8	N3—C12—C11	104.4 (2)
С6—С5—Н5	119.8	N3—C12—H12A	110.9
C1—C6—C5	119.8 (3)	C11—C12—H12A	110.9
C1 - C6 - C7	121.7(2)	N3—C12—H12B	110.9
$C_{5}-C_{6}-C_{7}$	121.7(2) 1184(3)	C_{11} C_{12} H_{12B}	110.9
03-07-N2	110.4(5) 122.5(2)	$H12A$ _C12_H12B	108.9
03 - 07 - 102	122.3(2) 121.8(2)	1112A C12 1112D	100.9
0 - 0 - 0	121.0 (2)		
C6—C1—C2—C3	0.9 (4)	C5—C6—C7—O3	26.7 (4)
C6-C1-C2-N1	-178.3 (2)	C1—C6—C7—N2	30.6 (4)
O1—N1—C2—C3	165.5 (3)	C5—C6—C7—N2	-153.7 (2)
O2—N1—C2—C3	-14.5 (4)	C12—N3—C8—N2	177.3 (2)
O1—N1—C2—C1	-15.3 (4)	C9—N3—C8—N2	6.5 (4)

O2—N1—C2—C1	164.7 (3)	C12—N3—C8—S1	-1.5 (4)
C1—C2—C3—C4	0.5 (5)	C9—N3—C8—S1	-172.2 (2)
N1-C2-C3-C4	179.7 (3)	C7—N2—C8—N3	58.4 (4)
C2—C3—C4—C5	-1.7 (5)	C7—N2—C8—S1	-122.9 (2)
C3—C4—C5—C6	1.6 (5)	C8—N3—C9—C10	152.1 (3)
C2-C1-C6-C5	-1.0 (4)	C12—N3—C9—C10	-19.5 (3)
C2-C1-C6-C7	174.7 (2)	N3-C9-C10-C11	33.2 (3)
C4—C5—C6—C1	-0.2 (4)	C9—C10—C11—C12	-35.2 (4)
C4—C5—C6—C7	-176.1 (3)	C8—N3—C12—C11	-174.1 (3)
C8—N2—C7—O3	0.9 (4)	C9—N3—C12—C11	-2.0 (3)
C8—N2—C7—C6	-178.8 (2)	C10-C11-C12-N3	22.8 (4)
C1—C6—C7—O3	-149.1 (3)		

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
N2— $H2$ ···S1 ⁱ	0.86 (2)	2.55 (2)	3.406 (3)	173
C1—H1…O3 ⁱⁱ	0.93	2.48	3.169 (3)	131
С9—Н9А…ОЗіі	0.97	2.32	3.274 (4)	167

Symmetry codes: (i) -*x*, -*y*+1, -*z*; (ii) *x*, -*y*+3/2, *z*-1/2.