organic compounds

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

3,3'-Dicyclopentyl-1,1'-(1,3-phenylenedimethylene)dibenzimidazol-1-ium bis(hexafluorophosphate)

Rosenani A. Haque,^a S. Fatimah Nasri,^a Mohd Mustaqim Rosli^b and Hoong-Kun Fun^b*‡

^aSchool of Chemical Sciences, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia, and ^bX-ray Crystallography Unit, School of Physics, Universiti Sains Malaysia, 11800 USM, Penang, Malaysia Correspondence e-mail: hkfun@usm.my

Received 7 May 2012; accepted 18 May 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.002 Å; *R* factor = 0.032; *wR* factor = 0.078; data-to-parameter ratio = 20.9.

In the title compound, $C_{32}H_{36}N_4^{2+}\cdot 2PF_6^{-}$, the cation and the anions each have crystallographic twofold rotation symmetry. The benzimidazole ring is almost planar [r.m.s. deviation = 0.0161 (1) Å] and makes a dihedral angle of 5.77 (4)° with its symmetry-related component and a dihedral angle of 80.96 (5)° with the central benzene ring. The cyclopentyl ring adopts a half-chair conformation. In the crystal, molecules are linked into a three-dimensional network through $C-H\cdots F$ hydrogen bonds. A $C-H\cdots \pi$ interaction is also observed.

Related literature

For the biological activity of benzimidazole, see: Shaharyar *et al.* (2012); Mohan *et al.* (2011). For related structures, see: Haque *et al.* (2011, 2012). For puckering parameters, see: Cremer & Pople (1975).

Experimental

Crystal data $C_{32}H_{36}N_4^{2+} \cdot 2PF_6^{-}M_r = 766.59$

Orthorhombic, $C222_1$ *a* = 7.0699 (1) Å

‡ Thomson Reuters ResearcherID: A-3561-2009.

Z = 4

b = 20.4852 (3) Å

c = 22.5416 (3) Å

V = 3264.66 (8) Å³

area-detector diffractometer Absorption correction: multi-scan (*SADABS*; Bruker, 2009) $T_{\rm min} = 0.903, T_{\rm max} = 0.974$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.032$ $wR(F^2) = 0.078$ S = 1.054758 reflections 228 parameters H-atom parameters constrained Mo $K\alpha$ radiation $\mu = 0.23 \text{ mm}^{-1}$ T = 100 K $0.44 \times 0.13 \times 0.11 \text{ mm}$

19037 measured reflections 4758 independent reflections 4407 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.024$

 $\begin{array}{l} \Delta \rho_{max} = 0.29 \mbox{ e } \mbox{\AA}^{-3} \\ \Delta \rho_{min} = -0.24 \mbox{ e } \mbox{\AA}^{-3} \\ \mbox{Absolute structure: Flack (1983),} \\ 2086 \mbox{ Friedel pairs} \\ \mbox{Flack parameter: } 0.02 \mbox{ (7)} \end{array}$

 Table 1

 Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$C2-H2A\cdots F3^{i}$	0.95	2.44	3.3814 (18)	171
$C5-H5B\cdots F4^{ii}$	0.99	2.41	3.2670 (17)	145
C8−H8A···F2 ⁱⁱⁱ	0.95	2.46	3.3912 (18)	167
$C12-H12A\cdots F4^{ii}$	0.95	2.42	3.2252 (17)	142
$C13-H13A\cdots F2^{iv}$	1.00	2.51	3.4090 (18)	150
$C13-H13A\cdots F3^{iv}$	1.00	2.31	3.2124 (17)	149
$C9-H9A\cdots Cg1^{iv}$	0.95	2.79	3.6416 (15)	149
		(**) · 1	. 1 1 (***)	1 (*)

Symmetry codes: (i) x, -y, -z + 1; (ii) $-x + \frac{1}{2}, -y + \frac{1}{2}, z - \frac{1}{2}$; (iii) x - 1, y, z; (iv) $x - \frac{1}{2}, -y + \frac{1}{2}, -z + 1$.

Data collection: *APEX2* (Bruker, 2009); cell refinement: *SAINT* (Bruker, 2009); data reduction: *SAINT*; program(s) used to solve structure: *SHELXTL* (Sheldrick, 2008); program(s) used to refine structure: *SHELXTL*; molecular graphics: *SHELXTL*; software used to prepare material for publication: *SHELXTL* and *PLATON* (Spek, 2009).

RAH and SFN thank Universiti Sains Malaysia (USM) for the short-term grant (304/PKIMIA/6311123) and RU grants (1001/PKIMIA/811157 and 1001/PKIMIA/813023). HKF thanks USM for the Research University Grant No. 1001/ PFIZIK/811160.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: RZ2756).

References

Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Flack, H. D. (1983). Acta Cryst. A39, 876-881.
- Haque, R. A., Iqbal, M. A., Budagumpi, S., Hemamalini, M. & Fun, H.-K. (2012). Acta Cryst. E68, 0573.
- Haque, R. A., Iqbal, M. A., Hemamalini, M. & Fun, H.-K. (2011). Acta Cryst. E67, 01814–01815.
- Mohan, V. G., Sreenivasulu, N., Rao, A. S. & Chigiri, S. (2011). Der Pharma Chem. 3, 446–452.

Shaharyar, M., Mazumder, A., Salahuddin, Garg, R. & Rishabh, D. P. (2012). Arab. J. Chem. doi:10.1016/j.arabjc.2011.04.013.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.

supporting information

Acta Cryst. (2012). E68, o1868 [doi:10.1107/S160053681202274X]

3,3'-Dicyclopentyl-1,1'-(1,3-phenylenedimethylene)dibenzimidazol-1-ium bis-(hexafluorophosphate)

Rosenani A. Haque, S. Fatimah Nasri, Mohd Mustaqim Rosli and Hoong-Kun Fun

S1. Comment

Benzimidazole, a heterocyclic aromatic organic compound, has a wide variety of biological activities (Shaharyar *et al.*, 2012; Mohan *et al.*, 2011). Previously, we have reported the crystal structures of benzimidazole with various substitutions (Haque *et al.*, 2011, 2012). In this report, we describe the crystal structure of a *meta*-xylyl linked bis-benzimidazolium salt with cyclopentyl substitution.

All parameters in the title compound (Fig. 1) are within normal ranges. The complete molecule, as well as the anions, is generated by a crystallographic twofold axis. The benzimidazole (N1—N2/C6—C12) ring is planar with the r.m.s. 0.0161 (1) Å. It makes a dihedral angle of 5.77 (4)° with its symmetry-related component and of 80.96 (5)° with the central benzene ring (C1—C4/C2A—C3A). The cyclopentyl ring adopts a half chair conformation with puckering parameters Q = 0.4256 (18) Å and $\varphi = 344.9$ (3)° (Cremer & Pople, 1975).

In the crystal structure (Fig. 2), the molecules are linked into a three-dimensional network through intermolecular C— $H \cdots F$ hydrogen bonds and C— $H \cdots \pi$ interactions involving the centroid of the C6—C11 ring (Table 1).

S2. Experimental

To a solution of 1,3-(bromomethyl)benzene (2.64 g, 0.01 mol) in 50 ml of 1,4-dioxane, 1-cyclopentyl-1*H*benzolimidazole (3.73 g, 0.02 mol) was added. The mixture was refluxed at 373 K for 24 h. The resulting brown thick liquid product was decanted, washed with fresh 1,4-dioxane (3×5 ml) and converted directly to its hexafluorophosphate counterpart by metathesis reaction using KPF₆ (3.60 g, 0.02 mol) in 40 ml of methanol/water. The white precipitate was collected, washed with fresh methanol to give the title product as a white solid (4.66 g, 97%). M.p. 518–519 K. Crystals suitable for X-ray diffraction studies were obtained by slow evaporation of the salt solution in a mixture of acetonitrile/methanol (1:1 v/v) at ambient temperature.

S3. Refinement

All H atoms attached to C atoms were fixed geometrically and refined as riding with C—H = 0.95–1.00 Å and $U_{iso}(H) = 1.2U_{eq}(C)$.

Figure 1

The molecular structure of the title compound, showing 50% probability displacement ellipsoids. Hydrogen atoms are shown as spheres of arbitrary radius. Atoms with suffix A, B and C are generated by the symmetry operators (-x, y, 1/2-z), (x, -y, 1-z) and (-x, y, 3/2-z), respectively.

Figure 2

The crystal packing of the title compound. Dashed lines indicate hydrogen bonds. H atoms not involved in hydrogen bonding interactions have been omitted for clarity.

3,3'-Dicyclopentyl-1,1'-(1,3-phenylenedimethylene)dibenzimidazol-1-ium bis(hexafluorophosphate)

Crystal data	
$C_{32}H_{36}N_4{}^{2+}\cdot 2PF_6{}^-$	F(000) = 1576
$M_r = 766.59$	$D_{\rm x} = 1.560 {\rm ~Mg} {\rm ~m}^{-3}$
Orthorhombic, <i>C</i> 222 ₁	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: C 2c 2	Cell parameters from 9943 reflections
a = 7.0699 (1) Å	$\theta = 2.2 - 29.9^{\circ}$
b = 20.4852 (3) Å	$\mu = 0.23 \text{ mm}^{-1}$
c = 22.5416 (3) Å	T = 100 K
V = 3264.66 (8) Å ³	Block, colourless
Z = 4	$0.44 \times 0.13 \times 0.11 \text{ mm}$
Data collection	
Bruker SMART APEXII CCD area-detector	19037 measured reflections
diffractometer	4758 independent reflections
Radiation source: fine-focus sealed tube	4407 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.024$
φ and ω scans	$\theta_{\rm max} = 30.0^\circ, \theta_{\rm min} = 1.8^\circ$
Absorption correction: multi-scan	$h = -9 \rightarrow 9$
(SADABS; Bruker, 2009)	$k = -28 \rightarrow 28$
$T_{\min} = 0.903, \ T_{\max} = 0.974$	$l = -28 \rightarrow 31$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.032$	H-atom parameters constrained
$wR(F^2) = 0.078$	$w = 1/[\sigma^2(F_o^2) + (0.0411P)^2 + 1.0871P]$
S = 1.05	where $P = (F_o^2 + 2F_c^2)/3$
4758 reflections	$(\Delta/\sigma)_{\rm max} = 0.001$
228 parameters	$\Delta \rho_{\rm max} = 0.29 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.24 \text{ e} \text{ Å}^{-3}$
Primary atom site location: structure-invariant direct methods	Absolute structure: Flack (1983), 2086 Friedel pairs
Secondary atom site location: difference Fourier map	Absolute structure parameter: 0.02 (7)

Special details

Experimental. The crystal was placed in the cold stream of an Oxford Cryosystems Cobra open-flow nitrogen cryostat (Cosier & Glazer, 1986) operating at 100.0 (1) K.

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
P1	0.12643 (8)	0.0000	0.5000	0.01579 (10)
F1	-0.03216 (16)	0.05234 (5)	0.48352 (4)	0.0333 (2)
F2	0.28761 (15)	0.05230 (5)	0.48369 (4)	0.0313 (2)
F3	0.12649 (14)	0.02573 (5)	0.56726 (4)	0.02558 (19)
P2	0.0000	0.20928 (3)	0.7500	0.01858 (11)
F4	0.03085 (15)	0.26421 (5)	0.79953 (4)	0.0304 (2)
F5	-0.03160 (16)	0.15392 (5)	0.70063 (4)	0.0331 (2)
F6	0.22344 (14)	0.20932 (5)	0.73648 (4)	0.0307 (2)
N1	0.01439 (18)	0.21030 (6)	0.37157 (5)	0.0166 (2)
N2	-0.04694 (17)	0.31380 (6)	0.38710 (5)	0.0158 (2)
C1	0.0000	0.01437 (9)	0.2500	0.0217 (4)
H1A	0.0000	-0.0320	0.2500	0.026*
C2	0.0497 (2)	0.04841 (7)	0.30090 (7)	0.0187 (3)
H2A	0.0830	0.0252	0.3359	0.022*
C3	0.0511 (2)	0.11646 (6)	0.30090 (6)	0.0155 (3)
C4	0.0000	0.15040 (9)	0.2500	0.0171 (4)
H4A	0.0000	0.1968	0.2500	0.020*
C5	0.1218 (2)	0.15116 (6)	0.35629 (6)	0.0184 (3)
H5A	0.1158	0.1204	0.3901	0.022*
H5B	0.2561	0.1632	0.3504	0.022*
C6	-0.1642 (2)	0.21287 (7)	0.39812 (6)	0.0159 (3)

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

C7	-0.2882 (2)	0.16395 (7)	0.41598 (7)	0.0203 (3)
H7A	-0.2614	0.1191	0.4095	0.024*
C8	-0.4523 (2)	0.18423 (7)	0.44364 (7)	0.0215 (3)
H8A	-0.5404	0.1524	0.4568	0.026*
C9	-0.4927 (2)	0.25100 (7)	0.45287 (6)	0.0194 (3)
H9A	-0.6077	0.2628	0.4718	0.023*
C10	-0.3694 (2)	0.29965 (7)	0.43506 (6)	0.0168 (3)
H10A	-0.3966	0.3446	0.4411	0.020*
C11	-0.2030 (2)	0.27901 (6)	0.40778 (6)	0.0157 (3)
C12	0.0780 (2)	0.27128 (7)	0.36572 (6)	0.0173 (3)
H12A	0.1962	0.2828	0.3486	0.021*
C13	-0.0262 (2)	0.38548 (6)	0.38878 (7)	0.0187 (3)
H13A	-0.1242	0.4034	0.4163	0.022*
C14	-0.0516 (3)	0.41777 (8)	0.32852 (8)	0.0328 (4)
H14A	-0.1872	0.4213	0.3181	0.039*
H14B	0.0147	0.3929	0.2971	0.039*
C15	0.0376 (3)	0.48588 (8)	0.33678 (10)	0.0377 (5)
H15A	0.1187	0.4970	0.3024	0.045*
H15B	-0.0620	0.5196	0.3407	0.045*
C16	0.1564 (2)	0.48203 (7)	0.39385 (8)	0.0258 (3)
H16A	0.2848	0.4998	0.3871	0.031*
H16B	0.0956	0.5070	0.4262	0.031*
C17	0.1659 (2)	0.40913 (7)	0.40946 (7)	0.0233 (3)
H17A	0.2696	0.3870	0.3879	0.028*
H17B	0.1828	0.4024	0.4526	0.028*

Atomic displacement parameters (\mathring{A}^2)

	<i>U</i> ¹¹	1/22	<i>U</i> ³³	<i>U</i> ¹²	<i>U</i> ^{/13}	<i>L</i> /23
	0.0180.(2)	0.0120 (2)	0.0155 (2)	0.000	0.000	0.00104 (19)
	0.0180 (2)	0.0139 (2)	0.0133 (2)	0.000	0.000	0.00104 (18)
F1	0.0360 (6)	0.0354 (5)	0.0287 (5)	0.0206 (4)	-0.0024 (4)	-0.0028 (4)
F2	0.0348 (6)	0.0286 (5)	0.0304 (5)	-0.0119 (4)	0.0112 (4)	0.0012 (4)
F3	0.0298 (5)	0.0311 (4)	0.0158 (4)	-0.0089 (4)	0.0008 (4)	-0.0032 (4)
P2	0.0195 (3)	0.0204 (2)	0.0159 (2)	0.000	-0.0036 (2)	0.000
F4	0.0330 (6)	0.0316 (5)	0.0266 (5)	0.0000 (4)	-0.0041 (4)	-0.0115 (4)
F5	0.0414 (6)	0.0304 (5)	0.0276 (5)	-0.0014 (5)	-0.0082 (5)	-0.0105 (4)
F6	0.0202 (5)	0.0419 (5)	0.0300 (6)	0.0038 (4)	-0.0009 (4)	-0.0035 (4)
N1	0.0196 (6)	0.0151 (5)	0.0152 (5)	-0.0003 (5)	0.0004 (5)	-0.0011 (4)
N2	0.0162 (6)	0.0144 (5)	0.0168 (6)	-0.0026 (4)	0.0024 (4)	-0.0011 (4)
C1	0.0268 (11)	0.0110 (8)	0.0273 (11)	0.000	-0.0015 (9)	0.000
C2	0.0206 (7)	0.0158 (6)	0.0197 (7)	0.0016 (5)	0.0000 (6)	0.0027 (5)
C3	0.0161 (6)	0.0135 (6)	0.0169 (6)	0.0001 (5)	0.0011 (5)	-0.0018 (5)
C4	0.0208 (9)	0.0116 (8)	0.0188 (9)	0.000	0.0011 (8)	0.000
C5	0.0219 (7)	0.0146 (6)	0.0186 (7)	0.0048 (6)	-0.0030 (6)	-0.0007 (5)
C6	0.0186 (7)	0.0180 (6)	0.0111 (6)	-0.0010 (5)	-0.0022 (5)	0.0007 (5)
C7	0.0241 (8)	0.0165 (6)	0.0202 (7)	-0.0031 (5)	-0.0041 (6)	0.0024 (5)
C8	0.0221 (7)	0.0226 (7)	0.0199 (7)	-0.0079 (6)	-0.0005 (6)	0.0058 (6)
C9	0.0168 (7)	0.0252 (7)	0.0163 (6)	-0.0033 (6)	0.0004 (6)	0.0029 (5)

supporting information

C10	0.0183 (6)	0.0175 (6)	0.0145 (6)	-0.0002 (5)	0.0002 (5)	0.0004 (5)
C11	0.0194 (7)	0.0156 (6)	0.0121 (6)	-0.0036 (5)	-0.0014 (5)	0.0002 (5)
C12	0.0190 (7)	0.0182 (6)	0.0149 (6)	-0.0012 (5)	0.0012 (5)	-0.0004 (5)
C13	0.0191 (7)	0.0116 (5)	0.0253 (7)	-0.0020 (5)	0.0043 (6)	-0.0021 (5)
C14	0.0383 (10)	0.0226 (8)	0.0376 (10)	-0.0044 (7)	-0.0151 (8)	0.0105 (7)
C15	0.0298 (9)	0.0254 (8)	0.0578 (13)	-0.0078 (7)	-0.0142 (9)	0.0182 (8)
C16	0.0223 (8)	0.0176 (7)	0.0376 (9)	-0.0050 (5)	0.0037 (7)	-0.0022 (6)
C17	0.0241 (8)	0.0192 (7)	0.0267 (8)	-0.0060 (6)	-0.0051 (6)	-0.0001 (6)

Geometric parameters (Å, °)

P1—F1	1.5951 (10)	С5—Н5А	0.9900
P1—F1 ⁱ	1.5952 (10)	С5—Н5В	0.9900
P1—F3	1.6051 (9)	C6—C7	1.391 (2)
P1—F3 ⁱ	1.6051 (9)	C6—C11	1.3993 (19)
P1—F2	1.6067 (10)	С7—С8	1.381 (2)
P1—F2 ⁱ	1.6067 (10)	С7—Н7А	0.9500
P2—F4 ⁱⁱ	1.6002 (10)	C8—C9	1.413 (2)
P2—F4	1.6002 (10)	C8—H8A	0.9500
P2—F5	1.6046 (10)	C9—C10	1.384 (2)
P2—F5 ⁱⁱ	1.6046 (10)	С9—Н9А	0.9500
P2—F6	1.6088 (10)	C10—C11	1.393 (2)
P2—F6 ⁱⁱ	1.6088 (10)	C10—H10A	0.9500
N1—C12	1.3342 (18)	C12—H12A	0.9500
N1—C6	1.3981 (19)	C13—C17	1.515 (2)
N1—C5	1.4707 (17)	C13—C14	1.522 (2)
N2—C12	1.3307 (18)	C13—H13A	1.0000
N2—C11	1.3935 (18)	C14—C15	1.542 (2)
N2-C13	1.4762 (17)	C14—H14A	0.9900
C1—C2 ⁱⁱⁱ	1.3879 (18)	C14—H14B	0.9900
C1—C2	1.3879 (18)	C15—C16	1.538 (3)
C1—H1A	0.9500	C15—H15A	0.9900
C2—C3	1.3942 (19)	C15—H15B	0.9900
C2—H2A	0.9500	C16—C17	1.536 (2)
C3—C4	1.3894 (17)	C16—H16A	0.9900
C3—C5	1.5210 (19)	C16—H16B	0.9900
C4—C3 ⁱⁱⁱ	1.3894 (17)	C17—H17A	0.9900
C4—H4A	0.9500	С17—Н17В	0.9900
F1	90.68 (9)	H5A—C5—H5B	107.6
F1—P1—F3	89.97 (5)	C7—C6—N1	131.74 (13)
F1 ⁱ —P1—F3	90.05 (5)	C7—C6—C11	121.94 (14)
$F1 - P1 - F3^{i}$	90.05 (5)	N1—C6—C11	106.27 (12)
$F1^{i}$ — $P1$ — $F3^{i}$	89.97 (5)	C8—C7—C6	116.32 (13)
F3—P1—F3 ⁱ	179.97 (8)	С8—С7—Н7А	121.8
F1—P1—F2	89.83 (6)	С6—С7—Н7А	121.8
F1 ⁱ —P1—F2	179.47 (7)	C7—C8—C9	121.84 (14)
F3—P1—F2	89.83 (5)	C7—C8—H8A	119.1

F3 ⁱ —P1—F2	90.15 (5)	С9—С8—Н8А	119.1
$F1$ — $P1$ — $F2^i$	179.47 (7)	С10—С9—С8	121.82 (14)
$F1^{i}$ $P1$ $F2^{i}$	89.83 (6)	С10—С9—Н9А	119.1
$F3 - P1 - F2^{i}$	90.15 (5)	С8—С9—Н9А	119.1
$F3^{i}$ — $P1$ — $F2^{i}$	89.83 (5)	C9—C10—C11	116.20 (12)
$F2 - P1 - F2^{i}$	89.66 (8)	C9—C10—H10A	121.9
F4 ⁱⁱ —P2—F4	90.62 (8)	C11—C10—H10A	121.9
F4 ⁱⁱ —P2—F5	89.66 (5)	C10—C11—N2	131.36 (12)
F4—P2—F5	179.64 (6)	C10—C11—C6	121.87 (13)
F4 ⁱⁱ —P2—F5 ⁱⁱ	179.64 (6)	N2-C11-C6	106.74 (12)
F4—P2—F5 ⁱⁱ	89.66 (5)	N2-C12-N1	110.70 (13)
F5—P2—F5 ⁱⁱ	90.05 (8)	N2-C12-H12A	124.6
$F4^{ii}$ P2 F6	90.07 (6)	N1—C12—H12A	124.6
F4—P2—F6	89.89 (6)	N2-C13-C17	114.52 (12)
F5-P2-F6	90.33 (6)	N2-C13-C14	113.44 (12)
F5 ⁱⁱ —P2—F6	89.72 (6)	C17—C13—C14	103.97 (13)
$F4^{ii}$ P2 $F6^{ii}$	89 88 (6)	N2-C13-H13A	108.2
$F4 - P2 - F6^{ii}$	90.07 (6)	C17—C13—H13A	108.2
$F5 - P2 - F6^{ii}$	89 71 (6)	C14—C13—H13A	108.2
$F5^{ii} - P2 - F6^{ii}$	90 33 (6)	C13 - C14 - C15	103.71 (14)
F6—P2—F6 ⁱⁱ	179.94 (9)	C13—C14—H14A	111.0
C12 - N1 - C6	108.13(12)	C15—C14—H14A	111.0
C12 - N1 - C5	125.04 (13)	C13—C14—H14B	111.0
C6—N1—C5	126.70 (12)	C15—C14—H14B	111.0
C12 - N2 - C11	108.16 (11)	H14A—C14—H14B	109.0
C12 - N2 - C13	126.47 (12)	C16-C15-C14	106.14 (13)
C11—N2—C13	125.37 (12)	C16—C15—H15A	110.5
C2 ⁱⁱⁱ —C1—C2	119.68 (17)	C14—C15—H15A	110.5
$C2^{iii}$ — $C1$ — $H1A$	120.2	C16—C15—H15B	110.5
C2—C1—H1A	120.2	C14—C15—H15B	110.5
C1—C2—C3	120.28 (14)	H15A—C15—H15B	108.7
C1—C2—H2A	119.9	C17—C16—C15	105.39 (13)
C3—C2—H2A	119.9	C17—C16—H16A	110.7
C4—C3—C2	119.91 (13)	C15—C16—H16A	110.7
C4—C3—C5	121.97 (12)	C17—C16—H16B	110.7
C2—C3—C5	118.01 (12)	C15—C16—H16B	110.7
C3 ⁱⁱⁱ —C4—C3	119.95 (17)	H16A—C16—H16B	108.8
C3 ⁱⁱⁱ —C4—H4A	120.0	C13—C17—C16	101.60 (12)
C3—C4—H4A	120.0	С13—С17—Н17А	111.5
N1—C5—C3	114.05 (12)	С16—С17—Н17А	111.5
N1—C5—H5A	108.7	C13—C17—H17B	111.5
С3—С5—Н5А	108.7	C16—C17—H17B	111.5
N1—C5—H5B	108.7	H17A—C17—H17B	109.3
С3—С5—Н5В	108.7		
C2 ⁱⁱⁱ —C1—C2—C3	-0.43 (10)	C12—N2—C11—C6	0.54 (16)
C1—C2—C3—C4	0.9 (2)	C13—N2—C11—C6	-179.62 (13)
C1—C2—C3—C5	-175.19 (12)	C7—C6—C11—C10	-1.0 (2)

C13 N2 C11 C10 $-16(2)$	C9-C10-C11-N2 $-176.85(14)$ N2-C13-C17-C16 168.57(13) C9-C10-C11-C6 1.0 (2) C14-C13-C17-C16 44.24 (15) C12-N2-C11-C10 178.59 (15) C15-C16-C17-C13 $-33.95(17)$ C13-N2-C11-C10 $-16.(2)$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	43 (10) N $447 (15)$ C $8.17 (16)$ N $77 (17)$ C $77 (18)$ C $1.25 (14)$ C $7.33 (15)$ C $8 (2)$ C $94 (13)$ C (2) N (2) C $5 (2)$ C $6 (2)$ C $5 (2)$ C $5 (2)$ C $5 (2)$ C $5 (2)$ C	N1 - C6 - C11 - C10 $C7 - C6 - C11 - N2$ $N1 - C6 - C11 - N2$ $C11 - N2 - C12 - N1$ $C13 - N2 - C12 - N1$ $C6 - N1 - C12 - N2$ $C5 - N1 - C12 - N2$ $C12 - N2 - C13 - C17$ $C12 - N2 - C13 - C17$ $C12 - N2 - C13 - C14$ $C11 - N2 - C13 - C14$ $C13 - C14 - C15$ $C14 - C15 - C16$ $C14 - C13 - C17 - C16$ $C14 - C13 - C17 - C16$ $C15 - C16 - C17 - C16$ $C15 - C16 - C17 - C16$	-178.56 (12) 177.31 (13) -0.29 (15) -0.60 (17) 179.57 (13) 0.41 (16) -175.68 (13) -44.6 (2) 135.57 (14) 74.5 (2) -105.29 (17) -162.32 (14) -37.29 (18) 15.5 (2) 11.4 (2) 168.57 (13) 44.24 (15) -33.95 (17)
-------------------------	---	--	--	---	--

Symmetry codes: (i) x, -y, -z+1; (ii) -x, y, -z+3/2; (iii) -x, y, -z+1/2.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D··· A	D—H···A
C2—H2A····F3 ⁱ	0.95	2.44	3.3814 (18)	171
C5—H5 B ···F4 ^{iv}	0.99	2.41	3.2670 (17)	145
C8—H8 <i>A</i> …F2 ^v	0.95	2.46	3.3912 (18)	167
C12—H12 A ···F4 ^{iv}	0.95	2.42	3.2252 (17)	142
C13—H13A…F2 ^{vi}	1.00	2.51	3.4090 (18)	150
C13—H13A…F3 ^{vi}	1.00	2.31	3.2124 (17)	149
C9—H9 A ···C $g1^{vi}$	0.95	2.79	3.6416 (15)	149

Symmetry codes: (i) *x*, -*y*, -*z*+1; (iv) -*x*+1/2, -*y*+1/2, *z*-1/2; (v) *x*-1, *y*, *z*; (vi) *x*-1/2, -*y*+1/2, -*z*+1.