Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Tetraaquabis(N,N-dimethylformamide- κ O)zinc(II) bis[(2-{3-[2-(carboxylatomethoxy- $\kappa^2 O, O'$)phenyl]pyrazol-1-yl- κN^2 acetato- κO (chloridozincate(II)]

Jie Yang, Lei Shen, Cheng Ji, Xiao-Feng Shen and Gao-Weng Yang*

Department of Chemistry & Materials Engineering, Jiangsu Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu 215500, Jiangsu, People's Republic of China Correspondence e-mail: ygwsx@126.com

Received 28 March 2012; accepted 20 May 2012

Key indicators: single-crystal X-ray study; T = 291 K; mean σ (C–C) = 0.007 Å; R factor = 0.053; wR factor = 0.168; data-to-parameter ratio = 17.8.

The asymmetric unit of the title compound, $[Zn(C_3H_7NO)_2-$ (H₂O)₄][Zn(C₁₃H₁₀N₂O₅)Cl]₂, is composed of a single anion and half a cation. The Zn^{II} atom in the monoanion has a distorted triganol-pyramidal geometry, being coordinated by three O atoms and one N atom from one 2-{3-[2-(carboxylatomethoxy)phenyl]pyrazol-1-yl]acetate ligand and one Cl atom. In the dication, the Zn^{II} atom is located on an inversion center and is coordinated by six O atoms in a slightly distorted octahedral geometry. In the crystal, the ions are linked by O-H···O hydrogen bonds, forming a two-dimensional network lying parallel to the *ab* plane. There are also $C-H\cdots O$ and C-H···Cl interactions present, which lead to the formation of a three-dimensional structure.

Related literature

For potential applications of pyrazole derivatives in advanced materials, see: Su et al. (2000); Tong et al. (2003). For the τ descriptor of penta-coordinated metal atoms, see: Addison et al. (1984).

0.21 mm

10740 measured reflections 4704 independent reflections

 $R_{\rm int} = 0.051$

23 restraints

 $\Delta \rho_{\rm max} = 1.99 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.73 \text{ e} \text{ Å}^{-3}$

3632 reflections with $I > 2\sigma(I)$

H-atom parameters constrained

Experimental

Crystal data

$[Zn(C_{3}H_{7}NO)_{2}(H_{2}O)_{4}]$ -	$\beta = 101.22 \ (3)^{\circ}$
$[Zn(C_{13}H_{10}N_2O_5)Cl]_2$	$\gamma = 107.95 \ (3)^{\circ}$
$M_r = 1033.79$	V = 1026.6 (3) Å ³
Triclinic, P1	Z = 1
a = 8.0040 (16) Å	Mo $K\alpha$ radiation
b = 8.7276 (17) Å	$\mu = 1.95 \text{ mm}^{-1}$
c = 15.782 (3) Å	$T = 291 { m K}$
$\alpha = 90.06 \ (3)^{\circ}$	$0.25 \times 0.22 \times 0.22$
Data collection	

Rigaku Mercury diffractometer Absorption correction: multi-scan

(ABSCOR; Higashi, 1995) $T_{\min} = 0.642, \ \bar{T}_{\max} = 0.686$

Refinement

$$\begin{split} R[F^2 > 2\sigma(F^2)] &= 0.053 \\ wR(F^2) &= 0.168 \end{split}$$
S = 1.074704 reflections 265 parameters

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdots A$	$D \cdots A$	$D - \mathbf{H} \cdots A$
$O7-H7B\cdots O3^{i}$	0.96	1.83	2.710 (5)	151
$O8-H8B\cdots O2^{ii}$	0.96	2.21	2.941 (5)	132
O8−H8C···O5 ⁱⁱⁱ	0.96	1.91	2.715 (5)	140
$C2-H2A\cdots Cl1^{iv}$	0.93	2.79	3.668 (5)	159
$C10-H10B\cdots O5^{v}$	0.97	2.59	3.511 (6)	159

Symmetry codes: (i) -x + 1, -y + 1, -z; (ii) x + 1, y - 1, z; (iii) x + 1, y, z; (iv) -x + 1, -y + 2, -z + 1; (v) x + 1, y + 1, z.

Data collection: CrystalClear (Rigaku/MSC, 2001); cell refinement: CrystalClear; data reduction: CrystalClear; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008) and CrystalStructure (Rigaku/MSC, 2004); software used to prepare material for publication: SHELXL97.

This work was supported by the Foundation of Suzhou Science and Technology of Jiangsu Province of China (SYN201015) and the Key Laboratory of Advanced Functioal Materials of Jiangsu Province of China (No. 10KFJJ002).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2397).

References

- Addison, A. W., Rao, T. N., Reedijk, J., Van Rijn, J. & Verschoor, G. C. (1984). J. Chem. Soc. Dalton Trans. pp. 1349-1356.
- Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
- Rigaku/MSC (2001). CrystalClear. Rigaku/MSC, The Woodlands, Texas, USA. Rigaku/MSC (2004). CrystalStructure. Rigaku/MSC, The Woodlands, Texas, USA.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Su, W. P., Hong, M. C., Weng, J. B., Cao, R. & Lu, S. F. (2000). Angew. Chem. Int. Ed. 39, 2911-2914.
- Tong, M. L., Chen, X. M. & Batten, S. R. (2003). J. Am. Chem. Soc. 125, 16170-16171.

supporting information

Acta Cryst. (2012). E68, m817 [doi:10.1107/S1600536812023045]

Tetraaquabis(*N*,*N*-dimethylformamide- κO)zinc(II) bis[(2-{3-[2-(carboxylato-methoxy- $\kappa^2 O$,O')phenyl]pyrazol-1-yl- κN^2 }acetato- κO)chloridozincate(II)]

Jie Yang, Lei Shen, Cheng Ji, Xiao-Feng Shen and Gao-Weng Yang

S1. Comment

Coordination compounds containing a pyrazole group have been the subject of an intense research effort in recent years, owing to their unique structures and their potential applications in advanced materials (Su *et al.*, 2000; Tong *et al.*, 2003). Pyrazole-derived ligands, such as [3-(2-Carboxymethoxy-phenyl)-pyrazol-1-yl]-acetic acid, have been the subject of limited studies with metal ions, and no coordination complexes have been reported to date. The title ligand comprises N atoms of the pyrazole group and O atoms of the carboxylate, which should display flexible coordination behaviour.

The molecular structure of the title compound is shown in Fig. 1. In the dication atom Zn1 is located on an inversion center. It is coordinated by four O atoms from four water molecules and two O atoms from two DMF molecules, forming a slightly distorted octahedron.

In the monoanion atom Zn2 is coordinated by one nitrogen atom (N1) from the pyrazolyl, three oxygen atoms (O1, O2, O4) from the carboxylate groups and one chlorine atom, leading to a highly distorted trigonal bipyramidal geometry [the τ factor is 0.69; for perfect SP $\tau = 0$, while for perfect TBP $\tau = 1.0$ (Addison *et al.*, 1984). The ligand is chelated to the zinc(II) atom through a carboxylate bridge (O2, O4), a phenoxide group (O1) and a pyrazole nitrogen atom (N1) to form one five-membered and two six-membered chelate rings.

In the crystal, the ions are linked by O-H···O hydrogen-bonds, to form a two-dimensional network lying parallel to (001). There are also C-H···O and C-H···Cl interactions present leading to the formation of a three-dimensional structure (Table 1 and Fig. 2).

S2. Experimental

The title compound was synthesized by the reaction of [3-(2-Carboxymethoxy-phenyl)-pyrazol-1-yl]-acetic acid (0.0552 g, 0.2 mmol) and ZnCl₂4H₂O (0.0209 mg, 0.1 mmol) in DMF (5 mL). The mixture was sealed in a 25 ml Teflon lined stainless steel container, which was heated at 363 K for 48 h and then cooled to room temperature. Colourless block-like crystals were obtained in *ca*. 64% yield based on Zn. Analysis, found: C, 28.55; H, 4.08; N, 24.57%. calculated: C, 28.57; H, 4.04; N, 24.55%.

S3. Refinement

The H-atoms were included in calculated positions and treated as riding atoms: O-H = 0.96 Å; C-H = 0.93, 0.96 and 0.97 Å for CH, CH₃ and CH₂ H-atoms, respectively, with $U_{iso}(H) = k \times U_{eq}(O,C)$, where k = 1.5 for OH and CH₃ H-atoms and = 1.2 for other H-atoms.

Figure 1

The molecular structure for title compound, showing the atom numbering. Displacement ellipsoids are drawn at the 30% probability level [symmetry code: (a) = -x+2, -y, -z].

Figure 2

A view along the a axis of the crystal packing of the title compound, with the hydrogen bonds shown as dashed lines - see Table 1 for details.

$Tetraaquabis(N, N-dimethylformamide-\kappa O)zinc(II) bis[(2-{3-[2-(carboxylatomethoxy-\kappa^2 O, O')phenyl]pyrazol-1-yl-\kappa N^2}acetato-\kappa O)chloridozincate(II)]$

Z = 1

F(000) = 528 $D_x = 1.672 \text{ Mg m}^{-3}$

 $\theta = 3.1-27.5^{\circ}$ $\mu = 1.95 \text{ mm}^{-1}$ T = 291 KBlock, colourless $0.25 \times 0.22 \times 0.21 \text{ mm}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 10740 reflections

Crystal data

$[Zn(C_{3}H_{7}NO)_{2}(H_{2}O)_{4}][Zn(C_{13}H_{10}N_{2}O_{5})Cl]_{2}$
$M_r = 1033.79$
Triclinic, $P\overline{1}$
Hall symbol: -P 1
a = 8.0040 (16) Å
b = 8.7276 (17) Å
c = 15.782 (3) Å
$\alpha = 90.06 \ (3)^{\circ}$
$\beta = 101.22 \ (3)^{\circ}$
$\gamma = 107.95 \ (3)^{\circ}$
V = 1026.6 (3) Å ³

Data collection

Rigaku Mercury	10740 measured reflections
diffractometer	4704 independent reflections
Radiation source: fine-focus sealed tube	3632 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.051$
ω scans	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
Absorption correction: multi-scan	$h = -10 \rightarrow 10$
(ABSCOR; Higashi, 1995)	$k = -11 \rightarrow 11$
$T_{\min} = 0.642, \ T_{\max} = 0.686$	$l = -20 \rightarrow 20$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.053$	Hydrogen site location: inferred from
$wR(F^2) = 0.168$	neighbouring sites
S = 1.07	H-atom parameters constrained
4704 reflections	$w = 1/[\sigma^2(F_o^2) + (0.1P)^2]$
265 parameters	where $P = (F_o^2 + 2F_c^2)/3$
23 restraints	$(\Delta/\sigma)_{\rm max} < 0.001$
Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 1.99 \text{ e } \text{\AA}^{-3}$
direct methods	$\Delta \rho_{\rm min} = -0.73 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$
Zn2	0.28061 (6)	0.71444 (5)	0.29770 (3)	0.0271 (2)
Cl1	0.04523 (14)	0.78125 (14)	0.32248 (8)	0.0415 (4)
01	0.2909 (4)	0.5528 (3)	0.41252 (18)	0.0343 (9)

O2	0.3455 (4)	0.8648 (4)	0.20287 (18)	0.0371 (9)
O3	0.5276 (4)	1.0071 (5)	0.1224 (2)	0.0509 (13)
O4	0.2013 (4)	0.4924 (3)	0.24461 (19)	0.0365 (9)
05	0.0503 (4)	0.2338 (4)	0.2575 (2)	0.0459 (11)
N1	0.5313 (4)	0.8109 (4)	0.3703 (2)	0.0283 (10)
N2	0.6622 (4)	0.9126 (4)	0.3366 (2)	0.0301 (10)
C1	0.7964 (5)	1.0017 (5)	0.3987 (3)	0.0361 (12)
C2	0.7530 (6)	0.9617 (5)	0.4766 (3)	0.0350 (12)
C3	0.5845 (5)	0.8392 (4)	0.4578 (2)	0.0249 (11)
C4	0.4840 (5)	0.7501 (5)	0.5203 (3)	0.0277 (11)
C5	0.5382 (6)	0.8039 (5)	0.6081 (3)	0.0336 (12)
C6	0.4588 (7)	0.7199 (6)	0.6715 (3)	0.0413 (16)
C7	0.3213(7)	0.5759 (6)	0.6478(3)	0.0432 (16)
C8	0.2595 (6)	0.5178 (5)	0.5621 (3)	0.0348 (12)
C9	0.3411 (5)	0.6049 (5)	0.4985(2)	0.0273 (11)
C10	0.6618 (6)	0,9009 (6)	0.1989(2) 0.2440(3)	0.0275(11) 0.0398(14)
C11	0.4999(5)	0.9281(5)	0.1858(3)	0.0339(12)
C12	0.1551(5)	0.9201(3) 0.4021(4)	0.1050(3) 0.3845(3)	0.0337(12) 0.0281(11)
C13	0.1363(6)	0.1021(1) 0.3744(5)	0.3813(3) 0.2887(3)	0.0201(11) 0.0348(12)
Zn1	1,00000	0.00000	0.2007 (3)	0.0346(12) 0.0325(2)
06	1.00000	0.2476(5)	-0.00000	0.0323(2)
07	0.7437(5)	-0.0088(7)	0.0070(4)	0.094(2)
08	1.0867(5)	0.0088(7) 0.0342(4)	0.0101(2) 0.13520(10)	0.0810(19)
N3	1.0007 (5)	0.0342(4)	-0.0348(3)	0.0494(11)
N3	1.2234 (0)	0.4929(3) 0.3353(5)	-0.0548(3)	0.0000(18)
C14	1.1200(0) 1.2142(14)	0.5555(5)	0.0302(3)	0.101(3)
C15	1.3142(14) 1.2271(14)	0.3932(12) 0.5717(12)	0.0394(3)	0.117(4) 0.127(5)
	1.23/1 (14)	0.5717(15)	-0.1167 (5)	0.127 (5)
	0.90130	1.07770	0.39000	0.0430*
HZA	0.82010	1.00570	0.53090	0.0420*
Н5А	0.63130	0.90010	0.62420	0.0400*
H6A	0.49700	0.75920	0.72910	0.0500*
H/A	0.26940	0.51700	0.69030	0.0520*
H8A	0.16510	0.42230	0.54690	0.0420*
H10A	0.66620	0.79470	0.22870	0.0480*
H10B	0.76960	0.97980	0.23300	0.0480*
H12A	0.04210	0.40420	0.39730	0.0340*
H12B	0.18820	0.31550	0.41460	0.0340*
H7B	0.66940	-0.02460	-0.04690	0.1210*
H7C	0.74740	0.09090	0.03730	0.1210*
H8B	1.21120	0.04140	0.15010	0.0740*
H8C	1.07190	0.13250	0.15470	0.0740*
H14A	1.08940	0.28160	-0.11290	0.1510*
H15A	1.30250	0.53170	0.08960	0.1750*
H15B	1.26260	0.67830	0.04230	0.1750*
H15C	1.43890	0.63880	0.03760	0.1750*
H16A	1.17280	0.49420	-0.16430	0.1900*
H16B	1.36070	0.61470	-0.12100	0.1900*
H16C	1.18550	0.65770	-0.11810	0.1900*

	U^{11}	U ²²	U ³³	U^{12}	U^{13}	U^{23}
Zn2	0.0249 (3)	0.0290 (3)	0.0234 (3)	0.0051 (2)	0.0009 (2)	0.0017 (2)
C11	0.0314 (5)	0.0477 (7)	0.0473 (7)	0.0147 (5)	0.0092 (5)	-0.0004 (5)
01	0.0401 (16)	0.0295 (15)	0.0255 (14)	0.0018 (12)	0.0031 (12)	0.0017 (12)
O2	0.0267 (14)	0.0531 (19)	0.0271 (15)	0.0065 (13)	0.0048 (12)	0.0146 (14)
03	0.0330 (17)	0.083 (3)	0.0349 (18)	0.0130 (17)	0.0115 (14)	0.0271 (17)
O4	0.0455 (17)	0.0321 (16)	0.0290 (15)	0.0076 (13)	0.0084 (13)	-0.0017 (12)
05	0.0502 (19)	0.0320 (17)	0.0456 (19)	-0.0007 (14)	0.0089 (15)	-0.0144 (14)
N1	0.0214 (15)	0.0339 (18)	0.0270 (17)	0.0061 (14)	0.0030 (13)	0.0041 (14)
N2	0.0237 (16)	0.0361 (19)	0.0286 (18)	0.0079 (14)	0.0033 (14)	0.0075 (14)
C1	0.025 (2)	0.033 (2)	0.040 (2)	-0.0009 (17)	-0.0014 (18)	0.0049 (19)
C2	0.029 (2)	0.034 (2)	0.034 (2)	0.0038 (17)	-0.0023 (17)	-0.0019 (18)
C3	0.0261 (18)	0.0230 (18)	0.0244 (19)	0.0099 (15)	-0.0013 (15)	0.0002 (15)
C4	0.0262 (19)	0.029 (2)	0.028 (2)	0.0126 (16)	-0.0004 (16)	0.0002 (16)
C5	0.039 (2)	0.036 (2)	0.024 (2)	0.0140 (18)	-0.0012 (17)	-0.0048 (17)
C6	0.046 (3)	0.053 (3)	0.026 (2)	0.019 (2)	0.0041 (19)	-0.004 (2)
C7	0.046 (3)	0.058 (3)	0.030 (2)	0.017 (2)	0.017 (2)	0.013 (2)
C8	0.035 (2)	0.037 (2)	0.031 (2)	0.0090 (19)	0.0075 (18)	0.0018 (18)
C9	0.029 (2)	0.032 (2)	0.0230 (19)	0.0133 (17)	0.0040 (16)	0.0000 (16)
C10	0.029 (2)	0.056 (3)	0.035 (2)	0.012 (2)	0.0103 (18)	0.013 (2)
C11	0.029 (2)	0.045 (2)	0.026 (2)	0.0102 (19)	0.0038 (17)	0.0036 (18)
C12	0.0272 (19)	0.0220 (19)	0.032 (2)	0.0034 (15)	0.0057 (16)	0.0013 (16)
C13	0.031 (2)	0.034 (2)	0.040 (2)	0.0138 (18)	0.0027 (18)	-0.0043 (19)
Zn1	0.0342 (4)	0.0339 (4)	0.0301 (4)	0.0116 (3)	0.0071 (3)	0.0034 (3)
O6	0.133 (4)	0.050 (3)	0.098 (4)	0.022 (3)	0.030 (3)	0.031 (2)
O7	0.050 (2)	0.177 (5)	0.0319 (19)	0.058 (3)	0.0093 (17)	0.007 (2)
08	0.070 (2)	0.061 (2)	0.0268 (16)	0.0414 (19)	-0.0013 (15)	-0.0040 (15)
N3	0.073 (3)	0.039 (2)	0.090 (4)	0.014 (2)	0.032 (3)	0.002 (2)
C14	0.116 (5)	0.069 (4)	0.113 (5)	0.017 (4)	0.031 (4)	0.004 (4)
C15	0.168 (8)	0.130 (7)	0.066 (5)	0.082 (6)	0.001 (5)	-0.018 (5)
C16	0.157 (9)	0.163 (9)	0.052 (5)	0.049 (7)	0.005 (5)	0.022 (5)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Zn2—Cl1	2.2373 (14)	C1—C2	1.359 (7)	
Zn2—O1	2.302 (3)	C2—C3	1.416 (6)	
Zn2—O2	2.029 (3)	C3—C4	1.466 (6)	
Zn2—O4	1.973 (3)	C4—C5	1.403 (7)	
Zn2—N1	2.027 (3)	C4—C9	1.409 (6)	
Zn1—06	2.067 (4)	C5—C6	1.380 (7)	
Zn1—O7	2.066 (4)	C6—C7	1.385 (7)	
Zn1—08	2.102 (3)	C7—C8	1.384 (7)	
Zn1—O6 ⁱ	2.067 (4)	C8—C9	1.401 (6)	
Zn1—O7 ⁱ	2.066 (4)	C10—C11	1.519 (7)	
Zn1—O8 ⁱ	2.102 (3)	C12—C13	1.502 (7)	
O1—C9	1.372 (4)	C1—H1A	0.9300	

O1—C12	1.427 (5)	C2—H2A	0.9300
O2—C11	1.271 (5)	С5—Н5А	0.9300
O3—C11	1.233 (6)	C6—H6A	0.9300
O4—C13	1.276 (5)	C7—H7A	0.9300
O5—C13	1.252 (5)	C8—H8A	0.9300
O6—C14	1.132 (7)	C10—H10B	0.9700
O7—H7B	0.9600	C10—H10A	0.9700
O7—H7C	0.9600	C12—H12B	0.9700
O8—H8C	0.9600	C12—H12A	0.9700
O8—H8B	0.9600	C14—H14A	0.9600
N1—N2	1.347 (5)	C15—H15A	0.9600
N1—C3	1.362 (4)	C15—H15B	0.9600
N2—C1	1.339 (6)	C15—H15C	0.9600
N2-C10	1.464 (6)	C16—H16A	0.9600
N3—C15	1.390 (10)	C16—H16B	0.9600
N3-C16	1.470 (10)	C16—H16C	0.9600
N3-C14	1 374 (6)		0.0000
	1.571(0)		
C11-Zn2-O1	94,96 (9)	C3—C4—C5	119.3 (4)
C11 - Zn2 - O2	99.10(11)	C4-C5-C6	122.6 (4)
Cl1-Zn2-O4	110.29 (11)	$C_{5} - C_{6} - C_{7}$	118.8 (4)
Cl1-Zn2-N1	122.65 (10)	C6-C7-C8	121 3 (4)
$01-7n^2-02$	164.05 (13)	C7 - C8 - C9	121.3(1) 1191(4)
$01 - 7n^2 - 04$	74 99 (11)	01 - C9 - C4	1162(3)
$01 - Zn^2 - N1$	75 37 (12)	01 - 09 - 01	110.2(3) 122.5(4)
0^{2} 7^{2} 0^{2} 7^{2} 0^{4}	10675(13)	C4 - C9 - C8	122.3(1) 121.2(3)
02 = 2n2 = 0.1 02 = 7n2 = N1	90.64 (13)	$N^2 - C^{10} - C^{11}$	1142(3)
04— $7n2$ — $N1$	120 51 (14)	02-C11-C10	1191(4)
$07-Zn1-07^{i}$	180.00	02 - C11 - 03	124.1 (4)
07 —Zn1— 08^{i}	89.06 (15)	O_{3} C_{11} C_{10}	12.1.1(1) 116.8(4)
06^{i} 7n1 08	90.8 (2)	01 - C12 - C13	108.3(3)
0.07^{i} 7n1 00	89.06 (15)	04 - C13 - 05	124 6 (4)
08 — $Zn1$ — 08^{i}	180.00	05-C13-C12	115 8 (4)
06^{i} Zn1 00^{i}	90.4(2)	04 - C13 - C12	119.6 (4)
06^{i} Zn1 07^{i}	89.2 (2)	$C^2 - C^1 - H^1 A$	126.00
0.07^{i} $7n1 - 0.08^{i}$	90.94(15)	N2-C1-H1A	126.00
07 - Zn1 - 08	90.94 (15)	C1-C2-H2A	127.00
06^{i} Zn1 00	89.6 (2)	C3-C2-H2A	127.00
06-7n1-07	90.4(2)	C6-C5-H5A	119.00
06-7n1-08	89.2 (2)	C4-C5-H5A	119.00
$06-Zn1-O6^{i}$	180.00	C5-C6-H6A	121.00
$06-7n1-07^{i}$	89.6 (2)	C7—C6—H6A	121.00
$06-7n1-08^{i}$	90.8(2)	C8—C7—H7A	119.00
$Z_n^2 = 01 = 01^2$	106.2(2)	C6—C7—H7A	119.00
C9-01-C12	120.2(2)	C7—C8—H8A	120.00
$Z_{n2} - 01 - C9$	125.9 (2)	C9—C8—H8A	120.00
$Z_{n2} = 01 = 09$ Zn2 $= 02 = C11$	127.5 (3)	N2-C10-H10A	109.00
Zn2—O4—C13	119.3 (3)	C11—C10—H10B	109.00

Zn1—O6—C14	135.3 (5)	H10A—C10—H10B	108.00
H7B—O7—H7C	109.00	N2-C10-H10B	109.00
Zn1—O7—H7C	110.00	C11—C10—H10A	109.00
Zn1—07—H7B	109.00	C13—C12—H12A	110.00
H8B—O8—H8C	109.00	O1—C12—H12B	110.00
Zn1—O8—H8B	109.00	O1—C12—H12A	110.00
Zn1—O8—H8C	109.00	C13—C12—H12B	110.00
N2—N1—C3	106.0 (3)	H12A—C12—H12B	108.00
Zn2—N1—C3	129.2 (3)	O6—C14—N3	123.6 (5)
Zn2—N1—N2	120.7 (2)	O6—C14—H14A	111.00
N1—N2—C1	111.5 (3)	N3—C14—H14A	125.00
N1—N2—C10	121.0 (3)	N3—C15—H15A	109.00
C1—N2—C10	126.8 (4)	N3—C15—H15B	110.00
C14 - N3 - C16	106.6 (5)	N3—C15—H15C	109.00
C14—N3—C15	138.4 (6)	H15A—C15—H15B	109.00
C15 - N3 - C16	115.0 (6)	H15A—C15—H15C	109.00
N2-C1-C2	108 2 (4)	H15B-C15-H15C	109.00
C1-C2-C3	105.7 (4)	N3—C16—H16A	109.00
N1-C3-C2	108.6 (3)	N3-C16-H16B	109.00
N1-C3-C4	124 3 (3)	N3-C16-H16C	109.00
$C_2 - C_3 - C_4$	127.0(3)	H16A—C16—H16B	110.00
$C_3 - C_4 - C_9$	1237(4)	H16A - C16 - H16C	110.00
$C_{5} - C_{4} - C_{9}$	1169(4)	H_{16B} C_{16} H_{16C}	109.00
	110.5 (1)		109.00
Cl1—Zn2—O1—C9	-69.9 (3)	Zn2—N1—N2—C10	-29.1(5)
Cl1—Zn2—O1—C12	79.9 (2)	C3—N1—N2—C1	1.0 (4)
O4—Zn2—O1—C9	-179.6 (4)	Zn2—N1—N2—C1	160.1 (3)
O4—Zn2—O1—C12	-29.8 (2)	N2—N1—C3—C4	-177.7 (4)
N1—Zn2—O1—C9	52.6 (3)	C3—N1—N2—C10	171.8 (4)
N1—Zn2—O1—C12	-157.7 (3)	Zn2—N1—C3—C2	-156.8(3)
Cl1—Zn2—O2—C11	150.2 (3)	Zn2—N1—C3—C4	25.6 (6)
O4—Zn2—O2—C11	-95.3 (4)	N2—N1—C3—C2	-0.1 (4)
N1—Zn2—O2—C11	27.0 (4)	N1—N2—C10—C11	61.6 (5)
Cl1—Zn2—O4—C13	-66.6 (4)	C1—N2—C10—C11	-129.1 (4)
O1—Zn2—O4—C13	23.2 (3)	C10—N2—C1—C2	-171.6 (4)
O2—Zn2—O4—C13	-173.3 (3)	N1—N2—C1—C2	-1.4 (5)
N1—Zn2—O4—C13	85.7 (4)	C15—N3—C14—O6	6.5 (13)
Cl1—Zn2—N1—N2	-111.0 (3)	C16—N3—C14—O6	-171.4 (7)
Cl1—Zn2—N1—C3	42.7 (4)	N2—C1—C2—C3	1.3 (5)
O1—Zn2—N1—N2	162.5 (3)	C1—C2—C3—N1	-0.7 (5)
O1—Zn2—N1—C3	-43.8 (3)	C1—C2—C3—C4	176.8 (4)
O2—Zn2—N1—N2	-9.8 (3)	N1—C3—C4—C5	-171.2(4)
O2—Zn2—N1—C3	143.9 (3)	N1—C3—C4—C9	13.3 (6)
O4—Zn2—N1—N2	100.2 (3)	C2—C3—C4—C5	11.7 (7)
O4—Zn2—N1—C3	-106.1 (3)	C2—C3—C4—C9	-163.8 (4)
O7 ⁱ —Zn1—O6—C14	60.2 (8)	C_{2} C_{4} C_{9} O_{1}	-37(6)
	00.2 (8)	$C_{3} - C_{4} - C_{3} - O_{1}$	5.7(0)
$O8^{i}$ —Zn1—O6—C14	-30.8 (8)	C3—C4—C5—C6	-175.1(5)

O8—Zn1—O6—C14	149.3 (8)	C5—C4—C9—C8	-0.9 (6)
C12—O1—C9—C4	176.1 (4)	C3—C4—C9—C8	174.6 (4)
C9—O1—C12—C13	-177.2 (4)	C5-C4-C9-O1	-179.3 (4)
C12—O1—C9—C8	-2.2 (6)	C4—C5—C6—C7	0.7 (8)
Zn2—O1—C12—C13	31.1 (4)	C5—C6—C7—C8	-1.8 (8)
Zn2—O1—C9—C4	-38.1 (5)	C6—C7—C8—C9	1.6 (8)
Zn2—O1—C9—C8	143.6 (4)	C7—C8—C9—O1	178.1 (4)
Zn2—O2—C11—O3	173.3 (3)	C7—C8—C9—C4	-0.2 (7)
Zn2—O2—C11—C10	-4.1 (6)	N2-C10-C11-O2	-42.3 (6)
Zn2—O4—C13—O5	165.2 (4)	N2-C10-C11-O3	140.2 (4)
Zn2—O4—C13—C12	-12.3 (6)	O1—C12—C13—O4	-16.5 (6)
Zn1—O6—C14—N3	-152.5 (5)	O1—C12—C13—O5	165.7 (4)

Symmetry code: (i) -x+2, -y, -z.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H··· <i>A</i>	$D \cdots A$	D—H···A
О7—H7 <i>B</i> …O3 ^{іі}	0.96	1.83	2.710 (5)	151
O8—H8 <i>B</i> ···O2 ⁱⁱⁱ	0.96	2.21	2.941 (5)	132
O8—H8C···O5 ^{iv}	0.96	1.91	2.715 (5)	140
C2—H2A···Cl1 ^v	0.93	2.79	3.668 (5)	159
C10—H10 <i>B</i> ····O5 ^{vi}	0.97	2.59	3.511 (6)	159

Symmetry codes: (ii) -x+1, -y+1, -z; (iii) x+1, y-1, z; (iv) x+1, y, z; (v) -x+1, -y+2, -z+1; (vi) x+1, y+1, z.