Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

4-Methoxy-N'-(3-nitrobenzylidene)benzohydrazide

Jin-Long Hou* and Ye Bi

College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, People's Republic of China Correspondence e-mail: houjinlong09@163.com

Received 2 May 2012; accepted 7 May 2012

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.004 Å; R factor = 0.034; wR factor = 0.085; data-to-parameter ratio = 7.1.

In the title compound, C₁₅H₁₃N₃O₄, the dihedral angle between the benzene rings is $3.1 (3)^\circ$. The molecule displays an E conformation about the C=N bond. In the crystal, molecules are linked via N-H···O hydrogen bonds, generating chains that propagate along the *b*-axis direction. There is also a C-H···O interaction present.

Related literature

For the biological properties of hydrazone compounds, see: Cukurovali et al. (2006); Karthikeyan et al. (2006); Kucukguzel et al. (2006). For related hydrazone compounds, see: Hou (2009, 2012); Mohd Lair et al. (2009); Fun et al. (2008); Zhang et al. (2009); Khaledi et al. (2008). For standard bond lengths, see: Allen et al. (1987).

Experimental

Crystal data

C15H13N3O4 $M_r = 299.28$ Monoclinic, P21 a = 6.8472 (17) Å $b = 4.8269 (16) \text{\AA}$ c = 21.414 (3) Å $\beta = 96.696 \ (2)^{\circ}$

V = 702.9 (3) A ³
Z = 2
Mo $K\alpha$ radiation
$\mu = 0.11 \text{ mm}^{-1}$
T = 298 K
$0.17 \times 0.13 \times 0.13~\text{mm}$

--- - /-> ? 3

Data collection

Bruker SMART 1000 CCD areadetector diffractometer Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\min} = 0.982, T_{\max} = 0.987$

Refinement

$R[F^2 > 2\sigma(F^2)] = 0.034$	
$wR(F^2) = 0.085$	
S = 1.05	
1445 reflections	
203 parameters	
2 restraints	

3686 measured reflections 1445 independent reflections 1275 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.036$

H atoms treated by a mixture of independent and constrained refinement $\Delta \rho_{\rm max} = 0.11 \text{ e } \text{\AA}^{-3}$ $\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

Table 1

Hydrogen-bond geometry (Å, °).

$ \begin{array}{cccccc} N3-H3\cdots O3^{i} & 0.90 \ (2) & 2.03 \ (2) & 2.861 \ (3) & 154 \ (3) \\ C6-H6\cdots O1^{ii} & 0.93 & 2.60 & 3.268 \ (3) & 129 \end{array} $	$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
	$\begin{array}{c} N3 - H3 \cdots O3^{i} \\ C6 - H6 \cdots O1^{ii} \end{array}$	0.90 (2) 0.93	2.03 (2) 2.60	2.861 (3) 3.268 (3)	154 (3) 129

Symmetry codes: (i) x, y + 1, z; (ii) $-x, y + \frac{1}{2}, -z$.

Data collection: SMART (Bruker, 1998); cell refinement: SAINT (Bruker, 1998); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

This project was supported by the Research Foundation of the Education Bureau of Heilongjiang Province, China (grant No. 11521312).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2422).

References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.
- Bruker (1998). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Cukurovali, A., Yilmaz, I., Gur, S. & Kazaz, C. (2006). Eur. J. Med. Chem. 41, 201 - 207
- Fun, H.-K., Patil, P. S., Rao, J. N., Kalluraya, B. & Chantrapromma, S. (2008). Acta Cryst. E64, o1707.
- Hou, J.-L. (2009). Acta Cryst. E65, 0851.
- Hou, J.-L. (2012). Acta Cryst. E68, 01352.
- Karthikeyan, M. S., Prasad, D. J., Poojary, B., Bhat, K. S., Holla, B. S. & Kumari, N. S. (2006). Bioorg. Med. Chem. 14, 7482-7489.
- Khaledi, H., Mohd Ali, H. & Ng, S. W. (2008). Acta Cryst. E64, 02481.
- Kucukguzel, G., Kocatepe, A., De Clercq, E., Sahi, F. & Gulluce, M. (2006). Eur. J. Med. Chem. 41, 353-359.
- Mohd Lair, N., Mohd Ali, H. & Ng, S. W. (2009). Acta Cryst. E65, o189.
- Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Zhang, M.-J., Yin, L.-Z., Wang, D.-C., Deng, X.-M. & Liu, J.-B. (2009). Acta Cryst. E65, o508.

supporting information

Acta Cryst. (2012). E68, o1725 [doi:10.1107/S1600536812020454]

4-Methoxy-N'-(3-nitrobenzylidene)benzohydrazide

Jin-Long Hou and Ye Bi

S1. Comment

Hydrazones derived from the condensation reactions of hydrazides with aldehydes show excellent biological properties (Cukurovali *et al.*, 2006; Karthikeyan *et al.*, 2006; Kucukguzel *et al.*, 2006). In the last few years, the crystal structure of a large number of hydrazone compounds have been reported (Hou, 2009; Hou, 2012; Lair *et al.*, 2009; Fun *et al.*, 2008; Zhang *et al.*, 2009; Khaledi *et al.*, 2008). Herein we report on the synthesis and crystal structure of the title compound, derived from the condensation reaction of 3-nitrobenzaldehyde and 4-methoxybenzohydrazide.

The molecular structure of the title compound is shown in Fig. 1. The dihedral angle between the two benzene rings is $3.1 (3)^\circ$. The molecule displays an *E* conformation about the C=N bond. All the bond lengths are within normal ranges (Allen *et al.*, 1987).

In the crystal, molecules are linked *via* N–H···O hydrogen bonds (Table 1) generating chains along the *b* axis direction (Fig. 2). There is also a C-H···O interaction present (Table 1).

S2. Experimental

3-Nitrobenzaldehyde (1.0 mmol, 151 mg) and 4-methoxybenzohydrazide (1.0 mmol, 166 mg) were mixed and refluxed with stirring for two hours. Yellow single crystals were formed after slow evaporation of the solution in air for a week.

S3. Refinement

The NH H atom was located in a difference Fourier map and refined with the N–H distance restrained to 0.90 (2) Å and $U_{iso}(H) = 0.08$ Å². The other H atoms were placed in calculated positions and constrained to ride on their parent atoms: C–H = 0.93 and 0.96 Å for CH and CH₃ H atoms, respectively, with $U_{iso}(H) = k \times U_{eq}(C)$, where k = 1.5 for CH₃ H atoms, and 1.2 for other H atoms. In the final cycles of refinement, in the absence of significant anomalous scattering effects, 929 Friedel pairs were merged and \Df" set to zero.

Figure 1

The molecular structure of the title molecule, with the atom numbering. The displacement ellipsoids are drawn at 30% probability level.

Figure 2

A view along the *a* axis of the crystal packing of the title compound, with the N-H…O hydrogen bonds shown as dashed lines (see Table 1 for details).

4-Methoxy-N'-(3-nitrobenzylidene)benzohydrazide

Crystal data

C₁₅H₁₃N₃O₄ $M_r = 299.28$ Monoclinic, P2₁ Hall symbol: P 2yb a = 6.8472 (17) Å b = 4.8269 (16) Å c = 21.414 (3) Å $\beta = 96.696$ (2)° V = 702.9 (3) Å³ Z = 2

Data collection

Bruker SMART 1000 CCD area-detector	3686 measured reflections
diffractometer	1445 independent reflections
Radiation source: fine-focus sealed tube	1275 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.036$
ωscans	$\theta_{\rm max} = 25.5^{\circ}, \ \theta_{\rm min} = 2.9^{\circ}$
Absorption correction: multi-scan	$h = -7 \longrightarrow 8$
(SADABS; Sheldrick, 1996)	$k = -5 \rightarrow 5$
$T_{\min} = 0.982, \ T_{\max} = 0.987$	$l = -25 \longrightarrow 24$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier
Least-squares matrix: full	map
$R[F^2 > 2\sigma(F^2)] = 0.034$	Hydrogen site location: inferred from
$wR(F^2) = 0.085$	neighbouring sites
<i>S</i> = 1.05	H atoms treated by a mixture of independent
1445 reflections	and constrained refinement
203 parameters	$w = 1/[\sigma^2(F_o^2) + (0.0405P)^2 + 0.0855P]$
2 restraints	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
Primary atom site location: structure-invariant	$(\Delta/\sigma)_{\rm max} = 0.001$
direct methods	$\Delta \rho_{\rm max} = 0.11 \ {\rm e} \ {\rm \AA}^{-3}$
	$\Delta \rho_{\rm min} = -0.16 \text{ e } \text{\AA}^{-3}$

F(000) = 312

 $\theta = 2.8 - 27.0^{\circ}$ $\mu = 0.11 \text{ mm}^{-1}$

Block, yellow

 $0.17 \times 0.13 \times 0.13$ mm

T = 298 K

 $D_{\rm x} = 1.414 {\rm Mg m^{-3}}$

Mo *K* α radiation, $\lambda = 0.71073$ Å

Cell parameters from 1829 reflections

Special details

Geometry. Bond distances, angles etc. have been calculated using the rounded fractional coordinates. All su's are estimated from the variances of the (full) variance-covariance matrix. The cell esds are taken into account in the estimation of distances, angles and torsion angles

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	-0.0350 (3)	-0.0065 (5)	0.08818 (9)	0.0671 (9)	
O2	0.1567 (3)	-0.1359 (5)	0.16985 (9)	0.0556 (7)	
03	0.9986 (3)	-0.0624 (4)	0.29825 (8)	0.0492 (6)	
04	1.7677 (3)	0.4319 (5)	0.44850 (8)	0.0531 (6)	

N1	0.1167 (3)	0.0136 (5)	0.12433 (10)	0.0439 (7)
N2	0.8115 (3)	0.3103 (4)	0.21877 (9)	0.0376 (7)
N3	0.9792 (3)	0.3715 (5)	0.25841 (10)	0.0393 (6)
C1	0.2599 (3)	0.2248 (5)	0.11108 (11)	0.0352 (7)
C2	0.4255 (3)	0.2586 (5)	0.15295 (11)	0.0347 (7)
C3	0.5608 (3)	0.4617 (5)	0.14098 (10)	0.0350 (7)
C4	0.5242 (4)	0.6221 (6)	0.08719 (11)	0.0412 (8)
C5	0.3576 (4)	0.5802 (6)	0.04504 (12)	0.0454 (9)
C6	0.2229 (4)	0.3800 (7)	0.05691 (11)	0.0431 (8)
C7	0.7391 (3)	0.5089 (5)	0.18495 (11)	0.0381 (8)
C8	1.0667 (4)	0.1711 (5)	0.29592 (11)	0.0362 (8)
C9	1.2529 (3)	0.2545 (5)	0.33428 (11)	0.0351 (7)
C10	1.3057 (4)	0.1192 (6)	0.39120 (12)	0.0451 (9)
C11	1.4763 (4)	0.1874 (6)	0.42782 (11)	0.0460 (9)
C12	1.6014 (3)	0.3851 (6)	0.40846 (10)	0.0377 (8)
C13	1.5529 (4)	0.5197 (6)	0.35165 (11)	0.0407 (8)
C14	1.3780 (4)	0.4556 (6)	0.31541 (11)	0.0388 (8)
C15	1.8987 (4)	0.6411 (7)	0.43234 (14)	0.0561 (10)
H2	0.44710	0.14800	0.18870	0.0420*
Н3	1.015 (5)	0.550 (3)	0.2629 (16)	0.0800*
H4	0.61290	0.76010	0.07930	0.0490*
Н5	0.33640	0.68700	0.00870	0.0550*
H6	0.11010	0.35040	0.02910	0.0520*
H7	0.79820	0.68260	0.18790	0.0460*
H10	1.22470	-0.01830	0.40440	0.0540*
H11	1.50810	0.09920	0.46630	0.0550*
H13	1.63710	0.65190	0.33800	0.0490*
H14	1.34380	0.54920	0.27780	0.0470*
H15A	1.94650	0.59410	0.39330	0.0840*
H15B	2.00750	0.65530	0.46480	0.0840*
H15C	1.83080	0.81520	0.42800	0.0840*

Atomic displacement parameters $(Å^2)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
01	0.0447 (11)	0.091 (2)	0.0624 (12)	-0.0261 (12)	-0.0075 (9)	-0.0027 (13)
O2	0.0545 (11)	0.0582 (14)	0.0551 (11)	-0.0166 (11)	0.0106 (9)	0.0077 (11)
03	0.0609 (12)	0.0281 (10)	0.0556 (10)	-0.0084 (9)	-0.0057 (9)	-0.0020 (9)
O4	0.0444 (10)	0.0673 (14)	0.0447 (9)	-0.0134 (10)	-0.0075 (8)	0.0069 (10)
N1	0.0373 (12)	0.0506 (15)	0.0445 (11)	-0.0108 (11)	0.0074 (10)	-0.0085 (11)
N2	0.0365 (11)	0.0324 (12)	0.0422 (11)	-0.0062 (9)	-0.0031 (9)	-0.0048 (10)
N3	0.0386 (11)	0.0299 (11)	0.0465 (11)	-0.0082 (10)	-0.0070 (9)	-0.0017 (10)
C1	0.0323 (12)	0.0338 (14)	0.0396 (12)	-0.0023 (10)	0.0050 (10)	-0.0061 (11)
C2	0.0373 (13)	0.0338 (13)	0.0329 (11)	-0.0031 (11)	0.0038 (10)	-0.0011 (10)
C3	0.0341 (12)	0.0325 (14)	0.0384 (12)	-0.0023 (10)	0.0039 (10)	-0.0033 (11)
C4	0.0411 (14)	0.0357 (15)	0.0471 (14)	-0.0045 (12)	0.0063 (11)	0.0016 (12)
C5	0.0533 (16)	0.0439 (17)	0.0384 (13)	0.0015 (13)	0.0023 (12)	0.0059 (13)
C6	0.0388 (13)	0.0488 (17)	0.0400 (12)	-0.0012 (13)	-0.0022 (10)	-0.0042 (13)

supporting information

C7	0.0372 (13)	0.0324 (14)	0.0439 (13)	-0.0083 (11)	0.0010 (11)	-0.0007 (12)
C8	0.0416 (14)	0.0266 (14)	0.0402 (13)	-0.0029 (11)	0.0037 (11)	-0.0050 (11)
C9	0.0389 (13)	0.0288 (13)	0.0370 (12)	0.0004 (11)	0.0014 (10)	-0.0010 (11)
C10	0.0470 (15)	0.0383 (15)	0.0494 (15)	-0.0091 (13)	0.0027 (12)	0.0078 (12)
C11	0.0510 (16)	0.0481 (17)	0.0369 (13)	-0.0042 (13)	-0.0037 (12)	0.0095 (13)
C12	0.0347 (12)	0.0406 (15)	0.0369 (12)	0.0018 (12)	0.0008 (10)	-0.0042 (12)
C13	0.0382 (13)	0.0410 (16)	0.0425 (13)	-0.0079 (12)	0.0031 (11)	0.0031 (12)
C14	0.0424 (14)	0.0376 (15)	0.0355 (12)	-0.0005 (12)	0.0004 (10)	0.0042 (12)
C15	0.0434 (15)	0.062 (2)	0.0604 (17)	-0.0112 (15)	-0.0041 (13)	0.0008 (16)

Geometric parameters (Å, °)

01—N1	1.225 (3)	C9—C14	1.386 (4)	
O2—N1	1.218 (3)	C9—C10	1.393 (4)	
O3—C8	1.223 (3)	C10—C11	1.369 (4)	
O4—C12	1.362 (3)	C11—C12	1.378 (4)	
O4—C15	1.420 (4)	C12—C13	1.385 (3)	
N1—C1	1.465 (3)	C13—C14	1.384 (4)	
N2—N3	1.378 (3)	С2—Н2	0.9300	
N2—C7	1.267 (3)	C4—H4	0.9300	
N3—C8	1.352 (3)	С5—Н5	0.9300	
N3—H3	0.898 (18)	С6—Н6	0.9300	
C1—C6	1.379 (4)	С7—Н7	0.9300	
C1—C2	1.371 (3)	C10—H10	0.9300	
C2—C3	1.393 (3)	C11—H11	0.9300	
C3—C4	1.386 (3)	C13—H13	0.9300	
C3—C7	1.470 (3)	C14—H14	0.9300	
C4—C5	1.385 (4)	C15—H15A	0.9600	
C5—C6	1.380 (4)	C15—H15B	0.9600	
C8—C9	1.489 (3)	C15—H15C	0.9600	
C12—O4—C15	118.0 (2)	O4—C12—C11	115.4 (2)	
01—N1—O2	123.6 (2)	C11—C12—C13	119.7 (2)	
01—N1—C1	118.1 (2)	C12—C13—C14	119.4 (2)	
O2—N1—C1	118.3 (2)	C9—C14—C13	121.1 (2)	
N3—N2—C7	115.6 (2)	C1—C2—H2	121.00	
N2—N3—C8	119.5 (2)	С3—С2—Н2	121.00	
C8—N3—H3	122 (2)	C3—C4—H4	119.00	
N2—N3—H3	118 (2)	C5—C4—H4	119.00	
N1-C1-C6	118.7 (2)	C4—C5—H5	120.00	
N1-C1-C2	118.5 (2)	С6—С5—Н5	120.00	
C2—C1—C6	122.8 (2)	С1—С6—Н6	121.00	
C1—C2—C3	118.7 (2)	С5—С6—Н6	121.00	
C2—C3—C7	120.8 (2)	N2—C7—H7	120.00	
C2—C3—C4	119.1 (2)	С3—С7—Н7	120.00	
C4—C3—C7	120.1 (2)	C9—C10—H10	120.00	
C3—C4—C5	121.0 (2)	C11—C10—H10	120.00	
C4—C5—C6	120.0 (2)	C10-C11-H11	120.00	

118.3 (2)	C12—C11—H11	120.00
119.3 (2)	С12—С13—Н13	120.00
122.2 (2)	C14—C13—H13	120.00
115.2 (2)	C9—C14—H14	119.00
122.6 (2)	C13—C14—H14	119.00
118.5 (2)	O4—C15—H15A	109.00
118.3 (2)	O4—C15—H15B	109.00
123.2 (2)	O4—C15—H15C	109.00
120.4 (2)	H15A—C15—H15B	109.00
120.9 (2)	H15A—C15—H15C	109.00
124.9 (2)	H15B—C15—H15C	109.00
-177.6 (2)	C7—C3—C4—C5	179.7 (2)
2.4 (4)	C2—C3—C4—C5	-1.0 (4)
-4.8 (3)	C3—C4—C5—C6	1.3 (4)
-3.6 (3)	C4—C5—C6—C1	-0.4 (4)
174.9 (2)	O3—C8—C9—C10	-27.8 (4)
176.7 (2)	N3—C8—C9—C14	-29.2 (3)
179.63 (19)	O3—C8—C9—C14	150.7 (3)
-179.7 (2)	N3—C8—C9—C10	152.3 (2)
176.7 (2)	C8—C9—C14—C13	-177.8 (2)
-3.1 (4)	C10—C9—C14—C13	0.7 (4)
179.4 (2)	C8—C9—C10—C11	179.5 (2)
-0.9 (4)	C14—C9—C10—C11	0.9 (4)
1.2 (4)	C9—C10—C11—C12	-1.8 (4)
-179.2 (2)	C10-C11-C12-C13	0.9 (4)
-0.2 (3)	C10-C11-C12-O4	-179.1 (2)
179.0 (2)	O4—C12—C13—C14	-179.3 (3)
27.7 (3)	C11—C12—C13—C14	0.7 (4)
-153.1 (2)	C12—C13—C14—C9	-1.6 (4)
	118.3 (2) 119.3 (2) 122.2 (2) 115.2 (2) 122.6 (2) 118.5 (2) 118.5 (2) 123.2 (2) 120.4 (2) 120.4 (2) 120.9 (2) 124.9 (2) -177.6 (2) 2.4 (4) -4.8 (3) -3.6 (3) 174.9 (2) 176.7 (2) 176.7 (2) 176.7 (2) -179.7 (2) 176.7 (2) -3.1 (4) 179.4 (2) -0.9 (4) 1.2 (4) -179.2 (2) -0.2 (3) 179.0 (2) 27.7 (3) -153.1 (2)	118.3 (2) $C12-C11-H11$ 119.3 (2) $C12-C13-H13$ 122.2 (2) $C14-C13-H13$ 115.2 (2) $C9-C14-H14$ 122.6 (2) $C13-C14-H14$ 118.5 (2) $O4-C15-H15A$ 118.3 (2) $O4-C15-H15B$ 123.2 (2) $O4-C15-H15B$ 120.4 (2) $H15A-C15-H15B$ 120.9 (2) $H15A-C15-H15C$ 124.9 (2) $H15B-C15-H15C$ -177.6 (2) $C7-C3-C4-C5$ 2.4 (4) $C2-C3-C4-C5$ -4.8 (3) $C3-C4-C5-C6$ -3.6 (3) $C4-C5-C6-C1$ 174.9 (2) $O3-C8-C9-C10$ 176.7 (2) $N3-C8-C9-C14$ -179.7 (2) $N3-C8-C9-C10$ 176.7 (2) $C8-C9-C14-C13$ -3.1 (4) $C10-C9-C14-C13$ -179.4 (2) $C8-C9-C10-C11$ -0.9 (4) $C14-C9-C10-C11$ -0.2 (3) $C10-C11-C12-C13$ -0.2 (3) $C10-C11-C12-C13$ -179.0 (2) $O4-C12-C13-C14$ -179.1 (2) $C12-C13-C14$

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H…A	D····A	D—H···A
N3—H3…O3 ⁱ	0.90 (2)	2.03 (2)	2.861 (3)	154 (3)
C6—H6…O1 ⁱⁱ	0.93	2.60	3.268 (3)	129

Symmetry codes: (i) *x*, *y*+1, *z*; (ii) –*x*, *y*+1/2, –*z*.