

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

N-[4-(4-Chlorobenzenesulfonamido)phenylsulfonyl]acetamide

Islam Ullah Khan,^a* Ejaz,^a Sidra Farid^a and William T. A. Harrison^b

^aMaterials Chemistry Laboratry, Department of Chemistry, GC University, Lahore 54000, Pakistan, and ^bDepartment of Chemistry, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, Scotland Correspondence e-mail: iuklodhi@yahoo.com

Received 17 May 2012; accepted 22 May 2012

Key indicators: single-crystal X-ray study; T = 296 K; mean σ (C–C) = 0.003 Å; R factor = 0.034; wR factor = 0.092; data-to-parameter ratio = 18.3.

In the title compound, $C_{14}H_{13}ClN_2O_5S_2$, the dihedral angles between the central benzene ring and the pendant chlorobenzene ring and the *N*-acetyl group are 82.35 (5) and 79.71 (6)°, respectively, and the overall conformation of the molecule approximates to a U shape. Both the C-S-N-C conformations are *gauche*, but with opposite senses [torsion angles = -59.29 (15) and 63.68 (16)°]. An intramolecular C-H···O interaction generates an *S*(6) ring. In the crystal, inversion dimers linked by pairs of N-H···O hydrogen bonds generate $R_2^2(20)$ loops. A second N-H···O hydrogen bond links the dimers into (101) layers.

Related literature

For related structures, see: Ashfaq et al. (2009, 2010).

V = 1668.67 (6) Å³

Mo $K\alpha$ radiation

 $0.40 \times 0.20 \times 0.10 \text{ mm}$

15966 measured reflections

4146 independent reflections

3267 reflections with $I > 2\sigma(I)$

H atoms treated by a mixture of

independent and constrained

 $\mu = 0.51 \text{ mm}^-$

T = 296 K

 $R_{\rm int} = 0.026$

refinement

 $\Delta \rho_{\rm max} = 0.30 \text{ e} \text{ Å}^{-3}$

 $\Delta \rho_{\rm min} = -0.37$ e Å⁻³

Z = 4

Experimental

Crystal data

 $\begin{array}{l} C_{14}H_{13}\text{CIN}_2\text{O}_5\text{S}_2 \\ M_r = 388.83 \\ \text{Monoclinic, } P_{2_1}/n \\ a = 9.7452 \ (2) \ \text{\AA} \\ b = 9.9905 \ (2) \ \text{\AA} \\ c = 17.3968 \ (3) \ \text{\AA} \\ \beta = 99.870 \ (1)^{\circ} \end{array}$

Data collection

Bruker APEXII CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2007) $T_{min} = 0.823, T_{max} = 0.951$

Refinement

 $R[F^2 > 2\sigma(F^2)] = 0.034$ $wR(F^2) = 0.092$ S = 1.034146 reflections 226 parameters

Table 1Hydrogen-bond geometry (Å, °).

$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$N1-H1\cdotsO5^{i}$	0.85 (2)	1.97 (2)	2.8070 (19)	166 (2)
$N2-H2\cdots O1^{ii}$	0.87(2)	2.10(2)	2.9510 (19)	166.3 (19)
C12−H12···O2	0.93	2.44	3.074 (2)	126

Data collection: *APEX2* (Bruker, 2007); cell refinement: *SAINT* (Bruker, 2007); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997); software used to prepare material for publication: *SHELXL97*.

IUK thanks the Higher Education Commission of Pakistan for its financial support under the project to strengthen the Materials Chemistry Laboratory at GCUL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SU2434).

References

Ashfaq, M., Khan, I. U., Arshad, M. N., Ahmad, H. & Asghar, M. N. (2010). Acta Cryst. E66, 0299.

Ashfaq, M., Tahir, M. N., Khan, I. U., Arshad, M. N. & Saeed-ul-Hassan, S. (2009). Acta Cryst. E65, o1180.

Bruker (2007). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

supporting information

Acta Cryst. (2012). E68, o1913 [doi:10.1107/S1600536812023434]

N-[4-(4-Chlorobenzenesulfonamido)phenylsulfonyl]acetamide

Islam Ullah Khan, Ejaz, Sidra Farid and William T. A. Harrison

S1. Comment

As part of our ongoing structural studies of sulfonamides (Ashfaq *et al.*, 2009, 2010), the synthesis and structure of the title compound, (I), (Fig. 1), are now described.

The dihedral angle between the central (C7—C12) benzene ring and the pendant (C1—C6) chlorobenzene ring is 82.35 (50)°. The dihedral angle between the central ring and the C13/C14/N2/O5 amide fragment is 79.71 (60)°, and overall, the molecule adpots an approximate U shape. The conformation of the C1—S1—N1—C7 fragment is *gauche* [-59.29 (15)°], and the torsion angle for C10—S2—N2—C13 of 63.68 (16)° indicates the same thing, but in an opposite sense. The bond-angle sums for N1 and N2 are 351.4 and 360.0°, respectively. An intramolecular C—H…O interaction (Table 1) generates an S(6) ring.

In the crystal, inversion dimers linked by pairs of N—H···O hydrogen bonds generate $R_2^2(20)$ loops (Fig. 2). The other N —H···O hydrogen bonds links the dimers into (101) layers. Centrosymmetric $R_2^2(20)$ loops were also observed in the crystal structures of the related compounds *N*-acetyl-4-(benzenesulfonamido)-benzenesulfonamide (Ashfaq *et al.*, 2009) and *N*-[4-(*p*-toluenesulfonamido)phenylsulfonyl]acetamide (Ashfaq *et al.*, 2010).

S2. Experimental

Sodium sulfacetamide (0.236 g, 1.0 mmol) was dissolved in 30 ml distlled water in a 100-ml round bottom flask and the pH was adjusted to 8.0 using Na₂CO₃ solution (3%). 4-Chlorobenzenesulfonyl chloride (0.422 g, 2.0 mmol) was added and the mixture was stirred at 50 °C for about 5 h. The pH was adjusted to 3.0 using HCl (3 N) and the resulting white precipitate was filtered, washed and dried. Colourless blocks of (I) were recrystallized from methanol solution at room temperature. This compound has been deposited to CSD with CCDC No. 859957.

S3. Refinement

The N-bound H atoms were located in a difference map and their positions and U_{iso} values were freely refined. The C-bound hydrogen atoms were placed in calculated positions (C—H = 0.93–0.96 Å) and refined as riding atoms with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.5U_{eq}(methyl C)$.

Figure 1

The molecular structure of (I) showing 50% displacement ellipsoids.

Figure 2

An inversion dimer in the crystal of (I), which generates an $R_2^2(20)$ loop. Symmetry code: (i) 1–x, –y, 1–z.

N-[4-(4-Chlorobenzenesulfonamido)phenylsulfonyl]acetamide

Crystal data

C₁₄H₁₃CIN₂O₅S₂ $M_r = 388.83$ Monoclinic, $P2_1/n$ Hall symbol: -P 2yn a = 9.7452 (2) Å b = 9.9905 (2) Å c = 17.3968 (3) Å $\beta = 99.870$ (1)° V = 1668.67 (6) Å³ Z = 4

Data collection

Bruker APEXII CCD	15966 measured reflections
diffractometer	4146 independent reflections
Radiation source: fine-focus sealed tube	3267 reflections with $I > 2\sigma(I)$
Graphite monochromator	$R_{\rm int} = 0.026$
ω scans	$\theta_{\text{max}} = 28.3^{\circ}, \ \theta_{\text{min}} = 2.9^{\circ}$
Absorption correction: multi-scan	$h = -12 \rightarrow 12$
(SADABS; Bruker, 2007)	$k = -13 \rightarrow 13$
$T_{\min} = 0.823, \ T_{\max} = 0.951$	$l = -21 \rightarrow 23$
Refinement	

F(000) = 800

 $\theta = 2.4 - 28.1^{\circ}$ $\mu = 0.51 \text{ mm}^{-1}$

Block, colourless

 $0.40 \times 0.20 \times 0.10 \text{ mm}$

T = 296 K

 $D_{\rm x} = 1.548 {\rm Mg} {\rm m}^{-3}$

Mo $K\alpha$ radiation, $\lambda = 0.71073$ Å Cell parameters from 5590 reflections

Refinement on F^2 Secondary atom site location: difference Fourier Least-squares matrix: full map $R[F^2 > 2\sigma(F^2)] = 0.034$ Hydrogen site location: difmap (N-H) and geom $wR(F^2) = 0.092$ (C-H) S = 1.03H atoms treated by a mixture of independent 4146 reflections and constrained refinement 226 parameters $w = 1/[\sigma^2(F_0^2) + (0.0429P)^2 + 0.5555P]$ 0 restraints where $P = (F_0^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{\rm max} = 0.001$ Primary atom site location: structure-invariant $\Delta \rho_{\rm max} = 0.30 \text{ e } \text{\AA}^{-3}$ direct methods $\Delta \rho_{\rm min} = -0.37 \ {\rm e} \ {\rm \AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\mathring{A}^2)

	x	у	Z	$U_{ m iso}$ */ $U_{ m eq}$
C1	0.20974 (17)	0.33396 (16)	0.55613 (9)	0.0306 (3)
C2	0.18774 (18)	0.44608 (18)	0.50941 (10)	0.0368 (4)
H2A	0.1078	0.4530	0.4718	0.044*

C3	0.2851 (2)	0.54835 (18)	0.51874 (11)	0.0415 (4)
H3	0.2711	0.6248	0.4879	0.050*
C4	0.40247 (19)	0.53498 (18)	0.57432 (11)	0.0402 (4)
C5	0.4280 (2)	0.4213 (2)	0.62017 (11)	0.0449 (5)
Н5	0.5095	0.4135	0.6566	0.054*
C6	0.33066 (19)	0.31992 (19)	0.61088 (10)	0.0393 (4)
H6	0.3458	0.2427	0.6410	0.047*
C7	0.21126 (16)	0.06282 (15)	0.44896 (9)	0.0274 (3)
C8	0.30854 (19)	-0.03793 (17)	0.44559 (10)	0.0372 (4)
H8	0.3333	-0.0950	0.4879	0.045*
C9	0.3684 (2)	-0.05378 (18)	0.38001 (11)	0.0404 (4)
Н9	0.4333	-0.1213	0.3779	0.048*
C10	0.33119 (17)	0.03193 (16)	0.31703 (9)	0.0315 (3)
C11	0.23330 (18)	0.13100 (17)	0.31958 (10)	0.0335 (4)
H11	0.2084	0.1875	0.2770	0.040*
C12	0.17231 (17)	0.14656 (17)	0.38490 (9)	0.0332 (4)
H12	0.1055	0.2126	0.3862	0.040*
C13	0.65205 (18)	0.12228 (19)	0.30551 (10)	0.0363 (4)
C14	0.7580 (2)	0.2294 (2)	0.30576 (12)	0.0545 (5)
H14A	0.7909	0.2578	0.3584	0.082*
H14B	0.7170	0.3041	0.2755	0.082*
H14C	0.8347	0.1955	0.2835	0.082*
N1	0.15644 (15)	0.07329 (14)	0.51825 (8)	0.0311 (3)
H1	0.202 (2)	0.029 (2)	0.5560 (13)	0.050 (6)*
N2	0.53926 (15)	0.12827 (16)	0.24656 (8)	0.0345 (3)
H2	0.531 (2)	0.191 (2)	0.2111 (12)	0.046 (6)*
01	0.06025 (14)	0.17153 (13)	0.62438 (7)	0.0432 (3)
O2	-0.03065 (12)	0.24552 (13)	0.48970 (7)	0.0414 (3)
O3	0.46830 (16)	-0.11310 (14)	0.23297 (9)	0.0538 (4)
O4	0.31838 (14)	0.06823 (17)	0.16787 (7)	0.0557 (4)
05	0.66166 (14)	0.03331 (15)	0.35379 (8)	0.0496 (3)
S1	0.08358 (4)	0.20587 (4)	0.54746 (2)	0.03105 (11)
S2	0.41012 (5)	0.01756 (5)	0.23429 (2)	0.03680 (12)
C11	0.52276 (6)	0.66492 (5)	0.58794 (4)	0.06056 (17)

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C1	0.0309 (8)	0.0310 (8)	0.0301 (8)	0.0009 (6)	0.0061 (7)	-0.0060 (6)
C2	0.0343 (9)	0.0359 (9)	0.0386 (9)	0.0022 (7)	0.0018 (7)	-0.0008(7)
C3	0.0452 (10)	0.0318 (9)	0.0481 (11)	0.0008 (8)	0.0099 (8)	0.0002 (8)
C4	0.0373 (10)	0.0349 (9)	0.0499 (11)	-0.0063 (7)	0.0119 (8)	-0.0139 (8)
C5	0.0354 (10)	0.0495 (11)	0.0452 (11)	-0.0022 (8)	-0.0062 (8)	-0.0064 (8)
C6	0.0397 (10)	0.0391 (9)	0.0368 (9)	0.0019 (8)	-0.0002(8)	0.0023 (7)
C7	0.0270 (8)	0.0265 (7)	0.0285 (8)	-0.0034 (6)	0.0041 (6)	-0.0032 (6)
C8	0.0440 (10)	0.0324 (9)	0.0369 (9)	0.0080 (8)	0.0118 (8)	0.0081 (7)
C9	0.0444 (10)	0.0335 (9)	0.0462 (10)	0.0103 (8)	0.0160 (8)	0.0034 (7)
C10	0.0316 (8)	0.0331 (8)	0.0305 (8)	-0.0031 (7)	0.0075 (7)	-0.0047 (6)

C11	0.0358 (9)	0.0357 (9)	0.0276 (8)	0.0016 (7)	0.0013 (7)	0.0011 (7)
C12	0.0319 (9)	0.0347 (9)	0.0322 (8)	0.0064 (7)	0.0028 (7)	-0.0001 (7)
C13	0.0341 (9)	0.0478 (10)	0.0278 (8)	-0.0007 (8)	0.0072 (7)	-0.0003 (7)
C14	0.0464 (12)	0.0745 (15)	0.0419 (11)	-0.0209 (11)	0.0057 (9)	-0.0011 (10)
N1	0.0337 (8)	0.0299 (7)	0.0298 (7)	0.0027 (6)	0.0062 (6)	0.0004 (6)
N2	0.0376 (8)	0.0401 (8)	0.0254 (7)	-0.0053 (6)	0.0040 (6)	0.0051 (6)
01	0.0490 (8)	0.0476 (7)	0.0375 (7)	-0.0043 (6)	0.0200 (6)	-0.0056 (6)
O2	0.0283 (6)	0.0455 (7)	0.0485 (7)	0.0045 (5)	0.0015 (5)	-0.0062 (6)
O3	0.0631 (10)	0.0419 (8)	0.0630 (9)	-0.0060 (7)	0.0300 (7)	-0.0204 (7)
O4	0.0457 (8)	0.0911 (12)	0.0276 (7)	-0.0079 (8)	-0.0012 (6)	-0.0068 (7)
05	0.0469 (8)	0.0599 (9)	0.0397 (7)	0.0029 (7)	0.0007 (6)	0.0163 (6)
S1	0.0282 (2)	0.0340 (2)	0.0318 (2)	0.00023 (16)	0.00766 (16)	-0.00486 (16)
S2	0.0377 (2)	0.0439 (3)	0.0297 (2)	-0.00666 (19)	0.00829 (17)	-0.01026 (17)
Cl1	0.0523 (3)	0.0466 (3)	0.0847 (4)	-0.0174 (2)	0.0175 (3)	-0.0224 (3)

Geometric parameters (Å, °)

C1—C2	1.379 (2)	C10-C11	1.381 (2)	
C1—C6	1.389 (2)	C10—S2	1.7504 (16)	
C1—S1	1.7630 (17)	C11—C12	1.379 (2)	
C2—C3	1.385 (3)	C11—H11	0.9300	
C2—H2A	0.9300	C12—H12	0.9300	
C3—C4	1.372 (3)	C13—O5	1.215 (2)	
С3—Н3	0.9300	C13—N2	1.370 (2)	
C4—C5	1.386 (3)	C13—C14	1.487 (3)	
C4—Cl1	1.7380 (18)	C14—H14A	0.9600	
C5—C6	1.378 (3)	C14—H14B	0.9600	
С5—Н5	0.9300	C14—H14C	0.9600	
С6—Н6	0.9300	N1—S1	1.6249 (14)	
С7—С8	1.391 (2)	N1—H1	0.85 (2)	
C7—C12	1.393 (2)	N2—S2	1.6615 (15)	
C7—N1	1.404 (2)	N2—H2	0.87 (2)	
С8—С9	1.377 (2)	O1—S1	1.4369 (13)	
С8—Н8	0.9300	O2—S1	1.4220 (13)	
C9—C10	1.389 (2)	O3—S2	1.4249 (15)	
С9—Н9	0.9300	O4—S2	1.4270 (15)	
C2—C1—C6	120.93 (16)	C10—C11—H11	119.8	
C2-C1-S1	120.23 (13)	C11—C12—C7	119.66 (15)	
C6-C1-S1	118.84 (13)	C11—C12—H12	120.2	
C1—C2—C3	119.74 (17)	C7—C12—H12	120.2	
C1—C2—H2A	120.1	O5—C13—N2	120.40 (17)	
C3—C2—H2A	120.1	O5—C13—C14	123.58 (17)	
C4—C3—C2	118.85 (17)	N2-C13-C14	116.01 (16)	
С4—С3—Н3	120.6	C13—C14—H14A	109.5	
С2—С3—Н3	120.6	C13—C14—H14B	109.5	
C3—C4—C5	122.09 (17)	H14A—C14—H14B	109.5	
C3—C4—Cl1	119.00 (15)	C13—C14—H14C	109.5	

C5—C4—Cl1	118.91 (15)	H14A—C14—H14C	109.5
C6—C5—C4	118.85 (17)	H14B—C14—H14C	109.5
С6—С5—Н5	120.6	C7—N1—S1	125.47 (12)
C4—C5—H5	120.6	C7—N1—H1	113.3 (15)
C5—C6—C1	119.49 (17)	S1—N1—H1	112.5 (15)
С5—С6—Н6	120.3	C13—N2—S2	124.05 (13)
С1—С6—Н6	120.3	C13—N2—H2	121.7 (14)
C8—C7—C12	119.68 (14)	S2—N2—H2	114.3 (14)
C8—C7—N1	116.91 (14)	O2—S1—O1	119.66 (8)
C12—C7—N1	123.41 (14)	O2—S1—N1	109.71 (8)
C9—C8—C7	120.46 (16)	O1—S1—N1	104.12 (8)
С9—С8—Н8	119.8	O2—S1—C1	107.95 (8)
С7—С8—Н8	119.8	O1—S1—C1	108.23 (8)
C8—C9—C10	119.48 (16)	N1—S1—C1	106.43 (7)
С8—С9—Н9	120.3	O3—S2—O4	120.51 (9)
С10—С9—Н9	120.3	O3—S2—N2	108.49 (8)
C11—C10—C9	120.35 (15)	O4—S2—N2	102.91 (8)
C11—C10—S2	119.25 (13)	O3—S2—C10	108.70 (8)
C9—C10—S2	120.39 (13)	O4—S2—C10	109.52 (8)
C12—C11—C10	120.35 (16)	N2—S2—C10	105.64 (8)
C12—C11—H11	119.8		
C6—C1—C2—C3	-2.2 (3)	C12—C7—N1—S1	-21.5 (2)
S1—C1—C2—C3	177.56 (13)	O5—C13—N2—S2	-1.1 (3)
C1—C2—C3—C4	0.5 (3)	C14—C13—N2—S2	178.90 (14)
C2—C3—C4—C5	1.4 (3)	C7—N1—S1—O2	57.26 (15)
C2-C3-C4-Cl1	-178.37 (14)	C7—N1—S1—O1	-173.53 (13)
C3—C4—C5—C6	-1.6 (3)	C7—N1—S1—C1	-59.29 (15)
Cl1—C4—C5—C6	178.15 (14)	C2—C1—S1—O2	-1.39 (16)
C4—C5—C6—C1	0.0 (3)	C6—C1—S1—O2	178.34 (13)
C2-C1-C6-C5	1.9 (3)	C2-C1-S1-O1	-132.27 (14)
S1—C1—C6—C5	-177.80 (14)	C6—C1—S1—O1	47.46 (16)
C12—C7—C8—C9	1.2 (3)	C2-C1-S1-N1	116.33 (14)
N1—C7—C8—C9	-179.22 (16)	C6—C1—S1—N1	-63.94 (15)
C7—C8—C9—C10	0.1 (3)	C13—N2—S2—O3	-52.72 (16)
C8—C9—C10—C11	-1.0 (3)	C13—N2—S2—O4	178.53 (15)
C8—C9—C10—S2	177.83 (14)	C13—N2—S2—C10	63.68 (16)
C9—C10—C11—C12	0.5 (3)	C11—C10—S2—O3	-160.62 (14)
S2-C10-C11-C12	-178.32 (13)	C9—C10—S2—O3	20.54 (17)
C10-C11-C12-C7	0.8 (3)	C11—C10—S2—O4	-27.10 (16)
C8—C7—C12—C11	-1.7 (2)	C9—C10—S2—O4	154.06 (15)
N1-C7-C12-C11	178.78 (15)	C11—C10—S2—N2	83.11 (15)
C8-C7-N1-S1	159.00 (13)	C9—C10—S2—N2	-95.73(16)

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	D····A	<i>D</i> —H··· <i>A</i>
N1—H1···O5 ⁱ	0.85 (2)	1.97 (2)	2.8070 (19)	166 (2)

Acta Cryst. (2012). E68, o1913

			supporting information		
N2—H2···O1 ⁱⁱ	0.87 (2)	2.10 (2)	2.9510 (19)	166.3 (19)	
C12—H12···O2	0.93	2.44	3.074 (2)	126	

Symmetry codes: (i) -*x*+1, -*y*, -*z*+1; (ii) *x*+1/2, -*y*+1/2, *z*-1/2.